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ABSTRACT  Serial peak expiratory flow (PEF) measurements can identify phenotypes in severe adult
asthma, enabling more targeted treatment. The feasibility of this approach in children has not been
investigated.

Overall, 105 children (67% male, median age 12.4 years) with a range of asthma severities were recruited
and followed up over a median of 92 days. PEF was measured twice daily. Fluctuation-based clustering
(FBC) was used to identify clusters based on PEF fluctuations. The patients’ clinical characteristics were
compared between clusters.

Three PEF clusters were identified in 44 children with sufficient measurements. Cluster 1 (27% of
patients: n=12) had impaired spirometry (mean forced expiratory volume in 1 s (FEV,) 71% predicted),
significantly higher exhaled nitric oxide (=35 ppb) and uncontrolled asthma (asthma control test (ACT)
score <20 of 25).

Cluster 2 (45%: n=20) had normal spirometry, the highest proportion of difficult asthma and
significantly more patients on a high dose of inhaled corticosteroids (=800 pg budesonide).

Cluster 3 (27%: n=12) had mean FEV, 92% predicted, the highest proportion of patients with no
bronchodilator reversibility, a low ICS dose (<400 pg budesonide), and controlled asthma (ACT scores
>20 of 25).

Three clinically relevant paediatric asthma clusters were identified using FBC analysis on PEF
measurements, which could improve telemonitoring diagnostics. The method remains robust even when
80% of measurements were removed. Further research will determine clinical applicability.
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Introduction

Asthma is a heterogenous syndrome with different underlying pathophysiological mechanisms, displaying
various symptom profiles and diverse responses to medication [1]. Consequently, the assessment of a
patient’s individual disease phenotype is crucial for the choice of appropriate treatment [2]. However, the
existence of subgroups of asthma patients who do not respond very well to conventional therapy [3] also
suggests that currently, some phenotypes may not have been properly identified and characterised, an
example being children with therapy-resistant asthma who remain poorly controlled despite high doses of
conventional therapy [4]. This group is important as they consume large healthcare resources, and are at
greatest risk of severe exacerbations and death [5].

Fluctuations in peak expiratory flow (PEF) values in healthy adults and in patients with stable mild asthma
have been found to be significantly related to asthma phenotype [6-8].

In this study we applied a recently developed method of fluctuation-based clustering (FBC) [9] to a
prospective observational cohort consisting of children with mild to severe asthma. We hypothesized that
applying an observer-independent and data-driven asthma phenotyping methodology solely based on
fluctuations of daily PEF might help identify clusters that correspond to clinical phenotypes.

Furthermore, we investigated the extent to which daily PEF measurements entered into a database of FBCs
could be used as a low-cost, telemonitoring-based screening, to refine which patients should be referred to
a tertiary centre.

Methods

Study population and design

This was a prospective observational cohort study of 120 children, aged 5-17 years, with asthma diagnosed
using conventional criteria [10] who were recruited from the Outpatient Department of the Royal
Brompton Hospital, London between August 2014 and February 2015. The children were classified into
three groups based on treatment levels and previous assessments: severe therapy-resistant asthma (STRA),
difficult asthma (DA) and mild-to-moderate asthma (see supplementary Appendix 1) [11]. STRA included
children for whom potentially modifiable factors had previously been addressed and who continued to
have either or both of ongoing poor control and acute asthma attacks despite receiving high-dose inhaled
corticosteroids (ICS) plus add-on therapies (stage 4/5 British Thoracic Society/Scottish Intercollegiate
Guidelines Network (BTS/SIGN) guidelines) [12]. DA included children previously or currently prescribed
high-dose ICS who had been found to have modifiable factors (such as poor adherence) as a cause for
ongoing poor asthma control. Mild-to-moderate asthma included those with well or partly controlled
asthma according to Global Initiative for Asthma (GINA) guidelines [13] with a prescribed dose of ICS of
<250 pug fluticasone propionate or <400 pg budesonide (or equivalent) per day with the need for none or
no more than one controller medication.

