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A deep learning algorithm for the detection of aortic dissection 
on non-contrast-enhanced computed tomography via the 
identification and segmentation of the true and false  
lumens of the aorta
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Background: Aortic dissection is a life-threatening clinical emergency, but it is often missed and 
misdiagnosed due to the limitations of diagnostic technology. In this study, we developed a deep learning-
based algorithm for identifying the true and false lumens in the aorta on non-contrast-enhanced computed 
tomography (NCE-CT) scans and to ascertain the presence of aortic dissection. Additionally, we compared 
the diagnostic performance of this algorithm with that of radiologists in detecting aortic dissection.
Methods: We included 320 patients with suspected acute aortic syndrome from three centers (Beijing 
Anzhen Hospital Affiliated to Capital Medical University, Fujian Provincial Hospital, and Xiangya Hospital 
of Central South University) between May 2020 and May 2022 in this retrospective study. All patients 
underwent simultaneous NCE-CT and contrast-enhanced CT (CE-CT). The cohort comprised 160 patients 
with aortic dissection and 160 without aortic dissection. A deep learning algorithm, three-dimensional (3D) 
full-resolution U-Net, was continuously trained and refined to segment the true and false lumens of the 
aorta to determine the presence of aortic dissection. The algorithm’s efficacy in detecting dissections was 
evaluated using the receiver operating characteristic (ROC) curve, including the area under the curve (AUC), 
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Introduction

Acute aortic dissection represents a life-threatening and 
critical medical emergency, holding significant implications 
for human health. Characterized by its sudden onset, rapid 
progression, and the challenges it presents in diagnosis and 
treatment, acute aortic dissection is often misdiagnosed (1).  
Most patients with acute aortic dissection will have 
clinical manifestations such as severe chest and back pain 
or abdominal pain and an increased blood pressure gap 
between the upper and lower limbs. Nevertheless, certain 
patients may experience atypical symptoms, including mild 
chest pain or tightness, dizziness, and nausea (2). Chest 
pain is also one of the most common reasons for emergency 
room visits and may result from a wide array of diseases. 
Given this complexity, emergency physicians often favor 
chest computed tomography (CT) scans over routine aortic 
CT angiography (CTA) for initial evaluation (3,4).

Aortic CTA is extensively used owing to its high sensitivity 
and specificity and has increasingly been recognized as the 
gold standard for diagnosing aortic dissection and assessing 
prognosis (5). However, technological limitations and 
constrained rescue capabilities, coupled with the critical 
condition of most patients with aortic dissection and potential 
allergic reactions to contrast media, pose challenges for small 
hospitals in conducting emergency aortic CTA examinations. 
A critical concern is the unknown renal function status 
of emergency patients. Conducting CTA examination in 
patients with preexisting renal insufficiency risks exacerbating 
renal damage, potentially leading to renal failure (6,7). Chest 

CT scans are commonly employed in emergency settings due 
to their ease of operation and comparatively lower risks than 
those of CTA.

From an economic standpoint, a chest CT scan is 
approximately one-tenth the cost of a thoracoabdominal 
aortic CTA examination (8,9). However, current CT 
technology is limited in its ability to delineate aortic lesions, 
which may lead to missed diagnoses of aortic dissection, 
consequently delaying optimal treatment (10,11).

Although CTA can demonstrate clear vascular structures, 
it has some disadvantages (12). CTA is contraindicated 
in patients allergic to iodine, as most contrast agents are 
iodine-based. In addition, the use of contrast media requires 
an intravenous indwelling needle. This causes additional 
discomfort and may lead to associated complications, 
including damage to punctured vessels and skin damage 
from the extravasation of contrast material. Furthermore, 
contrast media are nephrotoxic, with an incidence of 
acute kidney injury (contrast nephropathy) as high as 12% 
following their use (13). This is mainly a problem in the 
older adult population, who either have reduced baseline 
renal function or chronic kidney disease, and in emergency 
patients with unclear renal function status. In these high-
risk patients, there is a recognized risk of complete renal 
failure, which may lead to subsequent renal dialysis 
treatment (14,15).

Recent advancements in computer algorithms and 
hardware, along with the extensive expansion of medical 
data sets, have significantly enhanced the application of 

sensitivity, and specificity. Furthermore, a comparative analysis of the diagnostic capabilities between our 
algorithm and three radiologists was conducted.
Results: In diagnosing aortic dissection using NCE-CT images, the developed algorithm demonstrated an 
accuracy of 93.8% [95% confidence interval (CI): 89.8–98.3%], a sensitivity of 91.6% (95% CI: 86.7–95.8%), 
and a specificity of 95.6% (95% CI: 91.2–99.3%). In contrast, the radiologists achieved an accuracy of 88.8% 
(95% CI: 83.5–94.1%), a sensitivity of 90.6% (95% CI: 83.5–94.1%), and a specificity of 94.1% (95% CI: 
72.9–97.6%). There was no significant difference between the algorithm’s performance and radiologists’ 
mean performance in accuracy, sensitivity, or specificity (P>0.05).
Conclusions: The algorithm proficiently segments the true and false lumens in aortic NCE-CT images, 
exhibiting diagnostic capabilities comparable to those of radiologists in detecting aortic dissection. This 
suggests that the algorithm could reduce misdiagnoses in clinical practice, thereby enhancing patient care.
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artificial intelligence (AI) in the medical domain (16,17). 
Several network models capable of synthesizing enhanced 
CT images based on noncontrast CT scans have been 
developed to aid clinical diagnosis (18,19). In this study, we 
developed a no new U-Net (nnU-Net) based deep learning 
network model that segments the true and false lumen of 
the aorta in non-contrast-enhanced computed tomography 
(NCE-CT) images, thereby determining the presence of 
aortic dissection.

