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Abstract

Due to their high mobility, large terrestrial predators are potentially capable of

maintaining high connectivity, and therefore low genetic differentiation among

populations. However, previous molecular studies have provided contradictory

findings in relation to this. To elucidate patterns of genetic structure in large

carnivores, we studied the genetic variability of the Eurasian lynx, Lynx lynx

throughout north-eastern Europe using microsatellite, mitochondrial DNA control

region and Y chromosome-linked markers. Using SAMOVA we found analogous

patterns of genetic structure based on both mtDNA and microsatellites, which

coincided with a relatively little evidence for male-biased dispersal. No

polymorphism for the cytochrome b and ATP6 mtDNA genes and Y chromosome-

linked markers were found. Lynx inhabiting a large area encompassing Finland, the

Baltic countries and western Russia formed a single genetic unit, while some

marginal populations were clearly divergent from others. The existence of a

migration corridor was suggested to correspond with distribution of continuous

forest cover. The lowest variability (in both markers) was found in lynx from Norway

and Białowieża Primeval Forest (BPF), which coincided with a recent demographic

bottleneck (Norway) or high habitat fragmentation (BPF). The Carpathian

population, being monomorphic for the control region, showed relatively high

microsatellite diversity, suggesting the effect of a past bottleneck (e.g. during Last
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Glacial Maximum) on its present genetic composition. Genetic structuring for the

mtDNA control region was best explained by latitude and snow cover depth.

Microsatellite structuring correlated with the lynx’s main prey, especially the

proportion of red deer (Cervus elaphus) in its diet. Eurasian lynx are capable of

maintaining panmictic populations across eastern Europe unless they are severely

limited by habitat continuity or a reduction in numbers. Different correlations of

mtDNA and microsatellite population divergence patterns with climatic and

ecological factors may suggest separate selective pressures acting on males and

females in this solitary carnivore.

Introduction

Various studies on population genetics in large carnivores show diverse patterns

of genetic structure. Some research emphasizes that, due to their high mobility,

carnivore populations are maintained through long distance dispersal, which

contributes to high gene flow across large spaces and low differentiation among

populations [1–6]. There is also an increasing number of studies showing that

gene flow does not occur equally in different directions, indicating the existence of

various barriers for effective dispersal, including both physical obstacles and

ecological conditions [7–16]. Genetic differentiation among carnivore popula-

tions has also been found to be related with the phylogeographic histories of

species such as brown bear [17, 18] or wolf [19, 20].

Some of these discrepancies may result from using markers of different

heritability, e.g. microsatellites and mitochondrial DNA (mtDNA) – the markers

most frequently used in population genetic studies. For instance, a microsatellite-

based study on the genetic structure of Scandinavian brown bears [21] found no

support for the pattern of population subdivision previously based on mtDNA

[22]. While mtDNA can be used to resolve taxonomy, questions on historical

genetic variation and population structure, microsatellite markers are more

suitable for inferring recent population history and contemporary gene flow [23].

From the research concerning the population genetic structure of the Eurasian

lynx (Lynx lynx), two studies [24, 25] included both microsatellites and mtDNA.

While Hellborg et al. [24] focused on understanding the causes of genetic

differentiation within the Scandinavian and Baltic populations of lynx, the most

recent study by Rueness et al. [25] covered almost the entire range of the species.

This largest-scale study to date of spatial genetic patterns of the Eurasian lynx [25]

has revealed a pronounced pattern of genetic structuring along the west-east axis

of Eurasia, though the authors admitted the necessity of more fine-scaled

sampling to account for the variability of ecological factors to explain the observed

restrictions in gene flow. A previous study by Ratkiewicz et al. [26] based on the

mtDNA control region, sampled the western edge of the species range (including

the area between Norway and the Carpathian Mountains) and identified the
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existence of four genetic units that could have resulted from the marginal location

of the populations studied, habitat fragmentation and/or demography. However,

using a single genetic marker was not sufficient to assess the relative importance of

these different factors. The importance of climatic factors on lynx genetic

differentiation has been recently suggested by a review study [12]. Moreover, the

Eurasian lynx was shown to shift its diet throughout its vast range with lynx in

more northerly locations preying mainly on hares (Lepus timidus) (Russia,

Finland) or domestic reindeer (Rangifer tarandus) (Norway) and the south-

western populations feeding on Cervids [27]. This could potentially contribute to

genetic divergence among these populations through local adaptations.

The aim of our study was to investigate the factors contributing to the patterns

of genetic structuring in Eurasian lynx. To achieve this objective, we intensively

sampled a large portion of the lynx’s range (including sites at the periphery and

within the core area of the species’ distribution) and used three types of genetic

markers: maternally inherited mtDNA, Y-chromosome markers and nuclear

microsatellites. Our primary goal was to understand the relative role of factors

affecting the genetic diversity in different populations. We predicted that: 1) lynx

are capable of maintaining high rates of gene exchange providing that habitat is

continuous; 2) genetic variability and distinctiveness of contemporary lynx

populations in Eastern Europe are affected by both human activity (habitat

fragmentation, population extermination) and past climatic events (Last Glacial

Maximum); 3) genetic differentiation between lynx populations is correlated with

climatic factors and/or 4) it is correlated with the main prey type of lynx. This

knowledge will help in interpreting the importance of current and historical

processes in shaping the distribution and genetic structure of the lynx population,

as a model species of large, mobile carnivores.

Material and Methods

Ethics statement

The license for lynx live-trapping and blood sampling was obtained from the

National Ethics Committee for Animal Experiments (no: DB/KKE/PL – 110/2001)

and the Local Ethics Committee for Animal Experiments at the Medical

University of Białystok (no: 52/2007). No animals were harmed during live-

trapping and handling. An effort was made to minimize the time animals spent

immobilized in the traps. All traps were equipped with radio- or GSM-alarm

systems that allowed us to remotely control trapping and release the captured

animals from the traps within 15 minutes to 1 hour.

Sampling

We analysed samples of Eurasian lynx from northern, central and eastern Europe

bordered by Norway, the Carpathian Mountains and Russia (Kirov Republic)

(Table 1). We arbitrarily assigned them to ten populations according to their
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geographic location and country of origin (Fig. 1). We are thus using the term

‘‘population’’ for simplicity, although we acknowledge that they may not

represent populations in an ecological sense. One should note that Lithuanian

lynxes were mostly sampled near to the Latvian boundary, while Belarusian lynxes

were mostly sampled close to the Latvian and Russian borders (Fig. 1). Sampled

lynxes span an area large enough to include a variety of habitat and climatic

conditions. There is also a significant dietary diversification among the lynx

populations over the sampled area (see S4 Table and references therein).

