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Abstract

DNA methylation, one of the most important epigenetic modifications, plays a crucial role in various biological processes.
The level of DNA methylation can be measured using whole-genome bisulfite sequencing at single base resolution.
However, until now, there is a paucity of publicly available software for carrying out integrated methylation data analysis. In
this study, we implemented Methy-Pipe, which not only fulfills the core data analysis requirements (e.g. sequence
alignment, differential methylation analysis, etc.) but also provides useful tools for methylation data annotation and
visualization. Specifically, it uses Burrow-Wheeler Transform (BWT) algorithm to directly align bisulfite sequencing reads to a
reference genome and implements a novel sliding window based approach with statistical methods for the identification of
differentially methylated regions (DMRs). The capability of processing data parallelly allows it to outperform a number of
other bisulfite alignment software packages. To demonstrate its utility and performance, we applied it to both real and
simulated bisulfite sequencing datasets. The results indicate that Methy-Pipe can accurately estimate methylation densities,
identify DMRs and provide a variety of utility programs for downstream methylation data analysis. In summary, Methy-Pipe
is a useful pipeline that can process whole genome bisulfite sequencing data in an efficient, accurate, and user-friendly
manner. Software and test dataset are available at http://sunlab.lihs.cuhk.edu.hk/methy-pipe/.
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Introduction

DNA methylation is a biochemical process that predominantly

involves the addition of a methyl group to cytosine nucleotides by

DNA methyltransferases. This process plays an important role in

the regulation of gene expression in both normal and dysfunctional

cells [1]. Recently, with the advancement of massively parallel

sequencing technologies, it has become feasible to explore DNA

methylation in a genome-wide manner at single base resolution in

a variety of biological systems with whole-genome bisulfite

sequencing approach [2,3,4]; it requires the treatment of DNA

with sodium bisulfite to convert Cytosines (Cs) into Uracils (Us),

while methylcytosines remain unmodified. Since all Us are

amplified by PCR as thymines (Ts), by comparing the modified

DNA with the original sequence, the methylation state of the

original DNA can be inferred by counting the number of cytosines

and thymines at genomic cytosine sites.

Several library preparation protocols have been developed such

as Reduced Representation Bisulfite Sequencing (RRBS) [5], in

which only CpG dinucleotide within the CCGG sequence context

can be studied using a methylation-insensitive restriction enzyme

MspI. To overcome this limitation and gain genome-wide

coverage for CpGs, other bisulfite sequencing protocols such as

MethylC-Seq [3] and BS-Seq [2] have been developed. These two

protocols mainly differ in their amplification procedures. Due to

the simplicity of MethylC-seq protocol and the availability of

commercial kits, it has recently been used for the whole genome

DNA methylation studies in many tissues and samples

[3,4,6,7,8,9,10]. Therefore, the demand for an integrative

computational tool to analyze whole genome methylation data is

increasing, especially for a tool that can satisfy multiple

requirements (e.g., methylation-aware alignment, identification

of Differentially Methylated Regions (DMRs), etc.) that are posed

by different research focuses. Unfortunately, most of the existing

tools cannot provide such a comprehensive spectrum of analysis.

For example, some software packages are designed for bisulfite

sequencing read alignment only [11,12,13,14], others are for

specific downstream analysis [15,16]. To fill this gap, we

implemented Methy-Pipe, an integrative bioinformatics software

package that not only meets the core methylation data analysis

demands but also provides a variety of analysis tools to facilitate

the downstream analysis in an efficient and integrative manner.