As X-rays traverse a patient’s body, they are attenuated 
by the density of the tissues encountered. Variations in the 
physical density of different objects translate into differences 
in attenuation and subsequent radiodensity [measured in 
Hounsfield units (HU)] on the CT scan. The higher the 
attenuation is, the brighter the CT image (such as bone and 
calcifications); the lower the attenuation, the darker the CT 
image (such as air). Thus, the inherent contrast in the image 
arises from the differences in attenuation between adjacent 
tissues (20). Within the X-ray energy spectrum utilized in 
current medical CT scans (80–120 KeV), a subtle difference in 
the X-ray attenuation coefficient is expected between the aortic 
intima and blood. This distinction can be discerned through a 
comprehensive analysis of non-contrast-enhanced CT (NCE-
CT) images. Consequently, we developed a deep learning 
algorithm to segment the potential true and false lumens in 
the aorta from NCE-CT scan images, thereby facilitating 
the determination of the presence of aortic dissection (AD). 
We present this article in accordance with the TRIPOD+AI 
reporting checklist (available at https://qims.amegroups.com/
article/view/10.21037/qims-24-533/rc).

Methods

Patients

This retrospective cohort study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) and was 
approved by the Institutional Review Boards (IRBs) of Fujian 
Provincial Hospital (IRB approval No. K2020-03-013),  
Beijing Anzhen Hospital (IRB No. 2024156x), and Xiangya 
Hospital (IRB No. 202008190). The requirement for 
individual consent was waived due to the retrospective 
nature of the analysis.

From May 2020 to May 2022, this retrospective study 
included 320 consecutive patients across three centers: Beijing 
Anzhen Hospital affiliated with Capital Medical University 
(100 cases), Fujian Provincial Hospital (156 cases), and 
Xiangya Hospital of Central South University (64 cases). 

All patients underwent simultaneous CE-CT examination 
and NCE-CT scans. The cohort consisted of 160 patients 
diagnosed with aortic dissection and 160 without aortic 
dissection. The exclusion criteria included patients who 
had undergone aortic dissection surgery and those with 
only noncontrast scans or exclusively CTA images. This 
study employed images from CT machines from a various 
manufacturers across the three hospitals.

Image data acquisition

NCE-CT and CE-CT images included the region from 
3 cm above the aortic arch to the bifurcation level of the 
bilateral iliac arteries. Each patient underwent sequential 
NCE-CT and CE-CT scans with the same scan position, 
coverage, and parameters. The matrix size was 512×512, 
and the pixel size was 0.977×0.977 mm. The slice thickness 
varied, with a resolution ranging from 0.625 to 1.250 mm.  
CT images were acquired using GE HealthCare (Chicago, 
IL, USA), Philips (Amsterdam, the Netherlands), and 
Siemens Healthineers (Erlangen, Germany) devices 
operating at a kilovoltage peak range of 100–120.

Image preprocessing

This study adopted the following image preprocessing steps 
to ensure that the images used for training and testing were 
normalized. 

(I)	 Image format conversion: all CT images initially in 
Digital Imaging and Communications in Medicine 
(DICOM) format were converted to nii format 
using ITK-SNAP software.

(II)	 Spatial scale standardization: the pixel spacing of 
the images in the x and y directions was 0.76 mm, 
and the spacing in the z direction was 1.25 mm.

(III)	 Scale determination method: images were sorted 
based on attributes in the training dataset, and the 
median value was used.

(IV)	 Normalization: CT values ranged from −751 
to 215 HU, with an average of 32.79 HU and a 
standard deviation of 94.28 HU. The normalized 
value calculation method was mean and standard 
deviation.

(V)	 Aorta localization and image cropping: the lung 
area location was used  as  a reference for aorta 
localization, and a central volume of 250×250 mm 
was used for depth cropping.

These preprocessing steps were performed to eliminate 

https://qims.amegroups.com/article/view/10.21037/qims-24-533/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-533/rc


Cheng et al. A new method to detect AD on nonenhanced CT7368

© AME Publishing Company.   Quant Imaging Med Surg 2024;14(10):7365-7378 | https://dx.doi.org/10.21037/qims-24-533

differences caused by different machines and imaging 
conditions, standardize the image data, and ensure 
consistency and comparability during training and testing.

In the training phase, a union bounding box encapsulating 
the true and false aortic lumens, as labeled, was established 
and subsequently expanded by 5 pixels in each direction: 
left, right, anterior, superior, and inferior. Padding with 
zeros was applied at the image boundary if necessary. In 
the inference phase, this procedure expedited the inference 
process and narrowed the inference scope. Alternatively, the 
entire volumetric data could be fed directly into the network 
model, omitting the volume of interest (VOI) extraction. 
The center in X and Y directions was determined by the 
lung lobe mask segmented from the lung area. From this 
central point, a 15-cm expansion was applied laterally and 
anteroposteriorly in the X and Y axes. The entire range was 
used in the Z-axis to delineate the bounding box, which 
defined the VOI for aortic segmentation inference. This 
method could ensure that only specific volume regions were 
focused on during the aortic segmentation process, thus 
improving computational efficiency and inference accuracy.

The application of these preprocessing methods had 
a considerable impact on the algorithm’s performance. 
The improvements in image quality facilitated easier 
analysis and recognition of features by the algorithm. 
Spatial rescaling and normalization played a crucial role in 
eliminating discrepancies in the images, leading to more 
stable and accurate image processing by the algorithm. 
Active localization and image cropping significantly reduced 
redundant information, enhancing computational efficiency 
and increasing the precision in the targeting of regions 
of interest, thereby boosting the algorithm’s recognition 
accuracy.

Algorithm development

Deep learning algorithms were developed using PyTorch 
version 1.8.2.  This study employed the nnU-Net 
architecture for the convolutional neural network, which 
is an advanced iteration of the U-Net network. The 
predominant thickness of the image layers used in this study 
was 1.25 mm, with a maximum layer thickness maintained 
below 3.75 mm. Three-dimensional (3D) volume data were 
employed to train the algorithm in comprehensively using 
spatial information. Within the nnU-Net framework, 20% 
of the samples were randomly designated as the verification 
set. Owing to the random retention of 20% of the data 
for model evaluation during dataset preparation, training 

was confined to the default fold of 0, culminating in the 
derivation of the algorithm model. After these processes 
were completed, the algorithm model’s performance was 
rigorously evaluated.

