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ABSTRACT

The HSF (heat shock factor) gene family contains highly conserved plant-specific
transcription factors that play an important role in plant high-temperature stress
responses. The present study aimed to characterize the HSF transcription factor genes
in tomato (Solanum lycopersicum), which is an important vegetable crop worldwide
and the model plant for fruit development studies. Twenty-six SlyHSF genes were
identified in tomato, and the phylogenetic analysis showed the possible evolution profile
of subgroups among in the plant kingdom. A new group O was identified that involved
HSF genes in primitive plant species, like in the green algae, mosses and lycophytes. The
gene structure and motifs of each SlyHSF were comprehensively analyzed. We identified
orthologous, co-orthologous and paralogous HSF gene pairs in tomato, Arabidopsis
and rice, and constructed a complex interaction network among these genes. The
SIyHSF genes were expressed differentially in different species and at a higher level
in mature fruits. The qPCR analysis was performed and showed SlyHSF genes greatly
participate in plant heat tolerant pathways. Our comprehensive genome-wide analysis
provided insights into the HSF gene family of tomatoes.
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Plant HSF genes, first identified from tomato, have been isolated from various species
(Aranda et al., 1999; Czarnecka-Verner et al., 1995; Hubel & Schoffl, 1994; Scharf et al.,
1990). In contrast to other eukaryotes such as Drosophila melanogaster, Caenorhabditis
elegans and yeast with a single HSF gene in the genome, plants possess a large family of HSFs.
For example, a previous report identified Arabidopsis and rice (Oryza sativa) possessed 21
and 25 HSF genes respectively (Guo et al., 2008). Like many other transcription factors,
the HSF family has a conserved modular structure containing highly conserved domains
(Doring et al., 2000; Treuter et al., 1993). The conserved structure elements include an
N-terminal DNA binding domain (DBD), an adjacent domain with heptad hydrophobic
repeats (HR-A/B) involved in oligomerization and the nuclear localization signal domain
(NLS) (Guo et al., 2008). In addition, some HSFs have a C-terminal activation domain
(CTAD) and a nuclear export signal (NES) domain (Kotak et al., 2004). Based on their
flexible linkers between the A and B parts of the HR-A/B regions and the sequence regions
between the DBD and HR-A/B regions, plant HSFs can be classified into three types (class
A, B, and C) (Nover et al., 2001; Nover et al., 1996). HSFs act through a highly conserved
heat shock element (HSE) containing motifs in alternating orientations in the promoters
(Schoffl, Prandl ¢ Reindl, 1998). Class A HSFs are involved in transcriptional activation and
environmental stress responses (Shim et al., 2009), while class B HSFs act as repressors of
gene expression (Ikeda, Mitsuda & Ohme-Takagi, 2011; Zhu et al., 2012). Previous research
showed that HSFBI in Arabidopsis acts as a repressor, while in tomato, it functions as
a transcription co-activator with class A HSFs (Ikeda, Mitsuda & Ohme-Takagi, 2011;
Zhu et al., 2012).

The HSF gene family has been thoroughly characterized in many species, including
Arabidopsis, Chinese cabbage, rice, maize, Triticum aestivum, pepper and grasses (Guo
et al., 2008; Lin et al., 2011; Nover et al., 2001; Song et al., 2014; Xue et al., 2014; Yang et
al., 2014). Although tomato HSFs have been identified and classified (Doring et al., 2000;
Heerklotz et al., 20015 Scharf et al., 2012; Scharf et al., 1990), but only the identification was
done in that paper. This study is the first comprehensive report of tomato HSFs, the
chemical characteristics of the proteins have been obtained, and compared with other
organisms. A phylogenetic tree using representative species including green alga, moss,
lycophyte, gymnosperm, monocot and eudicots has been constructed in this study, in order
to study the HSF classification and evolution across the whole plant kingdom. Furthermore,
the expression patterns of all tomato HSF genes in different tissues and after treated in high
temperate tress have been characterized. The results of this work provide a foundation
to better understand the functional and evolutionary history of the HSF gene family in
Solanaceae plants.