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e100360

http://sunlab.lihs.cuhk.edu.hk/methy-pipe/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0100360&domain=pdf


Implementation and Methods

Overview of Methy-Pipe
Methy-Pipe is designed to analyze the bisulfite sequencing data

from the MethylC-Seq protocol (Figure 1A) [3]. The overall

workflow of Methy-Pipe is illustrated in Figure 1B. Briefly,

methylation data analysis is conducted through two consecutive

software modules: (i) BSAligner module, a bisulfite sequencing

read alignment module for data pre-processing and sequence

alignment that is implemented based on 2BWT [17] source code

(http://i.cs.hku.hk/2bwt-tools/downloads/2bwt-lib-v1.0.0-x84-

64bit.tar.gz) and SOAP2 [18] source code (http://soap.genomics.

org.cn/down/SOAPaligner-v2.20-src.tar.gz); (ii) BSAnalyzer

module, a data analysis module implemented to provide a variety

of functionalities to facilitate the downstream methylation data

analysis. The major functions implemented in this module are: (1)

to report the basic statistics and sequencing quality of the data; (2)

to calculate the methylation level for any cytosine site and report

genome-wide methylation profiles of the analyzed samples; (3) to

identify DMRs for paired samples; and (4) to annotate and

visualize the methylation data for data mining and easy

interpretation. The details of the Methy-Pipe and the implemen-

tation of its functional modules will be further elaborated in the

following sections.

Input
The input data for Methy-Pipe consists of high-throughput

bisulfite sequencing reads sequenced from either single or paired-

end library prepared according to the MethylC-Seq protocol [3];

FASTQ format is required in which both the sequenced reads and

their corresponding quality scores are stored in one text file.

Bisulfite sequencing read alignment
To align bisulfite sequencing reads back to the reference

genome, we implemented BSAligner (Figure 2). Briefly, to trim the

raw sequence reads, the following two filtering steps are applied to

remove: (i) the sequencing adaptors; and (ii) low quality bases (i.e.

bases with quality score ,5) on read ends. The processed reads are

then aligned to the in silico converted reference genomes. To

prepare the in silico converted reference genomes for methylation

awareness alignment, two C depleted reference genomes are built

in silico by computationally converting all Cs to Ts in both Watson

and Crick strands. Whole genome sequence indices of these two

converted genomes are then created using Burrows-Wheeler

transform (BWT) algorithm [17,18]. During the alignment,

BSAligner first loads those indices into the computer memory.

Then, all Cs in the sequenced reads were replaced by Ts in silico.

The pre-processed and converted reads were then aligned to the

pre-converted reference genomes. After the alignment, first, we

discard those reads that can be aligned back to both the Watson

Figure 1. Schematic overview of MethyC-seq protocol and Methy-Pipe workflow. (A) The workflow of MethyC-seq library preparation and
sequencing protocol. (B) The workflow and functional models of Methy-Pipe. DMRs: differentially methylated regions.
doi:10.1371/journal.pone.0100360.g001
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and Crick strands. Then the remaining in silico converted alignable

reads are replaced by the original bisulfite sequencing reads and

used for downstream methylation data analysis.

Calculation of the methylation density (MD) level
To calculate the methylation density, we first count the total

number of nucleotide C and T that overlap with each genomic

cytosine site across the whole genome. If the sequenced fragment is

so short that the sequenced read 1 and 2 overlap each other and

the overlapped region covers the genomic cytosine sites, only one

sequenced C or T with higher quality score will be counted. Then

the MD can be calculated by the following equation:

MD~

Pn
1 C(i)Pn

1 (C(i)zT(i))
� 100%

Where, in a given genomic region, n is the total number of

cytosines, C(i) is the total number of sequenced cytosines at the ith

cytosine position in the reference genome, suggesting the

methylated event, and T(i) is the total number of sequenced

thymines at the ith position which is suggestive of unmethylated

event. When n equals to 1, MD at a single-base resolution could be

calculated.