The U-Net architecture serves as a foundational 
framework of the nnU-Net. The 3D full-resolution 
U-Net, a deep learning algorithm, excels in processing and 
analyzing volumetric data. This model employs U-Net’s 
design principles and extends them into a 3D context, 
enhancing its ability to capture intricate details within 
volumetric datasets. The primary objective of the 3D full-
resolution U-Net is to produce high-fidelity mask images, 
thereby elevating both the accuracy and resolution of 
medical image analysis.

The 3D full-resolution U-Net is architecturally designed 
with an encoder-decoder structure, enabling a continuous 
computation of image features from detailed to abstract 
levels, thus facilitating a multiscale representation of 
features. The encoder and decoder components are finely 
tuned for efficient extraction of features and reconstruction 
of images in a 3D context. The network architecture of 
the 3D full-resolution U-net is primarily composed of 
three integral components: the encoder, the decoder, and 
the residual connection block (Figure 1). Upon receiving 
volumetric data as input, the model executes a series of 3D 
operations, encompassing convolution, maximum pooling, 
and upconvolution processes (21,22).

Establishment of the algorithm model

In this study, we tried to develop a deep learning-based 
algorithm for identifying the true and false lumens in 
the aorta on NCE-CT scans. The algorithm model was 
established as follows:

(I)	 In the initial dataset, the CE-CT images from  
50 patients [comprising 25 AD cases and 25 without 
AD] were annotated by radiologists to delineate 
true and false lumens via ITK-SNAP software, 
generating “Mask 1”.

(II)	 Through supervised learning and the incorporation 
of Mask 1 and enhanced image data, the 3D full-
resolution U-net network developed “Algorithm 1”, 
which constructed masks for aortic true and false 
lumens from CE-CT images.

(III)	 Masks delineating the aortic true and false lumens, 
as identified by Algorithm 1, were overlaid on 
corresponding NCE-CT images. Notably, these 
visibly discernible masks often exhibited varying 
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Figure 1 Network structure of the 3D full-resolution U-Net. 3D, three-dimensional; conv-softmax, convolution softmax; conv-IN-IReLU, 
convolution-instance norm-leaky rectified linear unit.

degrees of displacement relative to the NCE-
CT image. The outlines of the aorta in NCE-CT 
images were used to modify these masks, resulting 
in the creation of “Mask 2” (Figure 2).

(IV)	 Subsequently, “Algorithm 2” was generated using 
the 3D full-resolution U-net network, which 
employed supervised learning with Mask 2 and 
NCE-CT images to create masks for the aortic true 
and false lumens derived from NCE-CT images.

Algorithm 1 was engineered to streamline the labeling 
process, simplify the task, and enhance label accuracy. 
Subsequently, Mask 1, produced by this algorithm, was 
overlaid onto the corresponding NCE-CT aortic images. 
Mask 2, derived from NCE-CT images, could be acquired 
more rapidly and with greater precision, minimizing the 
need for annotation adjustments and thereby creating an 
efficient training supervision sample.

In the study’s initial phase, CE-CT images were manually 
annotated to develop Mask 1. Mask 1 was then adjusted 
on NCE-CT images to create Mask 2. Consequently, 
upon being trained and acquiring new data, Algorithm 1 
generated Mask 1’ from the new CT images, which was 
then refined based on the CE-CT images to yield Mask 1. 
This was subsequently aligned with the NCE-CT images 

and modified to produce Mask 2.
The following steps involved adjusting Mask 2 in NCE-

CT images. This process mainly consisted of using Mask 
1 from CE-CT images to update and correct Mask 2 in 
NCE-CT images:

(I)	 Generation of the initial mask using the ITK-SNAP 
software. This involved the manual annotation of 
the aorta’s true and false lumen contours in CE-CT 
images, creating the initial Mask 1.

(II)	 Training of the initial algorithm. A supervised 
learning method was used to combine Mask 1 and 
enhanced image data, and the 3D full-resolution 
U-net network was used to train Algorithm 1. This 
algorithm could generate masks of the aorta’s true 
and false lumens from CE-CT images.

(III)	 Preliminary correction. The mask generated by 
Algorithm 1 was overlaid onto the corresponding 
NCE-CT images. These masks typically displayed 
varying degrees of displacement in the NCE-CT 
images. The aortic contours in NCE-CT images 
were used to adjust these mask, forming Mask 2.

(IV)	 Training of the final algorithm. Mask 2 and NCE-
CT images were used to train Algorithm 2 through 
supervised learning, generating masks of the aorta’s 
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Figure 2 The NCE-CT image was superimposed on the corresponding NCE-CT image using Mask 2 formed by Algorithm 2. Some masks 
were displaced (A1) or missing (B1) or had irregular edges (C1,D1). Several modifications (translation, additions, or edge lubrication, etc.) 
were made via the annotation software to obtain Mask 2 (A2,B2,C2,D2) to better match the aortic contour of the NCE-CT image. The 
orange area in the left images represents the aorta mask generated by the algorithm. The orange area in the right images represents the 
adjusted aorta mask. The arrows indicate the adjusted mask. NCE-CT, non-contrast-enhanced computed tomography.
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true and false lumens from NCE-CT images.
While the task of adjusting masks in nondissection aortic 

regions is relatively straightforward due to the regular aortic 
shape, areas with dissection pose unique challenges. The 
highly irregular shapes of the true and false lumens make 
transitioning from one mask to another difficult. For our study, 
this required detailed adjustments made via the annotation 
software, such as translation, additions, or edge smoothing, to 
better match the aortic contours in NCE-CT image.

This process was intended to improve accuracy through 
continuous algorithm updates, ultimately reducing 
misdiagnosis and the workload of manual annotations, thereby 
enhancing clinical diagnostic efficiency and patient care quality.

Figure 3 is a flowchart of a medical imaging study illustrating 
a complex process for evaluating aortic dissection using CT 
image processing.