Altogether, 332 lynx individuals were sampled between 1992 and 2011. Sample

sizes per population are given in Table 1. Samples were tissue collected from

legally hunted individuals (Norway, Finland, Estonia, Latvia, Russia and Romania;

n5216), blood of live-trapped lynx (Białowieża Primeval Forest (BPF) in NE

Poland; n518), hair samples (n554), animals found dead (Belarus, Lithuania,

Poland (n525) and museum specimens (Poland, Slovakia, Ukraine; n519). Hairs

were sampled non-invasively based on methods described by Schmidt and

Kowalczyk [28]. Samples from northeastern Poland were assigned to two separate

subpopulations (BPF and KARPF (Knyszyn, Augustów, Rominta, Piska Forests);

Table 1) based on previous mtDNA results [26]. The Carpathian population

consisted of samples from Poland, Slovakia, Romania and Ukraine which were

pooled together due to the high geographic isolation of the Carpathian Mountains

from the other populations in the distribution range and because only a single

mtDNA haplotype shared by all individuals in this area (see Results).

DNA extraction, microsatellite amplification and error checking

Genomic DNA was extracted using the Genomic Mini Kit (A&A Biotechnology,

Gdynia, Poland) according to the manufacturer’s protocol and was stored at

Table 1. Mitochondrial DNA- control region diversity indices for the Eurasian lynx samples studied.

No Population N Nh h (¡SE) p (¡SE) S PD

1. Norway* 30 1 0.00 (¡0.00) 0.00 (¡0.00) 0 0 (¡0.00)

2. Finland* 29 3 0.62 (¡0.05) 0.16 (¡0.12) 3 0.96(¡0.67)

3. Estonia# 58 6 0.70 (¡0.05) 0.35 (¡0.22) 8 2.15 (¡1.21)

4. Latvia# 47 7 0.81 (¡0.03) 0.47 (¡0.29) 11 2.29 (¡1.28)

5. Lithuania 14 4 0.40 (¡0.16) 0.07 (¡0.08) 3 0.43 (¡0.41)

6. Belarus 11 5 0.82 (¡0.08) 0.44 (¡0.29) 8 2.69 (¡1.55)

7. Poland# (KARPF) 26 4 0.64 (¡0.07) 0.29 (¡0.20) 6 1.80 (¡1.07)

8. Poland# (BPF) 25 4 0.36 (¡0.12) 0.14 (¡0.11) 6 0.84 (¡0.62)

9. Carpathians# 40 1 0.00 (¡0.00) 0.00 (¡0.00) 0 0 (¡0.0)

10. Russia (Kirov) 52 8 0.64 (¡0.06) 0.25 (¡0.17) 7 1.56 (¡0.94)

All 332 16 0.78 (¡0.01) 0.388 (¡0.23) 18 2.38 (¡1.30)

N – sample size, Nh – number of haplotypes, h – haplotype diversity, p – nucleotide diversity (%), S – number of segregating sites, PD – mean number of
pairwise differences, SE – standard error, KARPF – Knyszyn, Augustów, Rominta, Piska Forests, BPF – Białowieża Primeval Forest. * - data from
Ratkiewicz et al. [30], # - increased sample size from data utilized in Ratkiewicz et al. [30].

doi:10.1371/journal.pone.0115160.t001

Population Genetic Differentiation and Gene Flow in Lynx

PLOS ONE | DOI:10.1371/journal.pone.0115160 December 31, 2014 4 / 29



220 C̊ until used. The amplification of 13 microsatellite markers (twelve nuclear

and one Y-linked) was carried out in three multiplex panels (Panel 1: Fca045,

Fca090, Fca149, Fca391 and Fca559; Panel 2: Fca001, Fca008, Fca031, Fca043,

F115; Panel 3: Fca077, Fca078 and Y-linked 278g21-4). The above-mentioned

microsatellite loci were developed for domestic cats [29, 30] and successfully used

in several lynx studies: [24, 25, 28, 31, 32]. The final reaction volume was 10 ml.

Mastermix was created for 8-sample batches and included 36 ml Qiagen Multiplex

Master Mix, 21 ml ultra-pure H2O (Qiagen, Hilden, Germany), 7 ml primer mix

(containing 2pmol of each primer). Aliquots of 8 ml of this mix was then added to

2 ml of isolated DNA template. The thermocycling profile was as follows: 95 C̊ for

15 min, followed by 30–45 cycles of denaturation at 94 C̊ for 30 s, annealing at

Fig. 1. Distribution of Eurasian lynx sampling locations and mtDNA haplotypes. Map showing
distribution of sampling locations of the Eurasian lynx in north-eastern and central Europe. The color of each
sampled individual denotes the haplotype of cr mtDNA and corresponds to the haplotype network in Fig. 2.
Points are clustered into four groups as assigned by SAMOVA (both based on mtDNA and microsatellites)
and shaded with different colors: Norway (yellow), BPF (green), Carpathians (blue) and remaining samples
(pink). Names of arbitrarily assigned populations are given. Intensity of grey shading refers to the terrain
ruggedness indicating mountainous areas. The background map was extracted from open access database
available through USGS: http://srtm.usgs.gov/index.php). It is similar but not identical to the original image,
and is therefore for representative purposes only.

doi:10.1371/journal.pone.0115160.g001

Population Genetic Differentiation and Gene Flow in Lynx

PLOS ONE | DOI:10.1371/journal.pone.0115160 December 31, 2014 5 / 29

http://srtm.usgs.gov/index.php


57 C̊ (Panel 1 and 3) or 56.5 C̊ (Panel 2) for 90 s, extension at 72 C̊ for 60 s and

final extension at 60 C̊ for 30 min. The PCR products were mixed with 10 ml

ultragrade formamide and 0.2 ml GeneScan 500-LIZ size standard (Life

Technologies, Carlsbad, CA, USA), denatured at 95 C̊ for 5 min, immediately

cooled and then separated using a four-capillary ABI 3130 Genetic Analyser (Life

Technologies, Carlsbad, CA, USA). Allele sizes and genotypes were scored using

GeneMapper 4.0 software (Life Technologies, Carlsbad, CA, USA). PCRs were

repeated twice to test the consistency of the results for a subset (5%) of randomly

chosen individuals. A total of 54 hair samples from Lithuania and Belarus were

analyzed. Hair samples which gave low amplification rate and displaying

contamination within hair traps were excluded. Microsatellite panels in the

remaining hair samples (20) were amplified between two and four times until they

gave reliable genotypes, e.g. heterozygotes at least three times out of four. Samples

with inconsistent genotypes were discarded from the analysis. Possible genotyping

errors due to stuttering, short allele dominance and null alleles were tested by

MICRO-CHECKER 2.2.3. [33]. Multilocus genotypes of the hair samples were

analysed in CERVUS 3.0.3 [34] to avoid using samples of the same individuals.