MATERIALS AND METHODS

Identification and characteristics of tomato HSF genes

The genome, gene and protein sequences of tomato were downloaded from the Sol
Genomics Network database (http://solgenomics.net, ITAG 2.40). The HSF-domain
search model accession PF00447.12 in Pfam database was used to search against all 34725
tomato genes using HMMER, with a strict cut-off E-value of 107°. The positions of
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each HSF-coding gene on chromosomes were obtained according to Tomato Genome
Annotation ITAG 2.40. Protparam program (http://web.expasy.org/protparam/) was
employed to calculate or predict the chemical characteristics of tomato HSF proteins,
including the molecular formula of the protein, number of amino acids per protein,
molecular weight, estimated theoretical pl, instability index, aliphatic index and GRAVY
(Grand Average of Hydropabhicity).

Phylogenetic analyses construction

HSF proteins for phylogenetic analyses were gathered from eight plant species. The
proteins of Picea abies was downloaded from http://congenie.org (Nystedt et al., 2013). The
six other species, including Chlamydomonas reinhardtii, Physcomitrella paten, Selaginella
moellendorffii, Arabidopsis thaliana, Vitis vinifera and Oryza sativa, were downloaded from
Phytozome database (v10) (Goodstein et al., 2012). The HSF proteins with their conserved
domains were also screened by the HMMER software. Only the longest transcript was
used if alternative spliced isoforms existed. After multiple sequence alignment of the HSF
domains using ClustalX2 software with default settings, MEGA (version 6.06) was used to
construct maximum-parsimony phylogenetic trees with 2,000 bootstrap replicates.

Gene structure and motif analysis

The Gene Structure Display Server tool (http://gsds].cbi.pku.edu.cn/) was used to analyze
the exon-intron structures. The gene structures of tomato HSF were drawn using Photoshop
software, including a clustering of all HSF genes in accordance with previously mentioned
conserved protein domains. Besides the exon and intron regions, the upstream and
downstream UTR regions were also reported to show possible structures of entirely
expressed mRNA. Intron phases were classified based on their positions relative to the
reading frame of the translated proteins: phase 0 (located between two codons), phase 1
(splitting codons between the first and second nucleotides) or phase 2 (splitting codons
between the second and third nucleotides) (Long, Rosenberg ¢ Gilbert, 1995). The software
MEME (http://meme.nbcr.net/meme/) (Bailey ¢ Elkan, 1994) was used to search for motifs
in all 26 HSF genes; the number of motifs that MEME should find was set to 15 in this
study. The length of motifs that MEME searched was in a window of 6 to 50 bp.

Identification of orthologous and paralogous genes

The orthologous, co-orthologous and paralogous genes among tomato, Arabidopsis and rice
were searched using OrthoMCL (version 2.0.3) with the entire protein sequence of HSF. The
default parameter E-value was le™> for BLASTP in all vs all sequences alignment. The Or-
thoMCL software was used to gather the orthologous and paralogous relationships and the
result was displayed using the Circos software (http://circos.ca/) (Krzywinski et al., 2009).

HSF gene expression analysis in tomato tissues

The gene expression data was downloaded from the Tomato Funtional Genomics Database
(http://ted.bti.cornell.edu/cgi-bin/TFGD/digital/experiment.cgi?ID=D004), including
RNA-seq data from leaves, roots, flower buds, fully opened flowers, and 1 cm, 2 c¢m,

3 cm, mature green, breaker, and breaker 4 10d fruits of tomato cultivar Heinz 1706, and
leaves, immature green, breaker, and breaker + 5d fruits of Solanum pimpinellifolium LA
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Table 1 Genomic characteristics of SlyHSF genes in tomato.