After the baseline visit, the patients’ daily PEF and adherence to medication was monitored for
2-6 months [14]. The follow-up appointment was combined with the next clinic appointment to minimise
hospital visits. The study was approved by the Regional Ethical Committee (NRES Committee
London-Westminster). All parents/legal guardians gave written informed consent prior to any study
procedures and the children gave age-appropriate assent. The study was registered with clinicaltrials.gov
(identifier: NCT02252289).

Daily assessments

PEF measurements

Daily PEF measurements were performed in the morning and evening using a validated electronic peak
flow meter (PiKo-1, nSpire Health, Longmont, CO, USA) according to international guidelines [15, 16]
(see supplementary material). Data were downloaded at the follow-up visit using an infrared cradle and
reviewed using PikoNET software (nSpire Health, Longmont, CO, USA).

Adherence monitoring

Daily adherence was monitored using an electronic monitoring device (Smartinhaler™ Adherium, New
Zealand). Smartinhaler devices were available for Symbicort, Seretide and Flixotide. Electronic monitoring
devices were attached to the patient’s own inhaler and contained a microchip that recorded the date and
time the device was activated. We explained to the families that monitoring was taking place. At the
follow-up visit all data were downloaded via USB. Adherence data have already been published [14].

https://doi.org/10.1183/23120541.00007-2019 2


http://openres.ersjournals.com/lookup/doi/10.1183/23120541.00007-2019.figures-only#fig-data-supplementary-materials
http://clinicaltrials.gov
http://openres.ersjournals.com/lookup/doi/10.1183/23120541.00007-2019.figures-only#fig-data-supplementary-materials

ASTHMA | A. JOCHMANN ET AL.

Symptom diary

Participants recorded daily symptom scores, ICS use, rescue bronchodilator use and any oral corticosteroid
courses in a symptom diary [17] containing four questions for the child and nine questions for the parent
for each day of the study (see supplementary material).

Study visits

History of symptom onset, atopic status (see supplementary material for details), gestational age, family
history and comorbidities were recorded at the baseline visit. At the baseline and follow-up visit current
asthma control was assessed according to GINA guidelines [13], and the asthma control test (ACT) [18]
or the childhood ACT (C-ACT) [19] were performed as appropriate. Exhaled nitric oxide (Fono) was
measured using the NIOX VERO (Aerocrine, Sweden) in accordance with American Thoracic Society
guidelines [20] (see supplementary material).

Spirometry was performed and forced expiratory volume in 1s (FEV;), forced vital capacity (FVC),
FEV,/FVC ratio, forced expiratory flow at 25-75% of FVC (FEF,s5_7s4,) were recorded at the beginning of
each visit (Vitalograph Ltd., Buckingham, UK). For lung function assessment, Rosenthal values [21] were
used for percent predicted. Z scores were calculated according to Global Lung Initiative 2012 [22].
Spirometry was followed by acute bronchodilator reversibility (BDR) testing. BDR testing was performed
15 min after administration of 1000 ug salbutamol via a spacer. Quality of life and psychological
comorbidity was assessed using the Paediatric Asthma Quality of Life Questionnaire (PAQLQ) [23].
Current medications were recorded.

For exacerbation assessment, moderate and severe exacerbations in the 3 months prior to each visit were
recorded. Severe exacerbations were defined as 1 or more days of oral prednisone prescription. Moderate
exacerbations were not severe enough to warrant systemic corticosteroid use and/or hospitalisation (see
supplementary material).

Statistical and computational analysis

Data

Measured values of PEF and FEV; were included if they fulfilled the technical quality criteria. Measured
values of PEF were standardized by calculating z scores using published reference data [21, 24]. Extreme
outliers (i.e. measurements of a magnitude of 10 median absolute deviations or more from the overall
median) were excluded from the analysis. We were not able to perform a power calculation prior to the
study, because of insufficient published data.