Obtained genotypes are presented in S1 Appendix.

mtDNA and Y-chromosome analyses

A portion (613 bp) of the mtDNA control region (cr mtDNA) was amplified in

122 lynxes using the primer pair LGL283 and ISM015 [26, 35]. Additionally, 210

lynx cr mtDNA sequences from Ratkiewicz et al. [26] were used. Almost the entire

cytochrome b gene, e.g. 1094 bp (mtDNA) was amplified for 12 individuals from

Russia, Finland, Estonia, Latvia and Poland using lynx-specific primers: LcytbF: 59

-CAC ATG GAA TTT AAC CAT GAC C -39 and LcytbR: 59-GAC TCT TCA TTT

GAG GAG ACG. The entire 681 bp of the ATP6 gene (LATP_F: 59-TCC AGA

ACC TAA ATC CAC AAC C-39 and LATP_R: 59-GCA TGA GTT TGG TGG GTC

ATT A-39) was amplified in 8 lynxes from Norway, Finland, Latvia and Poland.

All laboratory procedures and quality test controls for cr mtDNA followed [26].

We also amplified seven universal Y-linked markers (YCATS, Y-chromosome

conserved anchor tagged sequences) according to [36], with the exception of

marker DBY4, which had an annealing temperature of 48 C̊. We obtained clear

PCR products for DBY4 (185 bp), DBY7 (275 bp), DBY8 (115 bp), SMCY7

(625 bp) and SMCY17 (125 bp) but no clear products were obtained for UBE1Y6

and UTY11. The five Y-chromosome markers that gave clear PCR products were

sequenced in 43 males from Russia, Finland, Estonia, Latvia, Poland, Romania

and Belarus according to [36].

Statistical analyses

For the autosomal microsatellite loci, FSTAT 2.9.3 [37] was used to estimate the

number of alleles per locus (NA), allelic richness (AR), gene diversity (Hs) and

inbreeding coefficient (FIS) in the populations. Differences among groups of
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samples in AR, Hs, expected heterozygosity (He), relatedness coefficient (r), and

FST were tested using a permutation procedure (10000 iterations) in FSTAT. The

same software was used to tests for linkage disequilibrium among 12 microsatellite

loci within each population and for the total sample (13200 permutations).

Hardy–Weinberg equilibrium probabilities were calculated using GENEPOP 4.0

[38]. Estimates of cr mtDNA haplotype diversity (h) and nucleotide diversity (p),

number of segregating sites (s) and mean pairwise difference were calculated using

ARLEQUIN v 3.1 [39]. Relationships among haplotypes were represented as a

haplotype network obtained with the statistical parsimony method using the TCS

v 1.21software [40]. Pairwise FST (for microsatellites) and WST (for mtDNA)

values for the 10 populations were estimated using ARLEQUIN and their

significance was tested using 1000 permutations corrected for multiple tests by

Bonferroni correction. For comparative purposes, we have also calculated pairwise

DEST [41] using SMOGD v. 1.2.5 [42] (results shown only as Supporting

information (S3 Table)). Isolation by distance (IBD) patterns were determined by

comparing pairwise FST/(1- FST) [43] for both nuclear and mtDNA markers to the

logarithm of geographical distance (measured in a straight line between the

central point of each population except the distances to Norway and Finland

which were taken along an arbitral broken line omitting the Baltic Sea) using

Isolation by Distance Web Service (IBDWS) (http://ibdws.sdsu.edu/,ibdws/ [44].

Principal coordinate analysis (PCA) was performed based on a sample-wise

matrix of genetic distance for microsatellite and mtDNA data in GenAlEx v. 6.0

[45]. We then used PC1 scores with the geographic coordinates of lynx samples

for the spatial analysis of genetic differentiation, using the kriging algorithm in the

Surfer 10 software (http://www.goldensoftware.com/demo-downloads). Contour

lines of the first axis of the PCA were interpolated and superimposed onto a

geographic map of the study area. By interpolating the PC1 scores for each

individual lynx throughout the study area, we tried to identify regions where

genetic dissimilarity between individuals was considerably higher or lower than

would be expected from the IBD effect alone. Such geographic areas may

represent dispersal barriers or migration corridors, respectively.

Analysis of molecular variance (AMOVA; [46] using ARLEQUIN (with 10000

permutations) was performed to assess structuring within the data, where the

sampling sites were grouped as a single population (using both, WST and FST). To

explore patterns of genetic divergence in more detail, we applied the spatial

AMOVA procedure using SAMOVA ver. 1.0 [47]. This allowed us to identify the

grouping of sampling sites that maximized the WCT values (among group

variance) and minimized WSC values (among populations within group variance).

The significance of W-statistics was tested using 10000 permutations for K52 to

K59 partitions of the sampling sites. The pRST - RST tests between identified

groups were performed in SPAGEDI [48], using 20000 allele size permutations to

identify if genetic differentiation was due to genetic drift or other evolutionary

processes.

Contemporary migration rates (within the past one to three generations)

between lynx populations were evaluated using a Bayesian approach implemented

Population Genetic Differentiation and Gene Flow in Lynx
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in BayesAss ver. 1.3 [49] according to the authors’ recommendations. The

analyses were performed with 36106 iterations of which 106 were burn-in and a

sampling frequency of 2000. We further applied a Bayesian clustering approach to

infer the most likely number of genetically distinct groups of samples using the

software STRUCTURE 2.3.4. [50] without prior information of the sampling

locations. We assumed the admixture model with correlated allele frequencies,

and specified burn-in of 106 iterations and 105 Markov Chain Monte Carlo

(MCMC) replicates after the burn-in period. The program was run 5 times for

each number of clusters (K) between 1 and 10 to verify the consistency of

estimates across runs. To determine most likely number of genetic clusters we

evaluated the probability logarithm of the data (lnP(D); [50]) and Delta K (DK;

[51]) for each K averaged across runs, using the software Structure Harvester

(Web version: v0.6.93, [52].

We applied Approximate Bayesian computation (using the program DIYABC

2.0.4; [53]) to estimate the relative likelihood of possible scenarios for the lynx

population histories. The program uses reference tables (containing parameters

based on known or estimated values) to establish scenarios from which simulated

data sets could be compared to the observed values. As the program requires a

priori defining populations, for the analyses we generally followed the subdivision

of the lynx population suggested by the STUCTURE analysis into four

subpopulations: 1) Norway, 2) BPF-KARPF, 3) Baltic and 4) Russia-Finland.

However, we decided to distinguish a fifth sub-population, the Carpathian

population, due to the analysis in SAMOVA. We tested nine possible scenarios.