Identification of DMRs
To identify DMRs genome-wide between two compared

samples, a sliding window approach is implemented (Figure 3)

with four key steps: (i) determining seed regions; (ii) identifying

differentially methylated seed regions; (iii) differentially methyl-

ated seed region extension; and (iv) merging of adjacent

differentially methylated seed regions. More specifically, to

determine seed region, initially, a w-base (e.g., w = 500 bps)

sliding window is applied from one end of the chromosomes of two

compared samples. A w-base sliding window can be defined as a

seed region if it meets the following criteria: (1) for both samples,

the sliding window should contain at least m valid CpG sites (e.g.,

m = 5); (2) each valid CpG site should be covered by at least n

Figure 2. Principle of bisulfite sequencing read alignment by BSAligner. Firstly, the low-quality bases and sequenced adaptors at the 39
ends of the reads are removed. The preprocessed reads are then mapped to C-to-T converted reference genomes whose Burrows-Wheeler Transform
(BWT) indices are created and loaded to computing memory before executing alignment. Paired-end reads and single-end reads use different
alignment strategies: (1) For single-end reads, they are mapped to reference genome by allowing at most 2 mismatches and only uniquely mapped
reads are kept for further analysis; (2) For the paired-end reads, in addition to considering the number of mismatches and aligned hits, the insert size
between the paired-end reads are also taken into account (e.g., from 50 to 600 bases); (3) The ambiguous reads that are mapped to both Watson and
Crick strands are removed. Finally, the alignments are outputted in a text file which records the aligned chromosomes, positions, mismatches as well
as sequencing qualities etc.
doi:10.1371/journal.pone.0100360.g002
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bisulfite sequencing reads (e.g., n = 5). Otherwise this w-base

window will be slid downstream with a s-base increment each time

(e.g., s = 100) until the aforementioned criteria are satisfied.

Next, to identify differentially methylated seed region, the MD

of each valid CpG site is calculated. Mann-Whitney U test is

employed to test if the MDs of those valid CpG sites are

statistically different (e.g., p-value,0.01) between two compared

samples. If the test is statistically significant, this region is identified

as a differentially methylated seed region.

To extend this region, we use the same approach to interrogate

its adjacent downstream w-base window. If it is also a differentially

methylated seed region, the two regions will be merged together.

The same procedure will be repeated until the extended region is

longer than k bases (e.g., k = 1000) or the adjacent region does not

satisfy the criteria as a differentially methylated seed region.

Lastly, we merge the adjacent differentially methylated seed

regions within 1000 bases of each other if they share similar

methylation profile, i.e. (1) with similar methylation pattern in

both samples. For example, both regions are more methylated in

one sample than the other or vice versa; (2) with differences in

MDs less than 10% in the same sample. Next, all qualified CpG

sites within a merged differentially methylated region will be

further subjected to x2 test to assess if the proportion of the

sequenced methylated cytosines over the total sequenced methyl-

ated and unmethylated cytosines is statistically different between

two compared samples (default p-value#0.01). The final merged

differentially methylated seed regions with significant difference

are considered as putative DMRs.

Notably, our algorithm is different from BSmooth [16] which

requires biological replicates for DMR identification and is also

different from MethylKit [19] which focuses on detecting

differentially methylated cytosines (DMCs, rather than DMRs)

when the biological replicates are absent.

Figure 3. Principle of DMR detection by BSAnalyzer. (A) Firstly, starting from one end of the genome to search for a seed region (i.e., 500 bps)
using a sliding window. (B) If the seed region is located, Mann-Whitney test will be used to test if the seed region is a differentially methylated seed
region. (C) Two adjacent differentially methylated seed regions are merged into one extended seed region (seed region extension). (D) Two
discontinued differentially methylated regions are further merged together if they are within a certain distance (e.g. less than 1000 bps) for further
differential methylation test using x2 test.
doi:10.1371/journal.pone.0100360.g003
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Implementation of Methy-Pipe
Methy-Pipe is implemented using Perl, R as well as C++. It is

designed to run on x86_64 GNU/Linux platform. The data

analysis performance can be enhanced by distributing multiple

samples to different computing nodes using a Sun Grid Engine

(SGE), for example, running on a Rocks cluster (http://www.

rocksclusters.org).