Computational and statistical methods
The FBC method consists of the following steps:
1. Quantification of similarity in lung function fluctuation between individuals.
2. Grouping of individuals into clusters, such that similarity between members of the same clusters is
strong and between different clusters is weak.
Furthermore, the FBC method includes a data-driven process for determining the tolerable amount of
missing measurements (see supplementary material). This data-driven process has been described in detail
elsewhere [9]. Briefly, a highly compliant subset of patients (i.e. with a relatively high number of PEF
measurements compared to the expected number of measurements based on the study design), the
so-called “gold standard”, was selected. More specifically, the gold standard was defined as the subset of
those cohort patients whose individual set of PEF measurements contained at least as many measurements
as the 60th percentile of the overall distribution of the number of PEF measurements from the whole
analysis population. Then, within the gold standard, in order to quantify the similarity in lung function
fluctuation between individuals, the distribution of standardized PEF values of a given patient was
compared to the distributions of all other patients in the gold standard. This pair-wise comparison was
done using the Earth Mover’s Distance. Intuitively speaking, the Earth Mover’s Distance contemplates the
pair of distributions to be compared as piles of sand and measures the effort that it would take to shovel
one distribution into the shape and position of the other. These comparisons yielded a collection or
“array” of distance values for each participant in the cohort. This collection of distance values constitutes
what we call the “lung-function profile” of each patient within the given group of patients that are being
compared to each other. The patients within the gold standard were then grouped into clusters based on
the similarity of their lung-function profiles. After applying Ward’s minimum-variance hierarchical
clustering method we obtained clusters, such that similarity between members of the same clusters was
strong and was weak between different clusters.

Afterwards, a cluster stability analysis upon random data removal was performed. The outcome of this
stability analysis enabled us to establish the minimum number of PEF measurements required to ensure
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stability of the clusters identified within the gold standard. Finally, patients who performed this minimum
number of PEF measurements were added to the gold standard, and the cluster analysis was repeated with
this larger subset to obtain the final clusters.

Once the clusters were identified, clinical characteristics of the cluster members were compared.
Distributions of categorical variables were compared among the clusters using Fisher’s exact test, whereas
distributions of continuous variables were compared using the Kruskal-Wallis test.

Statistical analyses were carried out using the statistical software R [25] or GraphPad Prism. Data were
tested for normality using visual inspection, histograms and Kolmogorov-Smirnov testing. Parametric tests
were used if the data were normally distributed. If the data were not normally distributed, nonparametric
tests were used, or data were logarithmically transformed. The significance level for all tests was set at
<0.05. Differences between visit 1 and visit 2 (for each of the parameters measured) were analysed using
the Wilcoxon signed-rank test or the paired t-test.

Cluster assignment and classification of patients with incomplete data

The FBC algorithm contains a data-driven mechanism that indicates, based on the relative completeness of
each patient’s time series of peak flow, which patients to exclude from the clustering procedure, because, if
included, the resulting clusters would be unstable and thus unreliable. This mechanism allows us to
determine the tolerable levels of missing values that a cohort participant may have in order to be included
in the clustering procedure. Given that the compositions of the clusters is not known but needs to be
found in a data-driven manner, the requirements on the completeness of each patient’s dataset may be
relatively high (at least 67 PEF measurements per patient after applying the algorithm to our data).

In a slightly different vein, and not for the sake of testing the stability of the clusters (which is already done
within the framework of the FBC method), we explored how the stable clusters described above (determined
using relatively complete high-quality datasets) can be used to classify patients with relatively incomplete
time series. We thus investigated the potential applicability of the FBC methodology to a clinical scenario
where adherence to PEF measurements is notoriously poor. The aim was to use stable clusters obtained
from relatively complete cohort data as a database against which new patients are compared. This is done by
calculating the distance (see supplementary material for more details) between a new patient’s distribution of
lung function measurements and the distribution of each member in a given cluster.

The average distance to all the members of a given cluster then defines the distance between the patient
and the cluster under consideration. Finally, the patient is a posteriori assigned to the nearest cluster by
distance, see supplementary figure E1.