We set the effective population sizes (Ne) from 10 to 10000. Each competing

scenario was given equal prior probability. We accepted the default mutation rate

model prior distributions suggested in the software for microsatellites. For the

mitochondrial dataset we assumed the mean mutation rate of 5.3561027

substitutions/site/year with SD 52.2861027 substitutions [54]. We set the

number of simulated data sets at 500000. We compared the relative likelihoods of

the scenarios by the logistic regression approach, with a 2% subset of the closest

simulated data. We provisionally assessed the fit of the model to the data using

principal components analysis (PCA).

We tested for a possible sex-bias in dispersal using a spatial autocorrelation

analysis [55] in GenAlEx 6.5 [45] for each sex separately. The autocorrelation

coefficient, pairwise r values, were divided into 20 distance classes (100 km each)

with mean sample sizes in each distance class N5254 (¡182). A null distribution

of r values for each distance class was obtained by permutation (N59999) and the

confidence intervals (C.I.) about r were estimated by bootstrapping with

replacement (N59999), and plotted in a correlogram. The extent of the detectable

spatial genetic structure was approximated as the distance class at which r was no

longer significant and the intercept crossed the x-axis.

To identify correlations between genetic distance between lynx populations and

abiotic climatic, as well as biotic factors (lynx basic prey), we performed

multivariate multiple regression analysis using DISTLM ver. 5 [56]. The mtDNA

and the microsatellite population pairwise FST values were used to construct the

Population Genetic Differentiation and Gene Flow in Lynx
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response matrix and tested against the following predictor matrices: geographical

distance, average temperature in January, number of days with snow cover (DSC),

average snow cover depth (SCD) in January [57], and the winter index for the

North Atlantic Oscillation (NAO) as an index of climate [58]. Marginal tests of

each predictor were done, followed by conditional tests, where latitude was

included as a covariable to the predictor variables. Then, sequential tests were

done using a forward selection procedure to produce a combined model of

genetic differentiation in the Eurasian lynx using DISTLM forward ver. 1.3 [59].

The P values were obtained from 10000 permutations. Abiotic climatic data were

taken from the WorldClimate database (www.worldclimate.com), [60] and the

Climate Atlas of Poland [60]. Data obtained from the literature on lynx diet is

cited in S4 Table.

Results

Intrapopulation genetic variability

We obtained control region mtDNA sequences for 332 lynx samples. Sixteen 613

bp haplotypes of the cr mtDNA were observed, of which four (H14, H15, H16 and

H18) were previously unreported (Fig. 2). All new haplotypes are provided in

GenBank (accession nos.: H14 - KM000076, H15 - KM000077, H16 - KM000078,

H18 - KM000080). The number of segregating sites (S) was 18 (17 transitions and

one indel). The number of haplotypes per population ranged from 1 (Norway and

the Carpathians) to 8 (Russia; Table 1). Cr mtDNA H1 was the most widespread

haplotype and it was present in eight of the sampled locations (Figs. 1 and 2). It

was fixed in Norway and very common in Estonia, Finland and Russia. On the

other hand, H4 was fixed in the Carpathians and relatively common (0.231) in

Russia and was also present at moderate to low frequencies in Estonia, Latvia,

Belarus and KARPF in Poland (Fig. 1, see S1 Table for haplotype frequencies). It

is worth noting that three haplotypes were unique to Russia and, surprisingly,

three were exclusively present in the Lithuanian samples. Haplotype (h) and

nucleotide (p) diversity in the overall sample was 0.78 and 0.388%, respectively

(Table 1). The haplotype diversity (h) values ranged from zero (Norway and the

Carpathians) to 0.82 (Belarus). The Norwegian and Carpathian populations

showed no nucleotide diversity (p50.000%), whereas this parameter was highest

in Latvia (0.468%).

The cytochrome b gene (1094 bp) showed no polymorphism among 12

individuals from different populations (GenBank accession no.: KM000081).

Likewise, no polymorphism was found among 681 bp of the entire ATP6 gene

among 8 lynxes from different populations (GenBank accession no.: KM000083).

No sequence polymorphism was found in the five Y-linked chromosome

markers (total: 1386 bp; GenBank accession no.: KM000084, KM000085), among

43 male lynx from seven sampling locations (Russia, Finland, Estonia, Latvia,

Poland, Romania and Belarus) and the Y-linked microsatellite locus 278g21-4

possessed only a single allele (146 bp long) in all males studied.

Population Genetic Differentiation and Gene Flow in Lynx
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The number of alleles for the microsatellite loci ranged from four to 18 and we

did not find any significant (Bonferroni-corrected) linkage disequilibria between

loci within any of the populations studied, as well as the frequencies of null alleles

low (below 0.05, data not shown). Measures of genetic diversity for the

microsatellite loci (A, AR and He) were lowest for the Norwegian and BPF

populations, and largest for lynx from Russia (Table 2). The A, AR and He values

for Norway and BPF were significantly lower (permutation test, p,0.05) than for

the remaining lynx populations, possibly due to bottlenecks. Interestingly, the

Carpathian population did not show any signs of reduced levels of polymorphism

at the microsatellite loci; however it exhibited a positive and significant FIS value,

as did the population from Belarus (Table 2).

Fig. 2. mtDNA haplotype network of Eurasian lynx. Haplotype network illustrating the relationship among
16 haplotypes of Eurasian lynx. Small black circles indicate missing haplotypes. Numbers denote the
haplotypes. The size of the circles (except the haplotypes not found in this study) refers to the relative
frequencies of a given haplotype in the whole sample. Colors of haplotypes correspond to Fig. 1.

doi:10.1371/journal.pone.0115160.g002
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Genetic differentiation among lynx sampling locations

Pairwise genetic differentiation values between sampling locations for the cr

mtDNA ranged from 0.01 to 1.00 (WST) and the majority of comparisons were

significant (Table 3). These results indicate that a high degree of genetic

differentiation exists between lynx populations, especially those from Norway,

BPF and the Carpathians. Nonsignificant values of WST were found between

Estonia and Latvia, Finland and Estonia as well as Latvia and KARPF, whereas

lynx populations in close geographic proximity in Lithuania and Latvia showed

considerable and significant mtDNA differentiation (Table 3). For the cr mtDNA

FST was not significantly different from zero between three population pairs only:

Estonia and Russia, Latvia and Belarus, Belarus and KARPF (S2 Table). Similarly,

various degrees of genetic differentiation were found at the microsatellite loci,

with pairwise FST values ranging from 0.012 to 0.293 and the highest divergence

between the populations of Norway, BPF and Carpathians with the other

sampling locations (Table 3). All comparisons except one (the Latvia-Lithuania

population pair) were significant. Comparative patterns of differentiation were

obtained with DEST which ranged from 0.00 to 0.32 (S3 Table). The RST values (S3

Table) ranged from 0.004 to 0.234 and the majority of comparisons were

significantly different from zero. The RST values were non-significant between the

following population pairs: Finland - Lithuania, Estonia - KARPF, Estonia -

Lithuania, Latvia - Lithuania, Lithuania - Belarus, Lithuania - KARPF, Lithuania -

Carpathians, Lithuania - Russia, KARPF - BPF, KARPF - Russia.