Results

To demonstrate the functionality and usage of Methy-Pipe, we

applied it to a whole genome bisulfite sequencing dataset from our

previous study [10]. In total, only 193 and 140 million paired-end

bisulfite sequenced raw reads, which is equivalent to an average of

,8x and ,6x coverage, were used for the methylation data

analysis for the maternal buffy coat and placenta sample,

respectively.

Methy-Pipe alignment module can accurately align the
bisulfite sequencing reads

To show how Methy-Pipe can be used for bisulfite sequencing

read alignment, we applied it to the aforementioned dataset with

the functions implemented in BSAligner module (Figure 1B,

Figure 2). Briefly, the bisulfite sequencing reads were pre-

processed by filtering the low quality reads, in silico converted

and aligned to the in silico converted reference genomes (see

Methods). After the alignment, the following output files were

created by Methy-Pipe: (i) the aligned reads stored in a text file

(*.bsalign) with duplicated reads removed (Table S1); (ii)
methylation call data in text files for both Watson and Crick

strands. In these files, for each cytosine in the reference genome,

the total number of the sequenced methylated cytosines (Cs) and

unmethylated cytosines (Ts) as well as the sequence context are

reported (Table S2). Notably, for both placenta and buffy coat

samples, above 80% of bisulfite sequencing raw reads could be

mapped back to the human reference genome (Table S3).

To further evaluate the performance of BSAligner, we tested if it

can align the bisulfite sequencing reads to the reference genome in

an efficient and accurate manner. To this end, we first

computationally generated ,1 million simulated 75 base bisulfite

sequencing paired-end reads from the lambda genome. The insert

sizes of those simulated paired-end reads ranged from 75 to 600

bases. The methylation level of all the cytosines in CpG

dinucleotides are set to be 100%. Using 20 cores on an Intel

Xeon 2.80 GHz CPU, it took approximately 25 s to complete the

entire alignment, suggesting BSAligner is a very efficient alignment

tool. The resultant alignment accuracy is 99.9%, with a

mappability of 99.9%, suggesting an excellent performance.

Next, to test the accuracy of Methy-Pipe alignment for the

bisulfite sequencing reads with different levels of methylations, we

obtained a simulated dataset from human genome that contains

,1 million bisulfite sequencing paired-end reads with the

simulated methylation level ranging from as low as 5% to 100%.

By aligning these reads using BSAligner, Methy-Pipe can

accurately detect the simulated methylation states of cytosines in

any sequence context while the mapping efficiency is completely

unaffected (Figure 4A).

Lastly, we compared Methy-Pipe’s sequencing alignment

module, BSAligner, with Bismark [12], a bisulfite read alignment

program outperforming most of the other aligners. Based on 1

million in silico simulated methylation data, BSAligner outper-

formed Bismark in terms of the computation time (Table S4). For

Bismark [16], it took 21 minutes and 67 minutes of CPU time

using Bowtie1 [20] and Bowtie2 [21] respectively, while it only

took 16 minutes for BSAligner with a comparable alignment

accuracy (Table S4). In addition, our whole pipeline enables the

analyses to be distributed to different computing nodes in a

parallel manner based on SGE platform, which dramatically

enhances the speed of analyses for large-scale methylation studies

in orders of magnitude.

Methy-Pipe can Accurately Quantify MDs of the Regions
of Interests

To accurately calculate MDs (see Methods) is the first step

towards the quantification of methylation data. To access if MD,

calculated by Methy-Pipe based on the whole genome bisulfite

sequencing data, can represent the methylation state of each CpG

site accurately, we compared it with the methylation state

measured by another independent platform, Illumina Infinium

HumanMethylation450 BeadChip [10], which includes more than

480 K CpG sites for interrogation. Two tissue samples were run

on both platforms, one with placenta tissue and the other with a

paired maternal buffy coat sample. For the calculation of MD with

Methy-Pipe, each CpG loci on HumanMethylation450 array

needs to be covered by at least 10 aligned reads, which resulted in

310,319 and 267,946 CpG loci for comparisons in the placenta

and buffy coat sample, respectively. To measure the methylation

state of CpG loci, the Methylation Module (v1.9.0) of the

GenomeStudio (v2011.1) software was used. The methylation

state for individual CpG site was measured by the beta value (b),

which is calculated using the ratio of fluorescence intensities

between methylated (M) and unmethylated (U) alleles in the

equation 2 below:

b~
Methylated allele (M)