Results

Participants

Overall, 120 patients with asthma were recruited (figure 1), consisting of 86 children with
difficult-to-control asthma and 34 children with mild-to-moderate asthma. The latter were enrolled as a

120 patients recruited

15 drop outs

STRA
24 (23%)

DA
52 (50%)

Mild/moderate asthma
29 (28%)

7 (30%)
clustered

24 (48%)
clustered

13 (45%)
clustered

FIGURE 1 Patient population. STRA: severe therapy-resistant asthma; DA: difficult asthma.
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control group. Overall, 64 of the children with DA had previously been assessed as part of the difficult
asthma protocol and classified as having DA or STRA (a summary of the DA protocol is in supplementary
Appendix 1 [11]. A total of 22 patients were newly enrolled in the protocol during the study period. Two of
those had been classified in hindsight as STRA (see supplementary Appendix 1 [12]). Overall, 15 patients
dropped out of the study (see supplementary Appendix 1).

The baseline characteristics of enrolled patients are shown in table 1. Five patients dropped out because of
time constraints, one had focal epilepsy and did not want to participate after a seizure. Four did not attend
appointments repeatedly and five lost their device.

There was no significant difference between patients with STRA, DA and mild asthma regarding
exacerbations, BDR, F.yo, Mini-Pediatric Asthma Quality of Life Questionnaire (mPAQLQ) and
adherence at the follow-up visit (data not shown). FEV, only showed a significant difference between
those with STRA and mild asthma (p=0.0089). Overall, median adherence was 74% (21-99%).

PEF measurements were recorded during 2—-6 months with a median number of 40 (1-121) morning and
26.5 (2-90) evening measurements. Median duration of follow up was 92 days (56-200). Data are
incomplete because morning and evening values were not available in all patients. Lung function
characteristics of the whole cohort are shown in table 1.

TABLE 1 Demographics of the enrolled population

Protocol population

Subjects n 105
Male sex 70 (67)
Age years 12.4 (5.4-17.3)
STRA 24 (23)
DA 52 (50)
Mild/moderate asthma 29 (28)
Weight kg 45 (17-101)
Weight centiles 62 (1-100)
Height cm 149 (108-184)
Height centiles 37 (0-99)
Gestational age:

Term born (>37 weeks) 91 (87)

Preterm (30-37weeks) 13 (12)

Severe preterm (<30 weeks) 1(1)
Comorbidity 19 (18)
Gastro-oesophageal reflux 23 (22)
Median age of symptom onset months 12 (1-132)
Atopy 92 (88)
Family history of atopy 88 (84)
Parental smoking 19 (18)
Hospitalisation due to asthma in the last year 38 (36)
Treatment
Rescue medication 105 (100)
Leukotriene-receptor-antagonist 61 (58)
Long-acting p-agonist 100 (95)
Theophylline 10 (10)
Maintenance 0CS 8 (8)
Omalizumab 4 (4)
Immunosuppressants (methotrexate) 2(2)
Median ICS dose pg BDP per day 800 (0-3200)
Median F.no value ppb 35 (5-196)
FVC % pred 95.3+16.37
FEV; % pred 86.1+18.73
Median FEF25_759, % pred 61 (16-189)
Median BDR % 8.4 (0-123)

Data are presented as n (%), median (range) or meanzsp. STRA: severe therapy-resistant asthma; DA:
difficult asthma; BMI: body mass index; ICS: inhaled corticosteroids; BDP: budesonide propionate; OCS:
oral corticosteroids; Feno: fractional exhaled nitric oxide; FVC: forced vital capacity; % pred: % predicted;
FEF25_759: forced expiratory flow at 25-75% of FVC; FEV;: forced expiratory volume in 1 s; BDR:

bronchodilator reversibility in %.
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Cluster analysis

We constructed a dendrogram using FBC (figure 2). For PEF data three different clusters were identified.
The PEF clusters were, according to the FBC method, stable, and thus reliable, with a minimum number
of 67 PEF measurements per patient.