Spatial autocorrelation among females and males showed a pattern of

decreasing relatedness with increasing distance in the first two distance classes (0–

200 km), with an x-intercept at 498 km and 586 km for females and males,

respectively (Fig. 3). For females, the r values were positive and significant for the

first four classes (up to 400 km), while for males the corresponding values were

Table 2. Microsatellite DNA diversity indices for the Eurasian lynx in Europe.

Sampling area N NA AR He FIS

Norway 28 3.50 2.92 0.500 0.040

Finland 30 5.00 3.90 0.600 0.016

Estonia 61 5.33 3.69 0.590 0.002

Latvia 48 5.50 3.82 0.620 0.050

Lithuania 12 3.92 3.53 0.590 0.040

Belarus 11 3.75 3.60 0.600 0.163*

Poland (KARPF) 12 3.75 3.41 0.590 0.040

Poland (BPF) 22 3.50 2.85 0.477 0.012

Carpathians 13 4.33 3.80 0.600 0.163*

Russia (Kirov) 61 6.75 4.40 0.674 0.033

All 298 7.58 4.24 0.660 -

N – sample size, NA – number of alleles, AR – allelic richness, He – expected heterozygosity, FIS – inbreeding coefficient, * - p ,0.05. Population
abbreviations according to Table 1.

doi:10.1371/journal.pone.0115160.t002
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significant up to 500 km. Thus, the approximate scale of the positive genetic

structure was between 400 and 500 km. The overall shape of the correlogram was

similar for males and females (Fig. 3), though with slight indication of male-bias

in dispersal distance. The relationship between r and distance was not significantly

negative until 700 km for females and males (Fig. 3).

We did not find any statistically significant isolation by distance (IBD) pattern

for mtDNA (r250.028, p50.28) nor for microsatellite loci (r250.076, p50.17)

among our sampling locations (S1 Fig.). When we excluded lynx from Russia, the

IBD pattern became significant for microsatellite loci (r250.394, p,0.05) but not

for the cr mtDNA (r250.178, p50.08) (S1 Fig.).

Geographical structuring among lynx cr mtDNA haplotypes in the study area

was highly supported by AMOVA results where all sampling sites were treated as a

single group (WST50.570, p,0.001, FST50.464, p,0.001). SAMOVA was

subsequently used to identify the subdivision that most likely explains the mtDNA

structure observed in lynx. The data were best explained assuming four groups of

lynx populations: (1) Norway, (2) BPF, (3) Carpathians and (4) the remaining 7

sampling sites (Fig. 1). This configuration maximized the among-group variation

(44.24%) and minimized the variation among sampling locations within groups

(13.67%); the variation within sampling locations was 42.10% (WCT50.442,

p,0.05, WSC50.245, p,0.001, WST50.579, p,0.001).

For the microsatellite data, AMOVA supported the geographical structuring of

the populations (FST50.10, p,0.001, RST50.09, p,0.001). The data were best

explained in SAMOVA analysis assuming the same four groups of lynx

populations: (1) Norway, (2) BPF, (3) Carpathians and (4) the remaining 7

sampling locations (Fig. 1). This configuration maximized the among-group

variation (11.81%) and minimized the variation among sampling locations within

groups (4.38%); the variation within sampling locations was 83.81% (FCT50.118,

p,0.01, FSC50.050, p,0.001, FST50.162, p,0.001). RST did not differ

Table 3. Pairwise differentiation between Eurasian lynx populations.

Population Norway Finland Estonia Latvia Lithuania Belarus KARPF BPF Carpathians Kirov

Norway - 0.23 0.13 0.36 0.94 0.57 0.68 0.92 1 0.19

Finland 0.187 - 0.06 0.24 0.67 0.32 0.51 0.82 0.87 0.09

Estonia 0.153 0.059 - 0.09 0.37 0.14 0.33 0.67 0.59 0.02

Latvia 0.158 0.041 0.007 - 0.14 0.01 0.12 0.59 0.45 0.10

Lithuania 0.189 0.035 0.041 0.012 - 0.19 0.13 0.78 0.90 0.43

Belarus 0.185 0.076 0.081 0.082 0.09 - 0.03 0.56 0.69 0.15

KARPF 0.201 0.081 0.102 0.071 0.052 0.125 - 0.48 0.60 0.36

BPF 0.293 0.159 0.189 0.149 0.123 0.225 0.029 - 0.92 0.72

Carpathians 0.242 0.143 0.157 0.142 0.144 0.166 0.188 0.257 - 0.64

Kirov 0.146 0.038 0.048 0.043 0.052 0.060 0.078 0.149 0.121 -

FST values based on 12 microsatellites (below diagonal) and WST values based on the mtDNA control region (above diagonal). Nonsignificant values are
given in italics.

doi:10.1371/journal.pone.0115160.t003
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significantly from pRST for any pairwise between-group comparisons (P.0.27,

1000 permutation tests).

Using the Bayesian clustering method based on multilocus lynx genotypes with

STRUCTURE indicated that four genetic clusters were most likely using the DK

method (S2 Fig.). However, with the probability logarithm of the data (lnP(D)

method, although the likelihood values leveled off at K54, it reached a maximum

at K58 suggesting further subdivision of the lynx population (S2 Fig.). About

75% of the individuals were assigned to genetic clusters using Q.0.80 as a

threshold, with considerable genetic mixing between two of the different clusters.

The genetic assignment plots produced in STRUCTURE clearly highlighted the

genetic discontinuity among lynx populations. Assuming K54, the samples were

assigned according to the following pattern: two sampling locations (the Norway

and the North-Eastern Polish lynx, including the BPF and KARPF) were nearly

uniformly composed of two different single genetic clusters, a third cluster was

composed of lynx from Finland, Russia, Carpathians and to some extent from

Belarus, whereas the fourth cluster included the remaining lynx (Estonia, Latvia,

Lithuania and Belarus) (Fig. 4). Interestingly, irrespective of the number of

clusters assumed, the Norwegian and the North-Eastern Polish lynx populations

always formed clearly distinguishable genetic units.

Fig. 3. Results of the spatial autocorrelation analysis. Correlograms of the average autocorrelation
coefficient (r) for 20 distance classes of 100 km each for male (A) and female (B) Eurasian lynx. The dashed
lines represent the 95% upper and lower bounds of the null distribution assuming no spatial structure. The
error bars represent the 95% confidence intervals about r. Significant spatial structure is observed when r
exceeds the null distribution and the error bars do not overlap zero.

doi:10.1371/journal.pone.0115160.g003
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Contemporary gene flow and possible scenarios of past lynx

population history

Bayesian estimates of contemporary migration estimated in BayesAss were close to

zero for Norway, BPF and the Carpathians. Some migration probably occurred

from BPF into the KARPF population and to a certain extent from BPF to

Lithuania. The lynx population from Belarus could act as a source population for

the neighboring populations in the Baltic states. Regular recent migration was

evident between Finland and Russia in both directions (Fig. 5).