Unmethylated allele (U)zMethylated allele (M)z100

As a result, there is a good concordance between the MDs

obtained from Methy-Pipe and the values obtained from Illumina

Infinium HumanMethylation450 array for CpG sites analyzed.

The Pearson correlation coefficient of 0.94 for placenta sample

(Figure 4B) indicates that the MDs calculated by Methy-Pipe and

values from Infinium HumanMethylation450 array are consistent

in measuring the DNA methylation states across the queried CpG

loci.

Basic statistics of methylation data reveals the overall
data quality

After the alignment and MD calculation, it is necessary to

provide the basic statistics of the sequenced methylation data in

order to have a global overview about the overall data quality. To

achieve this, Methy-Pipe generated a HTML file, which summa-

rizes basic statistics and quality control information from the

aligned bisulfite sequencing data, with the HTML links coded in

the file for users to navigate. In this HTML file, the following

useful information are included: total number of sequenced

fragments from each sample, mappability, duplication rate, the

percentage of cytosines or cytosines in the context of CpG

dinucleotides covered by at least one sequenced reads, average

sequencing depth, overall methylation density of different

sequencing context (i.e., CpG, CHG and CHH; H represents A,

C, or T), and bisulfite conversion rate estimated by the spiked

lambda genome if available (Table S3). In addition, two plots were

generated to assess the experimental quality: (i) a plot of base

compositions of four nucleotides at each sequencing cycle, in

which a high percentage of T and low percentage of C are

Methy-Pipe: Bioinformatics Pipeline for Methylation Data Analysis
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expected due to the base conversion involved in the bisulfite

sequencing procedure (Figure 5A). A deviation from this trend

usually indicates a sub-optimal sequencing condition (e.g. incom-

plete bisulfite conversion, etc.); (ii) a plot of the distribution of the

insert size for the paired-end sequencing. This can help to monitor

if the insert size of the sequencing library is as expected or not

(Figure 5B).

Whole genome methylation profiling can reveal the
important biological features of the studied samples

To gain insights into the methylation states of the samples,

Methy-Pipe provides two ways to obtain a genome-wide methyl-

ation profile for a given sample: (i) to generate genome-wide

methylation profiles using MDs of fixed windows across the whole

genome to visualize the MDs in a scatter plot. In the scatter plot,

each dot represents a genomic region with a fixed length (i.e.

100 kb). The MDs of these fixed windows are plotted against their

genomic locations in the reference genome (Figure 5C, D). If

comparing the methylation level of multiple samples, a Circos plot

[22] can also be generated; (ii) to provide MDs for cytosines under

different sequence contexts (i.e. CGH, CHG, and CHH, where

H = A, C or T) (Figure 5E, F). When applying Methy-Pipe to our

dataset, as demonstrated for chromosome 21, the placenta is

hypomethylated and characterized with more fluctuating methyl-

ation patterns (Figure 5C, D). Further studies showed that the

MDs in the placenta genome are lower than that in the maternal

buffy coat, which is consistent with reports on the hypomethylated

nature of placental tissues. Furthermore, for both samples, nearly

all of the methylation occurred on CpG sites with much higher

MDs compared to other sequence contexts (Figure 5G, H),

suggesting that the majority of methylation events in these two

tissues occur in the sequence context of CpG.