Demographic and lung function characteristics of the different PEF clusters are shown in table 2. The
clusters did not differ significantly by age, sex or race but differed significantly in their lung function
measurements. The clustered and unclustered patients did not differ significantly except for median
adherence and F.yo at follow-up (see supplementary table E3).

PEF clusters (table 3, figure 3)

PEF cluster 1

Cluster 1 contained 27% of all clustered subjects. This cluster had the lowest normalized mean PEF
(figure 3). Spirometry was impaired with a mean FEV, of 71% (£18.42), statistically significantly lower
than in the other two clusters. F.yo was elevated with a mean of 40.5 ppb at baseline and 34 ppb at
follow-up, and significantly higher than in the other two clusters. There were 83% of patients with
uncontrolled asthma (ACT score <20 of 25), which was significantly more than in the other two clusters.
The proportion of STRA was higher than in the other clusters, although this was not statistically
significant. Half of the patients had an adherence of <80%.

PEF cluster 2

This contained 45% of all clustered patients. Patients had a statistically higher ICS dose than in the other
clusters. Patients had normal spirometry, and the proportion of DA patients (65%) was the highest,
although not statistically significant.

400
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FIGURE 2 Heat map of normalised peak expiratory flow over an entire day. Number of patients included was
44. Minimum number of measurements was 67.
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TABLE 2 Comparison of clinical characteristics and different clusters’ PEF measurements

Cluster 1 (n=12) Cluster 2 (n=20) Cluster 3 (n=12) Unclustered (n=61) p-value

Subjects n 12 20 12 61

Male sex 8 (67) 11 (55) 8 (67) 43 (70) 0.86
Age years 13.8 (8-17) 12.2 (5-16) 11.8 (7-16) 12.4 (6-17) 0.49
BMI 20 (15-30) 20 (15-32) 19.5 (14-27) 20 (14-39) 0.73
BMI centile 67.5 (9-99) 68 (19-97) 65 (6-98) 72 (0-100) 0.71
Ethnicity: white/other % 67/33 60/40 67/33 48/52 0.46
Comorbidity 5 (42) 2 (10) 2 (17) 10 (16) 0.14
Median age of symptom onset months 15.5 (1-84) 18.0 (1-132) 9.5 (1-72) 12 (1-120) 0.53
Hospitalisations n 0 (0-3) 0 (0-5) 0 (0-5) 0 (0-15) 0.97
Atopic subjects 10 (83) 15 (75) 11 (92) 56 (92) 0.23
LTRA 5 (42) 12 (60) 5 (42) 39 (64) 0.32
Maintenance 0CS 2 (17) 1(5) 1(8) 4(7) 0.64
Omalizumab 0 0 1(8) 3 (5) 0.57
FEV; % pred (BL) 71.1+ 18.42 94.1+ 17.88 92.3+ 11.68 85.2+18.56 0.0057%
FEV,; % pred (FU) 83.9+15.31 97.3+17.61 102.3£10.23 89.9+15.21 0.0085"

Data are presented as n (%), median (range) or mean#sp, unless otherwise stated. BL: baseline; FU: follow-up; BMI: body mass index; LTRA:
leukotriene receptor antagonists; ICS: inhaled corticosteroids; OCS: oral corticosteroids; FVC: forced vital capacity; FEV;: forced expiratory
volume in 1 s. *: Bonferroni post-test (Holm-Sidak's multiple comparisons test): significant difference between cluster 1 versus 3, cluster 1
versus 2, cluster 1 versus unclustered; ": Bonferroni post-test (Holm-Sidak's multiple comparisons test] FU: only cluster 1 versus
3. Comorbidities were migraine, focal epilepsy and delayed puberty. Bold text indicates statistical significance (p<0.05).