The synthetic genetic map based on PC1 scores calculated from pairwise genetic

distance between individuals, allowed us to identify potential dispersal barriers

and migration corridors (Fig. 6). Microsatellite data set revealed areas of abrupt

genetic change, indicating that possible barriers to lynx dispersal may exist in: (1)

the northern part of the Scandinavian peninsula, (2) the gulf of Finland, (3) the

highly fragmented habitats around NE Poland and (4) the deforested area north

to the Carpathians (Fig. 6A). On the other hand, fairly homogeneous genetic

landscape was visible between southern Finland, eastern Belarus and western

Russia, suggesting a possible migration corridor in this part of the study area

(Fig. 6A). The analogous migration corridor was also revealed based on the

mtDNA data set, but in contrast to microsatellites, no barriers were detected in

northern Scandinavia and north of the Carpathians (Fig. 6B). Relatively high

genetic dissimilarity between sampled lynxes was visible on the mtDNA contour

map near the gulf of Finland and in NE Poland (Fig. 6B).

Using the approximate Bayesian computation with DIYABC we found highest

support for two different (but very consistent through various approaches; see S2

Appendix), mutually exclusive scenarios of lynx population history depending on

the genetic marker used. The analysis based on microsatellites suggested that the

lynx from the Carpathian mountains could have been the source for all remaining

populations (Fig. 7, Scenario 2). The first split, according to this scenario, has lead

to the establishment of the North-Eastern Polish population of lynx (BPF and

KARPF). During the second split a branch containing the Russian, Norwegian and

Finnish lynx split off from the NE Polish branch. The latter population diverged

also at a subsequent split giving rise to the Baltic population. During the last, most

recent split, the Norwegian lynx separated from the Russian-Finnish branch.

The mtDNA-based DIYABC analysis, however, showed that it is the Russian-

Finnish population that was the source population from which the Norwegian

lynx has split first (Fig. 7, Scenario 9). The Russian-Finnish lynx gave also rise to

the Carpathian and Baltic populations at the second and third splits, respectively.

During the most recent split the Baltic population has given rise to the NE Polish

lynx.

Fig. 4. Bayesian clustering of the Eurasian lynx population in north-eastern Europe. Results of the STRUCTURE analysis assuming number of
clusters from K53 to K510. Numbers correspond to classification of populations in Table 1. Note consistency of populations: 1 (Norway), 7 and 8 (KARPF
and BPF, both NE Poland) being composed of two uniform genetic clusters across all values of K.

doi:10.1371/journal.pone.0115160.g004
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Possible effect of ecological factors on lynx genetic structure

A test of the influence of geographical location on genetic differentiation among

the lynx sampling locations showed that pairwise WST values (mtDNA) is

correlated with latitude (46.5% of variation explained, P,0.001) but not with

longitude. Similarly, the number of days with snow cover, snow cover depth, and

the NAO index, as revealed by marginal tests, had significant effect on mtDNA

differentiation among sampling locations (Table 4). When geographical coordi-

nates were incorporated as covariables into the multiple regression analysis

(conditional tests), only snow cover depth was correlated with the pairwise WST

values between the lynx sampling locations. On the other hand, sequential tests

showed that latitude and snow cover depth were the only significant factors

(Table 4). The effect of snow (SCD and DSC taken as a set of variables) explained

Fig. 5. Migration routes and rates of Eurasian lynx across north-eastern Europe. Recent migration rates
within the Eurasian lynx population in north-eastern and central Europe between arbitrarily assigned sampling
populations, estimated using BayesAss. Directions and rates of migrations are shown with arrows and
associated numbers. The numbers within the circles denote proportions of non-immigrants within the sampled
populations (denoted with small digits which refer to the population numbers and names in Table 1). Grey
shading represents the forest cover. It is prepared based on an open access GlobCOVER database (http://
due.esrin.esa.int/globcover/) by extracting a range of data indicating forested and non forested areas (limited
to values of 40–110). It is thus similar but not identical to the original image, and is therefore for representative
purposes only. The lynx range (after Von Arx et al. [91]) is marked by continuous lines.

doi:10.1371/journal.pone.0115160.g005
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59.3% of the variation (p,0.01) for the mtDNA data in marginal tests. No such

relationship was found for the microsatellite data except in one analysis. There

was a significant effect of the main prey and the share of red deer in the lynx diet

explaining 82.5% (p,0.05; the same for sequential tests) and 26.6% (p,0.05) of

the variation, respectively, in the marginal tests for microsatellites only (Table 4).

Discussion

Population differentiation

The important finding of our research is the presence of similar patterns of genetic

differentiation among populations based on two types of markers: mtDNA and

microsatellites in the Eurasian lynx. The entire sample was consistently subdivided

into four genetic units. SAMOVA also suggested that while lynx from a large area

encompassing Finland, the Baltic countries, Belarus and Russia were all included

in a single genetic unit, the three remaining sampling locations – Norway, the

Carpathians and the Białowieża Primeval Forest (BPF) were separated into three

clearly distinct genetic entities. Based on the different heritability of mtDNA and

microsatellites, as well as previous research that suggested different genetic

structure in the brown bear with use of the same types of markers [21, 22], we

expected to find less consistency when considering both mtDNA and

microsatellite variability in the Eurasian lynx.

Spatial autocorrelation analysis provided relatively little evidence for male-

biased dispersal in the lynx. This is not fully concordant with the available

Fig. 6. Results of spatial analysis of genetic differentiation in the Eurasian lynx.Maps showing contour lines of the first axis of the PCA performed on a
sample-wise matrix of genetic distance for microsatellite (A) and mtDNA (B) data interpolated with the use of the kriging algorithm (Surfer12 software) and
superimposed onto a geographic map of the study area. Black and white arrows show possible migration barriers or migratory corridors respectively. See
Fig. 5 for other explanations.