Methylation profiling for genomic regions of interest
provides tools to study DNA methylation at different
resolutions

In addition to investigating the methylation states at whole

genome level, studying the methylation profiles around specific

genomic regions can also shed light on how DNA methylation

affects gene expression. For example, MDs around transcription

start sites (TSSs) are commonly correlated with the expression

levels of epigenetically regulated genes [1]. On the other hand,

MDs within the repeat regions (e.g. LINEs, SINEs, etc.) were found

to be hypo-methylated in a genome-wide manner in various

cancers [6,23]. Methy-Pipe is comprised of a utility program to

calculate the MD of any genomic region of interest provided by

the user. The output is a table that reports the methylation states

of each cytosine within that region (Table S5). In addition, Methy-

Pipe can also present the results as box plots (Figure 6). We thus

applied Methy-Pipe to our experimental dataset and calculated the

methylation profiles in the 59UTR, coding sequences (CDS) and

intron regions of all annotated human protein coding genes.

Results revealed the MDs around 59 UTR regions are sharply

reduced for both placenta and buffy coat samples. This

observation is consistent with what has been documented in other

studies [7]. Further comparison of MDs of the two samples in

genomic regions described above revealed distinct methylation

patterns. A significant higher level of MDs was detected in gene

bodies when compared to the 59UTR regions. Interestingly, CDS

has the highest MDs followed by intron and 39 UTR regions.

These results demonstrate the variety of functions that Methy-Pipe

allows the users to mine out the biological significance hiding

behind the complicated methylation data.

Methy-Pipe can accurately identify DMRs with
comparatively low sequencing depth

The identification of DMRs is one of the major goals of

methylation data analysis. Methy-Pipe implements a DMR

identification algorithm in BSAnalyzer module (see Methods).

To demonstrate how to use this algorithm in Methy-Pipe for the

identification of DMRs, we applied it to the placenta and buffy

coat datasets. As a result, two files were created as the outputs of

the identification of DMRs: (i) A DMR list file reporting the

detailed information of the identified DMRs, such as genomic

locations, methylation states (hypomethylated or hypermethy-

lated), cytosine and thymine counts, and the p-values for the

statistical test, etc. (Table S6); (ii) A DMR annotation file

Figure 4. Performance evaluation of Methy-Pipe. (A) A total of 1 million reads (75 bases) were randomly simulated with different rates of
bisulfite conversion and aligned to human (GRCh37/hg19) genome. Methy-Pipe accurately detected various simulated methylation levels at a
constant mapping efficiency which is not affected by the sequence context. The H (in CHG and CHH) denotes C, T, or A. (B) Density scatter plots are
plotted to measure the correlation between the MDs from Methy-Pipe and the b value from Infinium Human Methylationa450 array for CpG loci that
can be integrated by both sequencing and array platforms from Placenta.
doi:10.1371/journal.pone.0100360.g004

Methy-Pipe: Bioinformatics Pipeline for Methylation Data Analysis

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e100360



Figure 5. Summary of Methy-Pipe results from BSAnalyzer module. (A) The plot of the base (A, C, G, T) frequency at each sequencing cycle.
X-axis indicates the sequencing cycle. Y-axis indicates the base frequency. (B) The length distribution of the insert size of a paired-end bisulfite
sequencing library. X-axis represents the insert size. Y-axis represents the percentage of insert with the indicated size. (C, D) Whole genome
methylation profiling with fixed window approach for buffy coat sample (C) and placenta sample (D). Dots on the top are for the Watson strand and
triangles on the bottom are for the Crick strand. (E, F) Whole genome methylation profiling within different sequence contexts. MDs at different
sequence contexts, namely CAA, CAC, CAG, CAT, CCA, CCC, CCG, CCT, CGA, CGC, CGG, CGT, CTA, CTC, CTG, CTT, are calculated for buffy coat (E) and
placenta (F), respectively. (G, H). The fractions of the methylated cytosines are calculated for 3 different sequence contexts for buffy coat (G) and
placenta (H), respectively. Fractional methylated C is calculated as the proportion of the methylated cytosines at a particular sequence context over
total methylated C sequenced. The results indicate that most of the methylated cytosines are from CpG dinucleotides, i.e. CGA, CGC, CGG and CGT.
The H in CHG, CHH represents A, C, or T.
doi:10.1371/journal.pone.0100360.g005

Methy-Pipe: Bioinformatics Pipeline for Methylation Data Analysis
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providing the information on the neighboring gene(s) for each

DMR (Table S7).