PEF cluster 3

This contained 27% of all clustered patients. This group showed the highest normalised mean PEF
(figure 3). Patients had normal spirometry. Comparative analysis showed that control patients with
mild-to-moderate asthma were overrepresented in this cluster. This group had 75% of patients with an
ACT >20 and 83% with an adherence of >80% (table 3).

The relationship between adherence to medication and measuring lung function on a given day was
investigated. To this end, we calculated the four empirical conditional probabilities of taking or not taking
medication, conditioned on measuring or not measuring lung function, and vice versa (see supplementary
material for more details). When medication was taken, it was highly likely that lung function was also
measured (median 0.72; interquartile range (IQR) (0.50, 0.87)). If no medication was taken, this probability
dropped considerably (median, 0.38; IQR, (0.21, 0.72)) (supplementary table E4). This explains the
significant difference seen in adherence in the clustered and unclustered patients (supplementary table E3).

Cluster assignment and classification of patients with incomplete data

In order to explore the feasibility of this procedure and validate the approach, we randomly removed data
points from the patients assigned to clusters via the FBC methodology, hence generating an “artificial”
patient with a “perturbed”, incomplete time series of peak flow measurements. These “artificial” patients
are proxies for new patients transferred from a clinical setting. We then ran the a posteriori cluster
assignment procedure on this group of “artificial” patients and checked, for each given “artificial” patient,
whether it was a posteriori correctly assigned to its original cluster. The results are depicted in figure 4
below as a function of the percentage of data points randomly removed. Up to 80% of PEF data points
could be randomly removed and the patients were still correctly a posteriori assigned with a classification
accuracy of 75% or higher.

Nevertheless, the pattern of missing values is likely to be a property of a patient’s characteristics; Thus,
random data removal may not capture certain features of those patients with low levels of adherence.
Consequently, we explored three possible nonrandom data removal scenarios: The first scenario was
data-based and aimed at reproducing the temporal patterns of adherence observed in the entire cohort.
The second scenario was based on the hypothetical assumption that a patient, who, on a given day, is
not having any symptoms or is having comparatively mild symptoms, will be less likely to conduct a
lung function measurement. The third scenario was based on the hypothetical assumption that a
patient, who, on a given day, is having comparatively very bad symptoms, will be less likely to conduct
a lung function measurement due to an overwhelming sickness feeling. The results of this analysis are
depicted in figure 5.
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TABLE 3 Clusters: comparative analysis of peak expiratory flow clusters

Cluster Cluster 2 Cluster 3 Unclustered p-value

Subjects n 12 20 12 61

Asthma severity STRA: Mild: STRA: Mild: STRA: Mild: STRA: Mild: 0.30
25% 17% 10% 25% 17% 50% 25% 26%

Median adherence in % 78.6 (60.4-89.1) 85.8 (78.8-87.7) 86.9 (84.2-89.9) 59.5 (42-75.3) <0.001

Feno ppb (BL) 40.5 (23.5-83.5) 37.5 (11.8-64) 18 (10-26.8) 39 (20-71.8) 0.06

Feno Ppb (FU) 34 (20-61) 13 (9-18) 15 (9-22) 33 (14-60) 0.002*

BDR (BL) Significant: Significant: Significant: Significant: 0.35

50% 20% 33% 30%
BDR (FU) Significant: Significant: Significant: Significant: 0.45
17% 10% 0% 16%

ACT/C-ACT (BL) >20: <20: >20: <20: >20: <20: >20: <20: 0.06
8% 92% 35% 65% 58% 42% 4L4% 56%

ACT/C-ACT (FU) >20: <20: >20: <20: >20: <20: >20: <20: 0.02
17% 83% 40% 60% 75% 25% 54% 4L6%

Median PAQLQ (BL) Good: Poor: Good: Poor: Good: Poor: Good: Poor: 0.97
36% 9% 47% 5% 50% 8% 53% 5%

Median PAQLQ (FU) Good: Poor: Good: Poor: Good: Poor: Good: Poor: 0.33
50% 8% 65% 5% 92% 0% 67% 10%