doi:10.1371/journal.pone.0115160.g006
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telemetry data, suggesting that similar to other large felids [61–63], male lynx

disperse more frequently and for longer distances than females [64–65]. This may

mean lower effective dispersal in this species than expected from observational

data. The existence of microsatellite genetic structure almost as strong as that

found with mtDNA (which is inherited solely through females) indicates that

there may be effective physical barriers to male dispersal and that female

philopatry alone does not explain the observed pattern. Such barriers are likely to

function in the form of habitat fragmentation. It is particularly visible on the

synthetic genetic map in the case of the BPF population, which showed a

remarkable genetic distinctness from the neighboring populations despite the

Fig. 7. Possible scenarios of Eurasian lynx population history. Results of the approximate Bayesian computation conducted with the use of DIYABC
2.0.4 [53] to estimate the relative likelihood of alternative scenarios for the lynx’s colonization history. A) Graphs in the upper panel illustrate the four final
best supported scenarios from among nine scenarios proposed in the analyses (see S2 Appendix for details). The ten sampling locations analyzed in this
study were grouped into five populations based on its distinctness suggested by the STRUCTURE and SAMOVA analyses: 1) Nor (Norway), 2) NE PL (BPF
and KARPF), 3) Balt (Latvia, Lithuania, Estonia, Belarus), 4) Rus (Russia and Finland) and 5) CARP (Carpathians). Colors in the colonization scenarios
indicate different (but unknown) population sizes (Ne). Zero means sampling time and t1-t4 mean relative times of past events of suggested population
splitting. Graphs in the lower panel indicate the relative likelihoods of the four best scenarios compared by a logistic regression based on microsatellite (B)
and mtDNA (C) data with a 2% subset of the closest simulated data. The best support is for the scenario 2 and 9 for microsatellite (B) and mtDNA (C) data,
respectively. Note, although four scenarios were analyzed for mtDNA (C) the posterior probability of scenario 4 is not visible due to highly similar values with
scenario 6.

doi:10.1371/journal.pone.0115160.g007
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short geographic distance between them. Indeed, the habitat seems most severely

fragmented in this part of the lynx range [12, 66], and its effect was already

reported in an earlier study based on six microsatellites [31]. Concordant genetic

structure in the two types of markers was also recently found by Czarnomska et al.

[14] in the wolf population inhabiting Poland and was explained by factors

including natal-habitat biased dispersal and habitat disparities. The effect of

habitat discontinuity on dispersal and therefore the population genetic structure

in lynx may be more direct due to their stronger dependence on forest habitat

[67, 68] as compared to that of wolves [69]. It is thus likely that effective dispersal

may not be sufficient to counteract the effect of genetic drift in local, isolated

populations of the Eurasian lynx. Indeed, no significant differences between RST

and pRST values for microsatellite loci suggest genetic drift as the primary reason

for observed genetic divergence among the lynx populations at microsatellite

nuclear loci.

The strong genetic structure in the Eurasian lynx revealed by our analyses

corresponds well with our previous study on mtDNA that showed large

differentiation among the populations at the westernmost peripheries of its range

[26]. However, sampling more locations in this study, particularly from the core

Table 4. Effects of abiotic climatic variables on genetic differentiation based on mtDNA and microsatellites among Eurasian lynx populations in Europe.

Environmental factor Marginal tests Conditional tests Sequential tests

% var P % var P % var P

Latitude 0.465 ,0.001 n.a. - 0.465 ,0.001

0.271 0.058 n.a. - 0.142 0.118

Snow cover depth 0.358 0.001 0.260 ,0.05 0.260 ,0.05

0.193 0.158 0.114 0.294 0.157 ,0.05

Longitude 0.001 0.990 n.a. - 0.096 0.093

0.020 0.734 n.a. - 0.080 0.080

Days with snow cover 0.389 ,0.01 0.135 0.243 0.029 0.190

0.212 0.116 0.161 0.483 ,0.001 -

Snow 0.593 ,0.01 0.295 0.097 0.193 0.264

0.311 0.212 0.483 0.161 0.110 0.291

NAO 0.425 0.001 0.177 0.112 0.020 0.690

0.237 0.080 0.068 0.522 0.043 0.133

Temperature in January 0.121 0.389 0.033 0.511 ,0.001 -

0.041 0.724 0.091 0.417 0.035 0.999

Prey 0.709 0.207 0.393 0.491 0.709 0.207

0.825 ,0.05 0.553 0.430 0.825 ,0.05

Red deer 0.212 0.161 0.094 0.357 0.104 0.181

0.266 ,0.05 0.215 0.114 0.187 0.072

Marginal, conditional and sequential tests of the forward selection procedure are reported. Percentage of genetic variation explained by a particular variable
(% var), probability values (P), upper line - mtDNA data, bottom line (in italics) - microsatellites. NAO – North Atlantic Oscillation Index; Snow – snow Cover
Depth (SCD) and Days with Snow Cover (DSC) together. Prey – the proportion of main prey species in the lynx’s diet (see Appendix 1). n.a. – not applicable
since coordinates were used as covariables in conditional tests, (-) – not tested.

doi:10.1371/journal.pone.0115160.t004
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of lynx range (Russia, Kirov), and applying microsatellite markers gave us more

explanatory power with regards to plausible factors influencing the observed

pattern of genetic variability in this carnivore. The isolation by distance (IBD)

pattern appeared significant only for microsatellites for the data set without the

Russian population. This suggests that the population differentiation at the

westernmost part of the species’ range may be dependent on the dispersal

capabilities of lynx and IBD may thus explain only a portion of the observed

pattern of population differentiation. With the inclusion of the Russian subsample

the IBD was no longer significant. This suggests that there must be no particular

genetic divergence between the core (Russia) and some peripheral parts (e.g.

Finland, Belarus or Estonia) of lynx’s range. Thus, the Eurasian lynx has the

potential to maintain a panmictic population encompassing the vast territory of

Eastern Europe, unless it encounters barriers due to habitat fragmentation. The

spatial, individual-based, analysis of genetic distance showed that it is plausible

that deforested areas at the western margins of the Eurasian lynx range act as

effective barriers to dispersal between the BPF, Carpathians and the other studied

populations. The high genetic gradients on the synthetic genetic maps along with

low genetic diversity (for the microsatellites) of the Norwegian and the BPF

samples suggests that they have both experienced genetic drift and are particularly

restricted by barriers to dispersal. The barrier between northern Norway and

Finland is most probably caused by intense hunting pressure in areas where

reindeer are present [70].

Our study has also indicated that the genetic structure in the Eurasian lynx may

be explained, at least in part, with climatic conditions, particularly the depth of

snow cover, which was significantly correlated with mtDNA population

differentiation, even when geographic coordinates were included as co-variables in

the conditional tests. The lack of a barrier on the synthetic genetic map for

mtDNA in northern Scandinavia throughout Finland and Russia coincides well

with similar climatic conditions (e.g. high snow cover depth) in all northern lynx

populations. Very similar results have recently been reported based on mtDNA for

a smaller dataset of lynx samples from the western part of its range [12]. The

mechanism suggested for this relationship involves the matrilineal inheritance of

mtDNA as well as the fact that the climatic factors may also have affected the kill

rate by female lynx [71]. Moreover, skull size in female lynx, but not males, was

also found to be influenced by climatic factors [72]. Females in solitary cats are

provisioning their offspring with food alone [73], so familiarity with local snow

conditions may indeed influence their hunting efficiency and in effect the survival

and development of their kittens.