ID Name Chromosome  Strand  Start Stop No. Gene No.cDNA  No.CDS No. Amino
bases (bp)  bases (bp) bases (bp)  acids (aa)
SIlyHSE-01 Solyc11g064990.1 SL2.40chl11 = 47389718 47391840 2,123 756 756 251
SIyHSF-02  Solyc08g005170.2  SL2.40ch08 = 111412 116839 5,428 1,949 1,584 527
SIyHSF-03  Solyc03g026020.2  SL2.40ch03 4 7810489 7812280 1,792 1,594 1,017 338
SIyHSF-04  Solyc03g097120.2  SL2.40ch03 = 52901766 52904929 3,164 1,874 1,476 491
SIyHSF-05  Solyc02g090820.2  SL2.40ch02 — 46880125 46883382 3,258 1,611 906 301
SIyHSF-06  Solyc09g065660.2  SL2.40ch09 aF 59473864 59475995 2,132 1,405 1,119 372
SIyHSF-07  Solyc04g078770.2  SL2.40ch04 4F 61036586 61037903 1,318 1,230 1,083 360
SIyHSF-08  Solyc06g072750.2  SL2.40ch06 G 41255352 41258348 2,997 1,613 1,449 482
SIyHSF-09  Solyc12g098520.1  SL2.40ch12 + 48549454 48552229 2,776 1,437 1,437 478
SIyHSF-10  Solyc08g080540.2  SL2.40ch08 = 60985869 60987278 1,410 1,329 978 325
SIyHSF-11  Solyc04g016000.2  SL2.40ch04 — 6594909 6598451 3,543 1,320 714 237
SIyHSF-12  Solyc12g007070.1 SL2.40chl11 = 50695058 50703526 8,469 1,110 1,110 369
SIyHSF-13  Solyc09g082670.2  SL2.40ch09 aF 63781968 63784228 2,261 1,458 1,071 356
SIyHSF-14  Solyc06g053960.2  SL2.40ch06 = 33333411 33336335 2,925 892 429 142
SIyHSF-15  Solyc08g076590.2  SL2.40ch08 = 57710679 57714096 3,418 1,806 1,473 490
SIyHSF-16  Solyc09g059520.2  SL2.40ch09 — 50372011 50379351 7,341 1,551 1,170 389
SIyHSF-17  Solyc02g072000.2  SL2.40ch02 aF 35903150 35904957 1,808 1,712 1,227 408
SIyHSF-18  Solyc08g062960.2  SL2.40ch08 — 49589145 49591151 2,007 1,215 1,056 351
SIyHSF-19  Solyc10g079380.1 SL2.40ch10 = 60125137 60126209 1,073 768 768 255
SIyHSF-20  Solyc03g006000.2  SL2.40ch03 + 678142 679948 1,807 1,693 1,206 401
SIlyHSE-21 Solyc07g055710.2  SL2.40ch07 = 60972388 60973952 1,565 1,477 1,167 388
SIyHSF-22  Solyc07g040680.2  SL2.40ch07 + 46702761 46704429 1,669 1,435 1,071 356
SIyHSF-23  Solyc02g078340.2  SL2.40ch02 G 37643661 37646059 2,399 666 618 205
SIyHSF-24  Solyc09g009100.2  SL2.40ch09 = 2445341 2448016 2,676 1,959 1,530 509
SIyHSF-25  Solyc02g079180.1 SL2.40ch02 =F 38360060 38365669 5,610 1,245 1,245 414
SIyHSF-26  Solyc02g072060.1 SL2.40ch02 aF 35912808 35914648 1,841 1,020 1,020 339

1589 (Tomato Genome, 2012). The SIlyHSF gene expression profile from each sample was
analyzed via the HemlI program (http://hemi.biocuckoo.org/) with the average hierarchical
clustering method.

HSF gene expression analysis under heat treatment

Seeds from the tomato cultivar Heinz 1706 were germinated and grown in a greenhouse
at 24 °C with a photoperiod of 14 h light and 10 h dark. For the heat stress treatment,
uniform-sized seedlings were transferred to a growth chamber at 38 °C when they
developed five fully opened leaves. The third leaves of the seedlings were taken after 0,
1, 2, 6, 12 and 24 h of heat stress treatment, frozen immediately in liquid nitrogen, and
stored at —80 °C until RNA isolation. Total RNA was isolated from tomato leaves using
a TaKaRa MiniBEST Plant RNA Extraction Kit (9769), according to the manufacturer’s
instructions. The RNA was used to synthesize first-strand cDNA using M-MLV reverse
transcriptase (TakaRa, Japan). The SYBR Premix Ex Taq II reagent (Takara, Japan) with
SYBR Green I as the fluorescent dye was used for the gPCR using an ABI 7300 real-time
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Figure 1 Phylogenetic tree of eight plants constructed based on amino acid sequences of HSF domains
using the maximum-parsimony method. The different species can be distinguished by different shapes

and colors.