The process began with a sample of 320 patients divided 
into 160 patients with aortic dissection and 160 patients 
without aortic dissection. First, the these patients were divided 
into two groups: an internal validation cohort, comprising 
256 patients (including the original 25 and 25 patients with 
and without aortic dissection, respectively), and an external 
validation cohort, comprising 64 patients.

In the internal validation cohort, the patient’s CT images 
were further categorized into CE-CT and NCE-CT images. 
The CE-CT images underwent further processing, including 
(I) the differentiation of the true and false lumens of the aortic 
wall on 50 manually labeled CT slices and (II) the conversion 
of the labeled images into a mask (Mask 1) through use of a 3D 
full-resolution U-Net (a deep learning model).

There were two critical algorithms in the process 
(Algorithm 1 and Algorithm 2): Algorithm 1 converted the 
CE-CT images into Mask 1; Algorithm 2 was used in a 
more complex advanced step that combined Mask 2 (which 
was generated by the 3D full-resolution U-Net network) 
with NCE-CT images for supervised learning, resulting in 
the final model learning outcomes.

Finally, the generated Mask 1 was overlaid onto its 
corresponding NE-CT images and adjusted according to 
the aortic contour on the NE-CT images to form Mask 2. 
This process was used for external testing to validate the 
method’s effectiveness.

Algorithm 2 (Figure 4), the focal point of this study, 
discerns between true and false aortic lumens in NCE-
CT images. A dissection is identified when a false lumen is 
present and its volume exceeds 5 mL.

Furthermore, we conducted comparative analyses of 
the ability to diagnose aortic dissection from NCE-CT 

images between our developed model and three other 
models: pyramid attention (PA)-Net, UNetsub, and  
UNetplus (23-25).
	 PA-Net: PA-Net is a network model that combines 

PA mechanisms and U-Net structures. It enhances 
the capture ability of details and global information 
through multiscale feature fusion and attention 
mechanisms, thereby improving the accuracy of 
image segmentation. PA-Net performs exceptionally 
well in medical image segmentation tasks, especially 
when dealing with images with complex structures.

	 UNetsub: UNetsub is a variant of the traditional 
U-Net subnetwork structure and is focused on 
lightweight and efficiency improvements. It increases 
inference speed by reducing the number of model 
parameters and computations while maximally 
maintaining segmentation performance stability. 
UNetsub is typically used in scenarios requiring fast 
processing and deployment.

	 UNetplus: UNetplus is an improved version 
of U-Net that further enhances segmentation 
performance by introducing multihop paths and 
dense skip connections. Its core principle involves 
improving the connection structure between the 
encoder and decoder, enhancing the fusion of 
multiscale features, reducing information loss, and 
improving the model’s representation capability. 
UNetplus has shown excellent performance in 
various medical image segmentation tasks.

The other essential information for the training of the 
other three models is listed below:
	 The image preprocessing strategies were entirely 

consistent.
	 For the training sampling strategy, foreground regions 

that accounted for at least 10% of the total voxel count 
in a patch size of 128×128×96 were randomly selected.

	 The validation sampling strategy consisted of sliding 
window inference.

	 Data augmentation included 20% random scaling 
from 0.8 to 1.3, a 20% random rotation from −15° 
to 15°, a 20% probability of elastic transformation, 
random blur, and Z normalization.

	 The hyperparameters were as follows: first_out_
channels, 16; learning rate, 1e−2; batch size, 4; epochs, 
1,000; loss, cross-entropy + Dice; optimization 
algorithm, Adam; activation function, rectified linear 
unit (ReLU) for all layers except the final one, for 
which sigmoid was used. 
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Figure 3 Flowchart of the patient cohort selection and algorithm development process. The diagram outlines the study’s methodology, 
beginning with the internal validation cohort of patients with and without AD and detailing the steps to developing and validating 
Algorithms 1 and 2, including image processing, manual labeling, and testing on external validation cohorts. AD, aortic dissection; CT, 
computed tomography; DICOM, Digital Imaging and Communications in Medicine.

Internal validation 
cohort 256 patients

25 AD patients and 
25 non-AD patients

The pixel data and spatial information in the DICOM 
data were read through ITK-SNAP software to generate 

3D volume data, spatial scale standardization was 
conducted, and the data were exported to nii format206 patients

Contrast-enhanced 
CT images

Non-contrast-
enhanced CT images

Non-contrast-enhanced  
CT images

Contrast-enhanced  
CT images

In the 3D full resolution 
U-net network, Mask 2 was 

combined with the  
Non-contrast-enhanced CT 
image to form a supervised 

learning, resulting in Algorithm 
2. Algorithm 2 was trained 

based on the modified Mask 
2 and directly applied to Non-
contrast-enhanced CT images

Algorithm 1 contrast-
enhanced CT images 

were processed 
by Algorithm 1 to 
generate Mask 1

The true lumen and false lumen of 
the normal aorta or dissected aorta 

were manually marked on each 
slice of 50 cases of enhanced CT 

images to form Mask 1

Mask 1

In the 3D full resolution U-net 
network, Mask 1 was combined 

with the enhanced CT image 
to form a supervised machine 

learning, resulting in Algorithm 1

Mask 1 was overlaid onto its corresponding non contrast enhanced 
CT image and adjusted based on the contour of the aorta on the  

Non-contrast-enhanced CT image, resulting in Mask 2

External validation cohort 64 patients Algorithm 2 External test

All patients (320)
160 AD and

160 non-AD patients

Establishment of a volume threshold for the false lumen in 
dissection classification

Segmentation labels for the true and false aortic lumens 
underwent statistical analysis, with prediction being derived 
from NCE-CT images. The volume of the false lumen, as 
indicated in these labels, was quantified and assessed against 
dissection classification. A receiver operating characteristic 
(ROC) curve was employed to establish 5 mL as the volume 
threshold for dissection determination. The ROC curve 
data are listed in Table 1.