Exacerbations in total (BL) 0: 1-3: 0: 1-3: 0: 1-3: 0: 1-3: 0.57
50% 50% 30% 70% 25% 75% 38% 62%

Exacerbations in total (FU) 0: 1-3: 0: 1-3: 0: 1-3: 0: 1-3: 0.01
42% 58% 75% 25% 83% 17% 43% 57%

ICS dose High: Low: High: Low: High: Low: High: Low: 0.01
67% 0% 75% 15% 17% 17% 47% 22%

Data are presented as median (interquartile range), unless otherwise stated. STRA: severe therapy-resistant asthma; Fono: exhaled nitric oxide
fraction; BL: baseline; FU: follow up; BDR: bronchodilator reversibility; ACT: asthma control test; C-ACT: childhood asthma control test;
PAQLQ: Paediatric Asthma Quality of Life Questionnaire; ICS: inhaled corticosteroids; mPAQLQ: Mini-Pediatric Asthma Quality of Life
Questionnaire; BDP: budesonide propionate. Adherence: good, >80%; moderate, 60-79%; poor, <60%. Exacerbations: 0, 1-3; mPAQLQ: <3,
poor; 3-4.9, moderate; 5-7, good; BDR: >12%, significant; <12%, not significant; ICS dose: low, <500 pg BDP; moderate, 500-800 pug BDP;
high, >800 pug BDP or equivalent; ACT, C-ACT >20, controlled; <20, uncontrolled; Feno for children <12 years: <20 ppb, low; 20-35 ppb,
moderate; >35 ppb, high; Feno for children >12 years: <25 ppb, low; 25-50 ppb, moderate; >50 ppb, high. #: Bonferroni post-test (Holm-Sidak's
multiple comparisons test): unclustered versus clusters 2 and 3. Bold p-values indicate statistical significance (p<0.05).

Discussion

We have shown for the first time in children that clinically relevant asthma phenotypes with different
asthma severity can be determined from longitudinal PEF data. Once clusters have been determined,
patients can be “a posteriori assigned” to the existing clusters. This does not need as many data points as
the cluster identification. The a posteriori assignment appears to be accurate even if compliance is poor,
with up to 80% missing data.

Furthermore, we assessed the clinical relevance of the three clusters found by means of a comparative
analysis of clinical characteristics of asthma severity and control parameters. The FBC method was able to
detect a functional cluster (cluster 1) of people with asthma with worse lung function, higher
inflammatory parameters, worse asthma control, and a tendency to experience more exacerbations. Higher
Feno is a good predictor of high asthma morbidity [26] and worse FEV1 can correlate with the probability
of serious asthma exacerbations [27].