To evaluate the performance of DMR algorithm implemented

in BSAnalyzer module, using the evaluation strategies adapted

from BSmooth [16], we also established sets of genomic regions of

hypo- and hyper-methylated DMRs as well as the regions without

methylation state changes by comparing placenta to its paired

buffy coat tissue samples as ‘‘gold-standard’’ references through

Illumina Infinium HumanMethylation450 methylation data with

the following criteria [16]: (i) the values was first calculated as the

mean value of a group of the probes on HumanMethylation450

array within 500 bp window; (ii) the hypermethylated regions

were defined by the difference of mean values between placenta

and buffy coat larger than 25%; (iii) the hypomethylated regions

were defined by the difference of mean values between the two

samples larger than 25% in a reverse direction; (iv) The

unchanged regions were defined by the difference of mean values

between the two samples within 3%. Based on the above

definition, 676, 2,650 and 9,249 regions were identified as

hypermethylated, hypomethylated and unchanged regions. When

comparing the above regions with the corresponding regions

identified from Methy-Pipe using default parameter settings (p,

0.01 for hypermethylated or hypomethylated regions, p.0.25 for

unchanged regions) from data with comparatively low sequencing

Figure 6. Methylation profiling for different genomic regions.
BC: Buffy coat; PLN: Placenta.
doi:10.1371/journal.pone.0100360.g006

Figure 7. Performance evaluation of Methy-Pipe DMR identification algorithm using methylation data from Infinium
HumanMethylation450 array. (A) The proportion of hypermethylated regions identified by the array platform also detected by the Methy-
Pipe. (B) The proportion of hypomethylated regions detected in array also identified by the Methy-Pipe. (C) Comparison of the methylation level
unchanged regions between the array platform and Methy-Pipe. Hypo: hypomethylated regions. Hyper: hypermethylated regions. Unchanged:
unchanged regions.
doi:10.1371/journal.pone.0100360.g007
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depth (,8x and 6x coverage for buffy coat and placenta,

respectively), we could achieve 97%, 91%, and 96% accuracy

for the detection of hypermethylated, hypomethylated, and

unchanged regions (Figure 7). These results suggest that the

Methy-pipe can accurately identify DMRs with comparatively low

sequencing depth.

To further evaluate the quality of the identified DMRs, we

selected a subset of the above identified DMRs where the MDs of

the maternal buffy coat DNA were either #20% or $80% and the

MDs in the placenta were significantly differed by at least 20%

from those of the maternal buffy coat. Such criteria were selected

so that molecular assays could be designed to differentially detect

the placenta-derived and maternal buffy coat-derived DNA

sequences in maternal plasma. Using this method, we identified

17,924 hyper-methylated and 164,846 hypo-methylated DMRs.

Furthermore, a utility program in Methy-Pipe was used to

annotate these DMRs to the closest genes (i.e., within 2 kb of

the upstream of transcription start site of the closest protein coding

gene). As a result, 1,688 hypermethylated and 6,793 hypomethy-

lated DMRs were associated with the known annotated genes. For

example, the promoter of RASSF1A gene is more hypermethy-

lated in placenta compared with maternal buffy coat (Figure 8A),

which is in agreement with the previous report [24]. Further

analysis for those associated DMRs indicates that even though the

placenta was shown to be pervasively hypomethylated compared

with the maternal buffy coat in a genome-wise manner (Figure 8B),

the hypermethylated DMRs are more enriched within the

promoter regions of the associated genes when compared to

hypomethylated ones (Figure 8C). This finding suggests that the

hypermethylation might potentially play some roles in gene

regulation of the placenta. In addition, Gene Ontology (GO)

analysis [25,26] of those genes associated with hypermethylated

DMRs revealed that a significant number of them are relevant to

cell adhesion and embryonic organ morphogenesis (Figure 8D),

which is in line with the previous study on the placenta epigenetics

[27]. These results indicate that the DMRs identified by Methy-

Pipe may have biological functions and could be potential targets

for exploring the possibilities of clinic applications in the prenatal

diagnosis.