Based on the current ROC curve data, the optimal threshold 
(threshold) based on Youden’s J statistic was 5.17435455 while 
that for the top-left corner was 5.17435455. Both methods 
yielded the same optimal threshold, 5.17435455 (rounded to  
5 mL). This threshold performed the best in balancing the 

false-positive rate and recall (Figure 5).

Statistical analysis

Statistical analyses were conducted using the Pandas 1.5.1 
package in Python software version 3.8.16 (Wilmington, DE, 
USA). We assessed differences in clinical factors and CT 
findings between patients with and without dissection using 
independent t-tests or Mann-Whitney tests for continuous 
variables and the Fisher exact test or Chi-squared test for 
categorical variables. We calculated the differences in the 
accuracy, sensitivity, and specificity between the algorithm 
and each radiologist to evaluate the algorithm’s performance 
relative to the average radiologist. These differences were 
compared using a one-sample t-test (N=3). Furthermore, 
we used the McNemar test with Bonferroni correction to 
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Figure 4 The aorta label obtained through Algorithm 2. (A) The aorta label was obtained from CE-CT scans without dissection through 
Algorithm 2. (B) The aorta label was obtained from CE-CT scans with dissection through Algorithm 2. (C) The aorta label was obtained 
from NCE-CT scans without dissection through Algorithm 2. (D) The aorta label was obtained from NCE-CT scans with dissection 
through Algorithm 2. CE-CT, contrast-enhanced computed tomography; NCE-CT, non-contrast-enhanced computed tomography.

A

C

B

D

statistically examine the differences in accuracy, sensitivity, 
and specificity between the algorithm and each radiologist. 
During the validation of the aortic dissection assay, ROC 
analysis was employed to ascertain the area under the curve 
(AUC) for each unmasked and masked group. The two 
AUCs were compared via the DeLong method. A P value 
<0.05 denoted statistical difference.

Results

A total of 320 patients were included in this study, among 
whom 160 had aortic dissection (Stanford type A: n=75; 
Stanford type B: n=85) and 160 did not. The clinical factors 
and CT parameters of patients in the training set (n=206), 
validation set (n=50), and external test set (n=64) are listed 

in Table 2.
Three radiologists evaluated the NCE-CT images in the 

internal test set and the external validation set to determine 
whether there was a dissection.

For the internal test set and external validation set, the 
Fleiss kappa coefficients for the three radiologists were 0.72 
and 0.76, respectively, indicating moderate agreement. Our 
model demonstrated superior or equivalent accuracy to that 
of the three radiologists in the internal and external datasets, 
although the difference was not statistically significant. Our 
model exhibited higher sensitivity compared to all three 
radiologists. For the internal testing cohort, our model and 
radiologist 2 showed no significant difference in performance 
(P=0.04). Similarly, in the external validation cohort, no 
significant differences were observed between our model 
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Table 1 ROC curve data

Case
False positive 
rate

Recall (true positive rate) Threshold

1 0.0 0.0 Inf

2 0.0 0.07272727 278.395477

3 0.0 0.09090909 269.327822

4 0.0 0.14545455 185.599574

5 0.0 0.16363636 170.596194

6 0.0 0.2 159.71359

7 0.0 0.23636364 139.058075

8 0.0 0.30909091 138.996856

9 0.0 0.32727273 134.703968

10 0.0 0.41818182 124.550177

11 0.0 0.45454545 120.420577

12 0.0 0.47272727 119.52183

13 0.0 0.54545455 93.1567159

14 0.0 0.56363636 88.3496475

15 0.0 0.61818182 81.2753556

16 0.0 0.69090909 54.8887402

17 0.0 0.72727273 15.4700055

18 0.0 0.76363636 9.97263304

19 0.0 0.78181818 6.44426137

20 0.0 0.81818182 5.17435455

21 0.13043478 0.81818182 4.13467421

22 0.13043478 0.83636364 0.615509033

23 0.2173913 0.83636364 0.236945688

24 1.0 1.0 0.0

ROC, receiver operating characteristic; inf, infinity.

Figure 5 ROC curve for the algorithm’s performance in detecting 
aortic dissection. The curve illustrates the tradeoff between recall 
(true positive rate) and false positive rate, with an area under the 
curve of 0.90 indicating high diagnostic accuracy. ROC, receiver 
operating characteristic.

and the three radiologists (P>0.05). However, the specificity 
of our model was inferior to that of the radiologists. The 
diagnostic ability for detecting AD of the developed 
algorithm and radiologists is summarized in Table 3.

The diagnostic ability in detecting aortic dissection of the 
proposed algorithm and that of the other models are listed 
in Table 4. Overall, the 3D full-resolution U-Net model 
performed well in all indicators, while the UNetsub model 
performed poorly. The PA-Net and UNetplus models’ 
overall performance was relatively similar; however, the 
UNetplus model had a slightly better accuracy and specificity.

Discussion

Our algorithm is designed to segment the true and false 
lumens from NCE-CT images in patients with aortic 
dissection. Besides the visibly identifiable intimal patch in 
the aorta, NCE-CT images of some dissection patients may 
also exhibit characteristics such as uneven density between 
the true and false lumens, aortic dilation, displacement of 
calcified intimal patches, and occurrences of pericardial or 
pleural effusion (26). Deep learning algorithms can discern 
additional correlations between the paired NCE-CT and 
CE-CT images (10,27).

During the initial phases of our algorithm’s training, we 
used ITK-SNAP software to manually delineate both the 
aortic contours and the true and false lumen contours within 
the CE-CT images on a layer-by-layer basis to generate 
the training mask. This task proved to be exceedingly time-
consuming and labor-intensive. Algorithm 1 was initially 
trained to generate the aortic mask in CE-CT images to 
enhance the speed and accuracy of annotation. This approach 
could significantly reduce the manual labor in annotating 
and modifying the CE-CT images. Furthermore, ongoing 
updates to Algorithm 1 strengthened the accuracy of the 
aortic mask in CE-CT images, thereby minimizing both time 
and annotation errors.