The relationships between microsatellite population differentiation and climatic

factors were less clear, with the only significant effect of snow conditions found in

the sequential test. On the other hand, a significant effect on microsatellite

differentiation in the marginal and sequential tests were found for prey, especially

the proportion of red deer in the lynx’s diet. Although drawing firm conclusions

from the latter result can be somewhat speculative, red deer are killed more often

by lynx in North-Eastern Poland (BPF and KARPF) than in other areas (S4 Table
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and citations therein), which coincides with the genetic distinctness of the lynx

inhabiting this region.

The results of multivariate multiple regression, along with the IBD effect may

suggest that despite generally concordant patterns of population subdivision,

there might be different factors such as climate and prey type affecting mtDNA

and the microsatellites genetic structure of lynx population, respectively. The

effect of climate may have resulted in the matrilineal clusters of lynx being

specifically adapted to hunting prey under local snow conditions. Moreover, as

male lynx are more likely to kill larger prey [74, 75] one cannot exclude the

possibility of lynx microsatellite genetic structure being additionally affected by

male adaptations to killing red deer. The influence of prey specialization on

predator population structure has already been well documented in the wolf

[10, 11], and inferred for the Canada lynx (Lynx canadensis) [8].

Gene flow among lynx populations

This study revealed differing levels of gene flow within the range of the Eurasian

lynx. Low genetic divergence and high rate of migrants identified between the

eastern part of European Russia and some western lynx sampling locations

suggested high gene flow along the east-westward direction, despite the distance

between locations. Several independent analyses of our microsatellite data

indicated possible migration corridors situated between Russia (Kirov and

Arkhangelsk Oblast), Finland and Belarus. In contrast, little genetic exchange

appears to have occurred between neighboring populations situated at the

westernmost peripheries of the lynx range, e.g. Norway, the BPF and the

Carpathians.

The possibility of recent gene flow between lynx inhabiting the far east of

European Russia and the westernmost edge of the lynx range (approximately

1100–1300 km) may not be surprising considering the long distances large

carnivores (including lynx) are capable of covering during dispersal and

migrations [2, 63, 65, 76]. Nevertheless, our findings indicated, for the first time,

the effectiveness of this mobility in a genetic sense. Previous genetic studies

conducted at smaller scales were mainly focused on documenting how gene flow

was limited in this carnivore, despite the high dispersal potential [24, 25, 26, 31].

Studies documenting long-distance, cross-continental movements in wildlife

are rare due to difficulties in collecting representative material [2, 10, 15, 16]. The

existence of a migration corridor in Eurasia was revealed recently for brown bear

between Eastern European Russia and Finland by Keis et al. [15] and the authors

suggested that the corridor they detected coincided with the southern border of

the taiga biome. High gene flow across a large area of Eastern Europe was also

found in the grey wolf [10, 16]. The feasibility of gene flow documented in large

carnivores corresponds with the distribution of continuous forest cover, which

spans Eastern Europe from Latvia, Estonia and Finland to Eastern Russia [66] and

the habitat preferences of all three of these large carnivores [67, 68, 77].
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The lynx population inhabiting eastern European Russia was characterized by

high genetic variation, and therefore one may expect it to constitute a possible

source population for these cats in Europe. However, we found present-day gene

flow between Russian and Finnish lynx in both directions with migration rates

slightly higher from Finland to Russia than in the opposite direction. The pattern

of lynx population history revealed with DIYABC analysis of the mtDNA data

supports the scenario of a Russian origin for the European lynx populations.

Genetic variability and contemporary and historical bottlenecks

The highest variability at both types of markers was found in sampling locations

grouped into clusters situated within the core lynx range (Russia) or being directly

connected to it through the continuity of the habitat present (Latvia, Estonia).

Whereas high genetic variability in this cluster can be directly linked with the

central location and habitat continuity [78], the reasons for the very low

variability in each of the remaining three clusters (consisting of BPF, Norway and

Carpathians) may have a unique reason in each case.

Among the three most divergent and least variable populations, the Norwegian

and Carpathian lynx present different patterns of genetic variability. Whereas the

lynx in both areas showed a complete lack of polymorphism in mtDNA, they had

different levels of microsatellite variability. As the Norwegian lynx had one of the

lowest reported values for allelic richness and heterozygosity, it is clearly

concordant with the relatively recent bottleneck experienced by this population

during the twentieth century [24, 79]. In contrast, the Carpathian lynx showed

relatively high genetic variability in microsatellites, which indicates that no

dramatic reduction of population numbers occurred recently. In this case the

presence of only one haplotype of cr mtDNA may support the northern refugium

hypothesis for the lynx with small effective population size during the last glacial

maximum (LGM, [26, 80, 81]. This scenario is also in line with the statistical

analyses in which the SAMOVA indicated that the Carpathian lynx formed a

separate genetic group for both mtDNA and microsatellites, and the DIYABC

analysis of microsatellite data, which suggested the Carpathian population to be

the source for all the other lynx populations. The best supported scenario in this

study, which implied the spread of the lynx from Carpathian mountains north

and eastwards was also recently suggested by Rueness et al. [25]. The Bayesian

approach in STRUCTURE suggested the Carpathian population to be composed

of a single genetic cluster along with the Russian lynx. The haplotype H4 was

found to be common in other sampling locations and frequent in the core

population (Russia). Thus our results suggest that the present monomorphism in

cr mtDNA in the Carpathian lynx could have been attributed to the bottleneck

effect during the LGM. It is likely that the lynx population became extinct north of

the Carpathians, and the few survivors reached these mountains and quickly

established the population there. This might have deterred possible female

migrants from settling in the existing social structure of the population [12] after

the glacier retreated and resulted in the fixation of the single haplotype.
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In the case of the BPF population, it is most likely that both its peripheral

location and strong isolation from the core range were the main reasons for the

low microsatellite and mitochondrial variability. A similar relationship between

genetic variability and location relative to the core of the species range was

reported for the Canada lynx [78] and the effect was explained with small

population size and limited connections to other populations, which is typical in

peripheries of a species’ range [82]. The limited genetic variability observed in the

BPF population might also be related to the short-term bottlenecks that most

probably occurred during 19th and 20th centuries [83], causing genetic drift.

Conclusion

The Eurasian lynx is capable of maintaining a panmictic population across eastern

Europe unless they are severely limited by habitat continuity or a reduction in

numbers. The effect of climatic conditions (snow cover) on the genetic divergence

between populations with respect to mtDNA, but not nuclear microsatellite loci,

may suggest different selective pressures acting on males and females in solitary

carnivores. However, further research is needed to identify such selective

pressures.
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