PCR system (Applied Biosystems, Foster City, CA, USA). Each reaction contains 10 nL
2x SYBR Premix Ex Taq II Reagent, 1.0 pL cDNA sample, and 2 pL gene-specific primer
in a final volume of 20 pL, 500 nM gene-specific primer in a final volume of 20 pL. RNA
expression levels relative to the Actin2 (AB199316) gene were calculated according to a
previous workflow (Pfaffl, 2001). Three replicates of each cDNA sample were performed
for qRT-PCR analysis.

RESULTS AND DISCUSSION

Identification and classification of HSF genes in tomato

A total of 26 HSF genes were identified in tomato based on a HSF domain search of all
reference gene models (Table 1, Table S1). These genes were named after ‘SlyHSF with
a serial number, sorted by E-value. According to tomato genome ITAG 2.40 Annotation
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Figure 2 Gene structure of SlyHSF genes. Green boxes indicate the exon regions, while black, red and
blue lines indicate introns, upstream and downstream UTR regions, respectively. The lengths of the
boxes and lines were scaled based on the length of the genes.

Dataset, these genes were distributed unevenly on tomato chromosomes. Five SIlyHSF genes
were located on chromosome 2; four on chromosomes 8 and 9; three on chromosome 3;
two on chromosomes 4, 6, 7 and 11; one each on chromosomes 11 and 12. The average
length of the cDNA (exon + intron, ~1,389 bp) for SIyHSF genes is longer than that of all
tomato and cDNA. The coding sequence sizes for SIlyHSF ranged from 429 bp (SlyHSF-14)
to 1,584 bp (SIyHSF-02). The average number of amino acids in each SlyHSF was ~366.7
bp, which is comparable to pepper (~366.2 bp) and Arabidopsis thaliana (~368.0 bp). As
the oldest organism among plant kingdom, there were only two HSF proteins in algae, and
both were much longer than found in other organisms. In contrast, the average length of
HSF proteins in S. moellendorffii was only around 175 bp, which was shorter than other
selected organisms.

Physical and chemical characteristics of SIlyHSF proteins were analyzed and summarized
in Table S52. The molecular weights were from 16.6 kDa to 57.5 kDa. The predicted
isoelectric points of SIyHSF were divergent, ranging from 4.68 to 9.66. The instability
index of all the proteins fell into a narrow range, from 31.89 to 68.07. The SlyHSF-05 and
SlyHSF-14 protein molecule were predicted to be stable while others were unstable. All of
the GRAVY scores were lower than 0, indicating that all SlyHSF proteins were hydrophilic.

Phylogenetic relationship of SIyHSF proteins
For phylogenetic analysis, we selected eight other well-studied and representative plant
species, including green algae (Chlamydomonas reinhardtii), moss (Physcomitrella patens),
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Figure 3 Conserved motifs arrangement in the SIlyHSF genes. (A) The phylogenetic tree and motifs located on each gene with relative combined
P-values. (B) Amino acid sequences of each motif. The font size represents the frequency of the respective amino acid.