The developed algorithm demonstrated a sensitivity of 
91.6% and a specificity of 95.6%, which was comparable 
to that of the radiologists. Despite a few limitations, such 
as the small sample size and the occurrence of some false 
positives, the algorithm’s overall performance in segmenting 
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Table 2 Demographics characteristics of the study groups

Characteristic
Training set (n=206) Validation set (n=50) External test set (n=64)

AD Non-AD P value AD Non-AD P value AD Non-AD P value

Age (years) 68.4±11.0 72.2±10.8 <0.05 69.2±11.8 69.8±11.0 <0.05 71.6±9.0 68.9±10.5 <0.05

Gender – – –

Male 86 88 20 17 25 21

Female 17 15 5 8 7 11

Chest or back pain – – –

Yes 92 98 23 21 29 18

No 11 5 2 4 3 14

CT image parameters

Slice thickness (mm) 0.625 0.625 – 0.625 0.625 – 0.625 0.625 –

Stanford type – – –

A 49 0 11 0 15 0

B 54 0 14 0 17 0

Data are presented as mean ± standard deviation or number. AD, aortic dissection; CT, computed tomography. 

Table 3 Diagnostic ability for detecting AD of the developed algorithm and radiologists

Model/radiologist Radiology experience (years) Accuracy (95% CI), % Sensitivity (95% CI), % Specificity (95% CI), %

Internal validation cohort

3D full-resolution U-Net model – 93.8 (89.8–98.3) 91.6 (86.7–95.8) 95.6 (91.2–99.3)

Radiologist 1 14 93.2 (88.4–97.2) 90.3 (85.4–95.8) 94.8 (90.3–99.1)

Radiologist 2 22 83.5 (77.1–88.8) 94.5 (89.8–99.3) 82.9 (78.5–89.4)

Radiologist 3 20 92.4 (88.7–96.8) 90.2 (84.9–96.6) 93.3 (90.8–97.8)

External validation cohort

3D full-resolution U-Net model – 92.7 (89.0–96.6) 90.3 (86.4–95.8) 94.3 (88.8–96.1)

Radiologist 1 14 94.2 (89.6–97.3) 90.2 (84.9–95.8) 96.6 (92.4–99.0)

Radiologist 2 22 87.1 (81.4–94.2) 87.6 (81.9–94.2) 88.3 (82.4–95.6)

Radiologist 3 20 88.5 (82.1–93.8) 94.5 (89.0–99.3) 83.9 (78.5–92.4)

AD, aortic dissection; CI, confidence internal; 3D, three-dimensional.

Table 4 Diagnostic ability for detecting AD of the developed algorithm and other models

Model
Diagnostic ability

Accuracy (95% CI), % Sensitivity (95% CI), % Specificity (95% CI), %

3D full-resolution U-Net model 93.8 (89.8–98.3) 91.6 (86.7–95.8) 95.6 (91.2–99.3)

PA-Net model 88.2 (80.6–91.4) 90.1 (86.3–94.2) 91.8 (88.3–95.1)

UNetsub model 83.6 (77.8–89.8) 88.5 (80.8–91.3) 82.3 (72.5–89.8)

UNetplus model 90.4 (86.7–95.8) 89.2 (83.5–93.6) 92.3 (87.8–95.8)

AD, aortic dissection; CI, confidence internal; 3D, three-dimensional; PA, pyramid attention.
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and detecting the true and false lumens appears promising. 
This indicates that the algorithm has high accuracy and 
reliability in identifying and segmenting the true and false 
lumens, which can effectively reduce misdiagnosis in clinical 
practice. The primary aim of this study was to develop an 
algorithm that can determine aortic dissection on NCE-CT 
images, providing a diagnostic reference for radiologists 
and clinicians. It offers an adequate alternative solution, 
particularly in scenarios where contrast agents are to be 
avoided.

The sensitivity and accuracy of our algorithm were 
marginally lower compared to those of the three radiologists, 
although these differences were not statistically significant. 
Conversely, our algorithm tended to have slightly higher 
specificity than that of the radiologists, yet this difference 
also lacked statistical significance. These differences in 
performance are acceptable, as the algorithm’s intended 
use is for the screening of aortic dissection, a task in which 
sensitivity takes precedence. Should the algorithm suggest 
the possibility of AD, additional evaluations, including 
aortic CTA, are recommended. Moreover, we developed the 
algorithm to distinguish between the true and false lumens 
within the aorta. Theoretically, a false lumen in the aorta 
indicates a dissection.

Table 3 shows that radiologists 2 and 3 had poorer 
diagnostic ability as compared to radiologist 1. This 
underscores the critical role that radiologists play in medical 
diagnosis, while acknowledging the potential for variation 
in their diagnostic abilities. However, it also presents a 
promising solution: the integration of high-performance 
automated diagnostic models with experienced radiologists. 
This approach holds the potential to significantly enhance 
diagnostic accuracy and consistency, offering improvements 
in diagnostic imaging.

A few images of normal aortas appeared as false positives, 
which might be due to the limitations of the algorithm or 
artifacts in the CT images. However, the falsely identified 
false lumen volumes were relatively small. To better address 
this issue, we selected a 5-mL threshold for false lumen 
volume based on an ROC curve to delineate aortic dissection 
classifications. This meant that if the false lumen volume 
exceeded 5 mL, an aortic dissection was indicated; otherwise, 
the algorithm may deem a false lumen result to be normal.

Despite the presence of false positives, the algorithm 
had a  d iagnost ic  per formance s imi lar  to  that  of 
radiologists, with an accuracy of 93.8%, a sensitivity of 
91.6%, and specificity of 95.6%. Therefore, the algorithm 
has high accuracy in identifying and diagnosing patients 

with aortic dissection and has the potential capacity to 
reduce misdiagnosis and improve patient outcomes. The 
findings of false positives should be further examined and 
resolved to minimize misdiagnosis and reduce stress in 
actual clinical use. Our model is highly sensitive to the 
division of the dataset, including both normal aortas and 
aortic dissections. The final test set is also completely 
independent of the training data, and a 1-fold cross-
validation result is acceptable. Five-fold cross-validation 
may not significantly improve the model’s results.