The FBC algorithm contains a data-driven mechanism that indicates, based on the relative completeness of
each patient’s time series of lung function measurements, which patients to exclude from the clustering
procedure. If patients with a lot of missing data points were included, the resulting clusters would be
unstable and thus unreliable. Therefore, only 42% of all participants could be included in the initial PEF
clustering. Interestingly, only 44% of patients were adherent with their asthma inhalers [14]. We found
that the main driver of patient behaviour is the need for medication (supplementary table E3). Patients
were more likely to measure their PEF on a day when they feel the need to take their medication due to
asthma symptoms, which explains why unclustered patients with an insufficient number of PEF values had
a significantly lower adherence and Feno as a possible marker for adherence to inhaled steroids [28] at the
follow-up visit. This study has certain limitations and weaknesses. Adherence monitoring had the
limitation that only actuation and not the inhalation could be monitored [29]. A limitation of the FBC
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FIGURE 3 Distribution of normalised peak expiratory flow (PEF) within the clusters. a) Empirical distributions
of each patient’'s mean normalized PEF (average over the patient’s entire time series of PEF measurements)
within each of the clusters. b) Empirical distributions of each patient’s coefficient of variation of the
normalized PEF within each of the clusters.
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FIGURE 4 A posteriori assignment of artificial patients. For a given percentage of data removal (horizontal
axis in each panel), in 1000 iterations we randomly removed measurements from the collection of
measured PEF values of each patient previously classified via fluctuation-based clustering. Thereby, in
each iteration, for each previously classified patient, we generated an “artificial” patient lacking a relative
amount of data points determined by the value of percentage of data removal at hand. This “artificial”
patient was a posteriori assigned to a cluster. In each iteration, the proportion of correct a posteriori
assignments was determined. The results over all 1000 iterations are displayed as a box plot. In the
upper left panel, the results are presented for all cluster members. The other three panels show the
results only for patients from the cluster specified in the title of the respective panel. a] Overall
classification performance, and classification performances for b) cluster 1, c) cluster 2 and d) cluster 3
are shown.
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FIGURE 5 Relation between peak expiratory flow (PEF] measurements and adherence. a) Measurements missed on days determined by temporal
patterns of adherence in data. In 1000 iterations we randomly removed measurements from the collection of measured PEF values of each
patient previously classified via fluctuation-based clustering. The data removal was performed according to the temporal patterns of adherence
observed in the entire cohort (see Methods for more details). Thereby, in each iteration, for each previously classified patient, we generated an
“artificial” patient. This “artificial” patient was a posteriori assigned to a cluster. In each iteration, and for each cluster individually, the proportion
of correct a posteriori assignments was determined. The results over all 1000 iterations are displayed as a box plot. b] Measurements missed on
days with zero or mild symptoms. For a given patient classified previously via fluctuation-based clustering we systematically removed
measurements from the patient’'s collection of measured PEF values. This was done once for each patient classified previously via
fluctuation-based clustering. For each patient, data removal consisted of removing all PEF values above the 90th percentile in the patient’s
collection of PEF measurements. The resulting “artificial” patient was a posteriori assigned to a cluster. The results of the a posteriori cluster
assignments are displayed for members of each cluster separately. c)] Measurements missed on days with comparatively bad symptoms. For a
given patient classified previously via fluctuation-based clustering we systematically removed measurements from the patient’s collection of
measured PEF values. This was done once for each patient classified previously via fluctuation-based clustering. For each patient, data removal
consisted of removing all PEF values below the 10th percentile in the patient’s collection of PEF measurements. The resulting “artificial” patient
was a posteriori assigned to a cluster. The results of the a posteriori cluster assignments are displayed for the members of each cluster
separately.

technique is that patients need to be adherent and competent with doing their PEF measurements
otherwise data are unreliable. Data on FEV, obtained by these electronic PEF meters are rarely of adequate
quality in children due to the short duration of forced expiration. Consequently, this study was focused on
PEF.

As FBC is a new technique using a clustering approach for peak-flow measurements to identify different
groups of patients with similar clinical characteristics, it is difficult to compare our study with previous
work. Adult studies have looked at the fluctuation of peak-flow values to determine asthma stability and
found good correlation [8]. THAMRIN et al. [30] have also shown that PEF fluctuations correlate with the
withdrawal of ICS. Other studies have looked at single-point-in-time measurements of lung function,
inflammation and asthma control variables [31, 32], whereas this study used longitudinal, twice-daily PEF
measurements, which reflect more of the day-to-day reality in asthma [33].

A few questions on interpretation and clinical utility remain unanswered in this study. We do not know
the short- and long-term stability of the clusters, nor do we know the extent to which clustering reflects
the underlying biology of the disease, or more likely, a combination of endotype, adherence to therapy,
and recent exposures to extrinsic triggers such as aeroallergens, respiratory infections, and environmental
pollution. This study is a proof of concept, showing that clustering can be performed robustly on relatively
limited data. However, we can only speculate as to its clinical utility, for example, determining a group at
high risk for an asthma attack who might merit omalizumab therapy [34], or those with true STRA.
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This method could prove to be useful as a telemonitoring tool in rural areas, where the next tertiary centre
is far away. Further research is needed to determine the accuracy and effectiveness of such an approach.
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