lycophyte (Selaginella moellendorffii), a gymnosperm (Picea abies), a monocot (rice, Oryza
sativa) as well as three eudicots (Arabidopsis thaliana, grape and tomato) (Table 53). All
plant HSFs were classified into four groups. Among them, Group A and Group C HSFs
have an extended HR-A/B region, while class B HSFs have no insert sequences (Nover et
al., 2001). According to the phylogenetic analysis, the 127 HSF proteins could be classified
into Group A, B, C and O (Fig. 1). We named the new group O, which only contained
two algae HSF proteins, four moss HSF proteins and two S. moellendorffii HSF proteins,
because they shared less similarity with members in Group A , B and C. Among the 26
tomato HSF proteins, 17 members belonged to Group A and eight members belonged to
Group B, while only one HSF was classified into Group C. The subgroups in Group B and
Group A were defined according to a previous study of Arabidopsis HSF proteins (Guo et
al., 2008). Since the phylogenetic tree was constructed using representative plant species,
the divergence and emergence of HSF proteins in each subgroup could be predicted. After
evolution from members in Group O, the HSF proteins of Physcomitrella patens existed
only in subgroup B4, indicating this was the second oldest subgroup. Subsequently, the
HSF proteins in subgroup A5, B1 and Group C emerged, first in lycopods. Additionally,
the phylogenetic analysis revealed that tomato HSF members were more related closely to
those from eudicots than to those from monocots and then other primitive plants (Fig. 1).
The N-proximal regions of HSF genes and the neighbor-joining method were employed
in phylogenetic tree construction in a previous study, resulting an ambiguous phylogenetic
tree. In that study, subgroups A4 and A5 were arranged in close association with their related
A subgroups, rather than among B subgroups as depicted in the previous study (Guo et al.,
2015). In the present study, the conserved HSF domain regions aligned with Pfam model
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Figure 4 Comparative analysis of synteny of HSF genes in tomato, Arabidopsis and rice. Red, yellow
and blue lines indicate paralogous, orthologous and co-orthologous gene pair relationships, respectively.

were used to construct a better phylogenetic tree using the maximum-parsimony method.
However, the phylogenic clustering of rice HSF genes was still not entirely consistent with
subgroup classification among genome-wide identification studies.

Gene structure and motif analysis

To compare the 26 tomato HSF genes, their exon-intron structures were drawn (Fig. 2). All
HSF genes were found to contain two exons and one intron, except for SlyHSF-06 which
contained three exons. The intron phases were 0, except for phase 1 in SlyHSF24 and phase
2 in SlyHSFO06. Although tomato HSF genes shared similar intron number and intron
phase, the intron length differed in the groups. In subgroup A8, the intron in SlyHSF16
was much longer than SlyHSF25 or SIlyHSF26. In addition, the lengths of introns fell in a
wider range than that of exons, even in a subgroup.
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We searched for motifs to analyze the conserved features of SIlyHSF proteins using
MEME (Fig. 3) Motifs 1, 2 and 3 were found in all tomato HSF members, while motif 5
was absent only in SlyHSF12 and SlyHSF14. As a counterpart of SlyHSF13, SlyHSF14 may
have gone through a duplication during which the latter half was lost, resulting in shorter
coding regions and fewer motifs. The similarity of motifs in subgroup Al and subgroup
A5 showed the close relationship between these two groups.

Identification of orthologous and paralogous HSF genes in plants
Comparative analysis was performed to identify the orthologous and paralogous gene
pairs. There were three, ten and four in-paralogous HSF gene pairs among Arabidopsis,
rice and tomato respectively. The orthologous SlyHSF-AthHSF gene pairs (14 pairs) were
identified as twice as SlyHSF-OsaHSF gene pairs (7 pairs), while ten AthHSF-OsaHSF gene
pairs were found. Eight co-orthologous gene pairs (SlyHSF-AthHSF and SlyHSF-OsaHSF)
were found (Table 54, Fig. 4).

An interaction network of SlyHSF genes was constructed to improve our understanding
of the genome-wide regulation network (Fig. 5). First, an Arabidopsis HSF gene
interaction network was constructed in the Arabidopsis Interactions Viewer (http:
//bar.utoronto.ca/interactions/cgi-bin/arabidopsis_interactions_viewer.cgi). Then, the
Arabidopsis genes were replaced by their counterpart in tomato, using the orthologous and
co-orthologous gene pairs. The PCC (Pearson correlation coefficients) of 38 gene pairs was
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Figure 6 Heat map representation and hierarchical clustering of tomato SIyHSF genes in fourteen

samples from root, leaf, bud, flower and fruits in several development stage. Heinz and Pimp represent
the cultivated tomato Heinz and related wild species Solanum pimpinellifoliumd. IM, B, B5, B10 and M

represent immature, breaker, 5 days after breaker, 10 days after breaker and mature fruit.

less than zero, whereas that of 227 gene pairs was more than zero, which revealed SlyHSF

proteins mainly have a positive interaction with other proteins in tomato. Fifty-three

gene pairs were not included in the calculations, thus many regulation patterns remain

unknown.