A study from Osaka University reported the use of 
the relatively mature XceptionNet in diagnosing aortic 
dissection. They classified each NCE-CT image, and when 
nine consecutive slices were classified as aortic dissection, the 
patient was diagnosed with aortic dissection (10). In 2021, 
teams from Zhejiang University of Traditional Chinese 
Medicine and Guangzhou University of Traditional Chinese 
Medicine published their findings on aortic dissection 
identification from NCE-CT using radiomics-based 
methods. The diagnostic accuracy, sensitivity, and specificity 
were high (>85%) (28,29). More recently, the Peking Union 
Medical College Hospital team used a Gaussian Naive Bayes 
model for aortic dissection recognition. This model, which 
integrates aortic morphological and deep features, achieved 
positive results (30). Our work addresses limitations in other 
studies by offering a comprehensive, efficient, and accurate 
diagnostic tool for aortic dissection based on NCE-CT. 
It is distinct by virtue of its focus on true and false lumen 
segmentation and its comparable performance to that of 
experienced radiologists. We compared our model to PA-
Net, UNetsub, and UNetplus algorithm and found that 
it had superior accuracy, sensitivity, and specificity. Future 
studies should focus on expanding sample sizes, ensuring 
external validation, and considering resource-efficient 
models to enhance practical applicability in various clinical 
settings.

Overall, radiologists recognize the potential benefits 
of AI in improving diagnostic accuracy, efficiency, and 
education. However, they also emphasize the importance 
of addressing ethical, legal, and practical challenges to 
ensure that AI tools enhance rather than disrupt their 
practice. Overall, the consensus is that AI will augment the 
capabilities of radiologists, making them more effective and 
efficient in their work.

Our study involved several limitations that should be 
addressed. First, the study sample size was small. Overfitting 
is a critical problem in machine learning, and it is more 
prominent when the number of training samples is small. 
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Therefore, further use of external queues is needed for 
algorithm verification. Second, due to the retrospective design 
of this study, selection bias was inevitable. Finally, we did 
not examine classification types of aortic dissection such as 
acute versus chronic and Stanford A versus Stanford B. Since 
clinical decision-making is greatly affected by the type of 
aortic dissection, an algorithm that can differentiate between 
these types would be more helpful in clinical practice.

Conclusions

In conclusion, our proposed algorithm can distinguish the 
true and false lumen of aortic dissection, and its diagnostic 
performance is comparable to that of radiologists, which 
may reduce the missed diagnosis of dissection in clinical 
practice.

Acknowledgments

Funding: This work was supported by the National Key 
Discipline Construction Projects-Cardiac and Aorta 
Diseases (grant No. 51010103) and the Natural Science 
Foundation of Fujian Province, China (grant No. 
2021J01396).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD + AI reporting checklist. Available at https://qims.
amegroups.com/article/view/10.21037/qims-24-533/rc

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-533/coif). 
L.S. is an employee of Shanghai DeltaHealth Hospital 
(China). The other authors have no conflicts of interest to 
declare.

Ethical Statement: The authors are accountable for all aspects 
of the work in ensuring that questions related to the accuracy 
or integrity of any part of the work are appropriately 
investigated and resolved. This retrospective cohort 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013) and was approved by the 
Institutional Review Boards of Fujian Provincial Hospital 
(IRB No. K2020-03-013), Beijing Anzhen Hospital (IRB 
No. 2024156x), and Xiangya Hospital (IRB No. 202008190). 
The requirement for individual consent was waived due to 

the retrospective nature of the analysis.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Isselbacher EM, Preventza O, Hamilton Black J 3rd, 
Augoustides JG, Beck AW, Bolen MA, et al. 2022 ACC/
AHA Guideline for the Diagnosis and Management 
of Aortic Disease: A Report of the American Heart 
Association/American College of Cardiology Joint 
Committee on Clinical Practice Guidelines. Circulation 
2022;146:e334-482.

2.	 Golledge J, Eagle KA. Acute aortic dissection. Lancet 
2008;372:55-66.

3.	 Kontos MC, de Lemos JA, Deitelzweig SB, Diercks DB, 
Gore MO, Hess EP, McCarthy CP, McCord JK, Musey PI 
Jr, Villines TC, Wright LJ. 2022 ACC Expert Consensus 
Decision Pathway on the Evaluation and Disposition 
of Acute Chest Pain in the Emergency Department: A 
Report of the American College of Cardiology Solution Set 
Oversight Committee. J Am Coll Cardiol 2022;80:1925-60.

4.	 Salmasi MY, Al-Saadi N, Hartley P, Jarral OA, Raja S, 
Hussein M, Redhead J, Rosendahl U, Nienaber CA, 
Pepper JR, Oo AY, Athanasiou T. The risk of misdiagnosis 
in acute thoracic aortic dissection: a review of current 
guidelines. Heart 2020;106:885-91.

5.	 Takaki JKT, Ford I, Yoon HC. Variation in CTA 
evaluation of ED patients suspected of aortic dissection. 
Emerg Radiol 2022;29:709-13.

6.	 El-Abd YJ, Hagspiel KD. Review of Imaging With Focus 
on New Techniques in Aortic Dissection. Tech Vasc Interv 
Radiol 2021;24:100748.

7.	 Yu YT, Ren XS, An YQ, Yin WH, Zhang J, Wang X, 
Lu B. Changes in the renal artery and renal volume and 
predictors of renal atrophy in patients with complicated 
type B aortic dissection after thoracic endovascular aortic 
repair. Quant Imaging Med Surg 2022;12:5198-208.

8.	 Morello F, Santoro M, Fargion AT, Grifoni S, Nazerian 
P. Diagnosis and management of acute aortic syndromes 

https://qims.amegroups.com/article/view/10.21037/qims-24-533/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-533/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-533/coif
https://qims.amegroups.com/article/view/10.21037/qims-24-533/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Cheng et al. A new method to detect AD on nonenhanced CT7378

© AME Publishing Company.   Quant Imaging Med Surg 2024;14(10):7365-7378 | https://dx.doi.org/10.21037/qims-24-533

in the emergency department. Intern Emerg Med 
2021;16:171-81.