Computational cost of Methy-Pipe
To further demonstrate the computational cost of Methy-Pipe,

we also tested it on 10 million 75 bp paired-end bisulfite

sequencing reads. It took 33 minutes to complete the whole

analysis with peak memory usage of 25 GB based on an Intel

Xeon X5675 CPU using 20 cores.

Discussion

In this study, we designed and implemented Methy-Pipe, an

integrated whole genome bisulfite sequencing data analysis

pipeline. It not only fulfills the core data analysis requirements

such as bisulfite-treated sequencing read alignment, methylation

level inference, and DMR identification but also provides a variety

of utility programs to further annotate and visualize the resulting

methylation data. Using real datasets from human placenta and

maternal buffy coat samples, we demonstrated that Methy-Pipe

can efficiently and accurately analyze the whole genome bisulfite

Figure 8. Biological insights revealed by Methy-Pipe. (A) A snapshot of methylation density in promoter and gene body regions of RASSF1A
gene. A DMR in promoter region by comparing buffycoat and placenta tissue using Methy-Pipe is highlighted. (B) Genome-wide methylation
profiling of the global methylation pattern for maternal buffy coat and the placenta samples. The range of MD shown is from 0% (innermost) to 100%
(outermost) and the distance between two lines is 10%. (C) The distribution of DMRs identified by Methy-Pipe across different genomic features. (D)
Gene ontology analysis of hypermethylated regions in placenta. Hypo: hypo-methylated. Hyper: hyper-methylated.
doi:10.1371/journal.pone.0100360.g008
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sequencing data. Thus, this new pipeline would facilitate us to

develop next generation sequencing based diagnostic approaches

based on the DNA methylation marker in many research areas of

medical genomics such as prenatal diagnosis [10] and cancer

detection [6].

When compared with many previously reported whole genome

bisulfite sequencing data analysis software packages, Methy-Pipe

appears to demonstrate more functionality and is easier to use.

First, it integrates the core and the downstream data analysis

modules into one package so that the end user can explore the

biological significance of methylation. In addition, Methy-Pipe can

take advantage of the high-performance computing clusters by

utilizing SGE to parallelize data analyzes, which could dramat-

ically speed up the analysis of bisulfite sequencing data that is

normally huge and demands intensive computing power.

Our BSAligner allows efficient alignment of sequencing reads.

Compared to the majority of aligners designed for bisulfite

sequencing data alignment, its performance has been greatly

improved by integrating quality control filters before the read

alignment is carried out. First, low quality bases of the two ends of

the sequenced reads can be filtered, which decreases methylation

call errors. Second, sequence adaptors can also be filtered to

reduce the adaptor contamination for the short reads during the

methylation inference. In addition, BSAligner adopts a methyla-

tion unbiased approach, in which any available cytosine in the

sequenced read after bisulfite treatment and all cytosines in the

reference genome are converted into thymines before the

alignment. In the BSAligner, it can directly map the converted

bisulfite reads to converted reference genome using the BWT

algorithm, thus eliminating the time consuming step of converting

all Cs to Ts during the alignment. As a result, the performance of

BSAligner is better than that of Bismark [12] which is noteworthy

as Bismark has been shown to outperform many previously

reported mapping programs, including BSMAP [14], BS Seeker

[11], and MAQ [28] in terms of the ability for paired-end read

alignment and running time.
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