The interaction network showed that the number of proteins regulated by each SlyHSF

gene was significantly different (Fig. 5). For instance, SlyHSF-09 had the most complex

interaction network, with 114 proteins, suggesting its importance in transcriptional-level
regulation. Furthermore, SIlyHSF-02, SlyHSF-04, SlyHSF-06, SlyHSF-16, SIlyHSF-17,
SIyHSF-18 were found to have more than 10 interaction relationships, while SlyHSF-
03, SlyHSF-05, SlyHSF-07, SlyHSE-10 and SlyHSF-12 had between 1 to 10 interaction

relationships. Interestingly, the gene pairs including SlyHSF-02/04, SlyHSF-02/18,

SIyHSF-02/24, SlyHSF-03/05, SlyHSF-04/18, SlyHSF-06/16 and SlyHSF-17/18 showed

that interactions also existed among tomato HSF genes.

Expression pattern of SIyHSF genes in different tissues

To increase our understanding of the expression profiles of the SIlyHSF genes in different

tissues, we searched gene expression values for each SIyHSF gene using reported RNA-

seq data of Solanum lycopersicum and its closest wild relative Solanum pimpinellifolium
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Figure 7 Hierarchical clustering and heat map representation of HSF genes after heat stress treatment.
A qPCR experiment was performed to generate these expression profile data. The RNA level is expressed
relative to the tomato actin gene expression level as 27247,

(Table S5, Fig. 6). According to the FPKM values, at least 25 SIyHSF genes were expressed
in at least one tissue. (It is possible that the expression in the root of cultivar Heinz was false
positive). In these two species, the expression of HSF genes in Solanum lycopersicum Heinz
were higher than in Solanum pimpinellifolium, which supported that the cultivated tomato
was more heat-tolerant than Solanum pimpinellifolium. In these two species, the expression
profile of SIyHSF genes in leaf, root, bud and flower tissues were in a group according to

the clustering, while small fruit (1 cm, 2 cm and 3 cm) and bigger fruit (immature, breaker,
breaker + 5d, breaker + 10d) could be arranged into another two groups, indicating that
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HSF genes were enriched in tomato fruit development process. In non-stress conditions,
HSFA1la is reported to be repressed by association with HSP90 and HSP70 (Liu, Liao ¢
Charng, 2011), therefore the SlyHSF-15 which share similar domains with AthHSFAla
were found to have lower expression than others.

Expression pattern of SIyHSF genes under heat stress treatment
Since HSF genes were found to participate in heat shock related pathways, quantitative
real-time PCR analysis was performed to systematically detect HSF gene expression in
tomato. The non-conserved regions were used for primer design to ensure the specificity of
PCR amplification (Table 56). Under heat stress treatment, the expression of most SlyHSF
genes increased dramatically. The SlyHSF-05/07/13/18/20/23/24 genes were expressed
more in all samples after heat stress treatment. The expression of the SlyHSF-18 gene
increased over 150 times in 1 h compared with the control, suggesting that it was a
very sensitive response acceptor that responded strongly. After that, the expression of
SIyHSF-18 decreased 3.7 to 22.2 times in the following 23 h. The expression profile of
SIyHSF-23 fell in a similar model that after peaking at 1 h (around 79-fold), then the
expression decreased gradually to 15 times than the control (Table 57, Fig. 7). It has been
shown that HSFAla (termed SlyHSF-02 in this study) in tomato is a master regulator for
triggering the heat response and can result in acquired thermotolerance (Mishra et al.,
2002), although HSFAla regulation was not significant in this study.

Duplication among SIyHSF genes

After gene duplication, some regions of proteins disappeared. In Group A8, there were
three tomato HSF proteins that share ancestory with Arabidopsis thaliana. After comparing
the gene structures and motifs, we concluded the SlyHSF-25 and SIyHSF-26 that were
located nearby one another on chromosome 2 had both lost Motif 4 and were duplicated
from SIyHSF-16 (Fig. 3). These two duplicated genes may play a weak role in tomato
metabolism activities due to much lower expression, both in all tissues and the heat
treatment experiment.
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