9.	 Otani T, Ichiba T, Kashiwa K, Naito H. Potential of 
unenhanced computed tomography as a screening tool 
for acute aortic syndromes. Eur Heart J Acute Cardiovasc 
Care 2021;10:967-75.

10.	 Hata A, Yanagawa M, Yamagata K, Suzuki Y, Kido S, 
Kawata A, Doi S, Yoshida Y, Miyata T, Tsubamoto M, 
Kikuchi N, Tomiyama N. Deep learning algorithm for 
detection of aortic dissection on non-contrast-enhanced 
CT. Eur Radiol 2021;31:1151-9.

11.	 Panagiotopoulos N, Drüschler F, Simon M, Vogt FM, 
Wolfrum S, Desch S, Richardt D, Barkhausen J, Hunold P. 
Significance of an additional unenhanced scan in computed 
tomography angiography of patients with suspected acute 
aortic syndrome. World J Radiol 2018;10:150-61.

12.	 Sun Z, Choo GH, Ng KH. Coronary CT angiography: 
current status and continuing challenges. Br J Radiol 
2012;85:495-510.

13.	 Su TH, Hsieh CH, Chan YL, Wong YC, Kuo CF, Li 
CH, Lee CC, Chen HY. Intravenous CT Contrast Media 
and Acute Kidney Injury: A Multicenter Emergency 
Department-based Study. Radiology 2021;301:571-81.

14.	 Rachoin JS, Wolfe Y, Patel S, Cerceo E. Contrast 
associated nephropathy after intravenous administration: 
what is the magnitude of the problem? Ren Fail 
2021;43:1311-21.

15.	 Kene M, Arasu VA, Mahapatra AK, Huang J, Reed ME. 
Acute Kidney Injury After CT in Emergency Patients with 
Chronic Kidney Disease: A Propensity Score-matched 
Analysis. West J Emerg Med 2021;22:614-22.

16.	 Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine 
Learning for Medical Imaging. Radiographics 
2017;37:505-15.

17.	 Niederer SA, Lumens J, Trayanova NA. Computational 
models in cardiology. Nat Rev Cardiol 2019;16:100-11.

18.	 Huo D, Kou B, Zhou Z, Lv M. A machine learning model 
to classify aortic dissection patients in the early diagnosis 
phase. Sci Rep 2019;9:2701.

19.	 Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha 
S, Sengupta PP, Marwick TH. Artificial Intelligence in 
Cardiovascular Imaging: JACC State-of-the-Art Review. J 
Am Coll Cardiol 2019;73:1317-35.

20.	 Osztrogonacz P, Berczeli M, Chinnadurai P, Chang SM, 
Shah DJ, Lumsden AB. Dynamic Imaging of Aortic 
Pathologies: Review of Clinical Applications and Imaging 
Protocols. Methodist Debakey Cardiovasc J 2023;19:4-14.

21.	 Hahn LD, Baeumler K, Hsiao A. Artificial intelligence 

and machine learning in aortic disease. Curr Opin Cardiol 
2021;36:695-703.

22.	 Bashir M, Harky A. Artificial Intelligence in Aortic 
Surgery: The Rise of the Machine. Semin Thorac 
Cardiovasc Surg 2019;31:635-7.

23.	 Liu F, Wang K, Liu D, Yang X, Tian J. Deep pyramid 
local attention neural network for cardiac structure 
segmentation in two-dimensional echocardiography. Med 
Image Anal 2021;67:101873.

24.	 Punn NS, Agarwal S. Modality specific U-Net variants for 
biomedical image segmentation: a survey. Artif Intell Rev 
2022;55:5845-89.

25.	 Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: 
A Nested U-Net Architecture for Medical Image 
Segmentation. Deep Learn Med Image Anal Multimodal 
Learn Clin Decis Support (2018) 2018;11045:3-11.

26.	 Ding Y, Zhang C, Wu W, Pu J, Zhao X, Zhang H, Zhao 
L, Schoenhagen P, Liu S, Ma X. A radiomics model 
based on aortic computed tomography angiography: the 
impact on predicting the prognosis of patients with aortic 
intramural hematoma (IMH). Quant Imaging Med Surg 
2023;13:598-609.

27.	 Polidori T, De Santis D, Rucci C, Tremamunno G, 
Piccinni G, Pugliese L, Zerunian M, Guido G, Pucciarelli 
F, Bracci B, Polici M, Laghi A, Caruso D. Radiomics 
applications in cardiac imaging: a comprehensive review. 
Radiol Med 2023;128:922-33.

28.	 Guo Y, Chen X, Lin X, Chen L, Shu J, Pang P, Cheng J, 
Xu M, Sun Z. Non-contrast CT-based radiomic signature 
for screening thoracic aortic dissections: a multicenter 
study. Eur Radiol 2021;31:7067-76.

29.	 Zhou Z, Yang J, Wang S, Li W, Xie L, Li Y, Zhang C. The 
diagnostic value of a non-contrast computed tomography 
scan-based radiomics model for acute aortic dissection. 
Medicine (Baltimore) 2021;100:e26212.

30.	 Yi Y, Mao L, Wang C, Guo Y, Luo X, Jia D, Lei Y, Pan J, 
Li J, Li S, Li XL, Jin Z, Wang Y. Advanced Warning of 
Aortic Dissection on Non-Contrast CT: The Combination 
of Deep Learning and Morphological Characteristics. 
Front Cardiovasc Med 2021;8:762958.

Cite this article as: Cheng Z, Zhao L, Yan J, Zhang H, Lin S, 
Yin L, Peng C, Ma X, Xie G, Sun L. A deep learning algorithm 
for the detection of aortic dissection on non-contrast-enhanced 
computed tomography via the identification and segmentation 
of the true and false lumens of the aorta. Quant Imaging Med 
Surg 2024;14(10):7365-7378. doi: 10.21037/qims-24-533


