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reducing starch mobilization efficiency in barley

Min Xiong1 | Jian Xu1 | Zhou Zhou1 | Bin Peng1 | Yuxiang Shen1 |

Huiquan Shen2 | Xiao Xu2 | Changya Li3 | Lina Deng1 | Gongneng Feng1

1College of Marine and Biology Engineering,

Yancheng Institute of Technology, Yancheng,

Jiangsu, China

2Jiangsu Coastal Area Institute of Agricultural

Sciences, Yancheng, Jiangsu, China

3Yancheng Grain and Oil Crop Technical

Guidance Station, Yancheng, Jiangsu, China

Correspondence

Min Xiong and Gongneng Feng, College of

Marine and Biology Engineering, Yancheng

Institute of Technology, Yancheng 224051,

Jiangsu, China.

Email: xiongmin199401@163.com and

Email: ffyalce@ycit.cn

Funding information

This work was supported by funding from

Collaborative Technology Popularization Plan

for Yield and Quality of Malting Barley

(2022-ZYXT-04-2), Basic Science (Natural

Science) Research Project of Higher Education

Institutions of Jiangsu Province

(23KJB210013), Industrial System Malting

Barley Innovation Team Project of Jiangsu

Modern Agriculture (Special Food and Special

Economy) [JATS(2021)228] and school-level

research projects of the Yancheng Institute of

Technology (xjr2022042).

Abstract

Barley is one of the world’s earliest domesticated crops, which is widely used for

beer production, animal feeding, and health care. Barley seed germination, particu-

larly in increasingly saline soils, is key to ensure the safety of crop production. How-

ever, the mechanism of salt-affected seed germination in barley remains elusive.

Here, two different colored barley varieties were used to independently study the

regulation mechanism of salt tolerance during barley seed germination. High salinity

delays barley seed germination by slowing down starch mobilization efficiency in

seeds. The starch plate test revealed that salinity had a significant inhibitory effect

on α-amylase activity in barley seeds. Further, NaCl treatment down-regulated the

expression of Amy1, Amy2 and Amy3 genes in germinated seeds, thereby inhibiting

α-amylase activity. In addition, the result of embryogenic culture system in vitro

showed that the shoot elongation of barley was significantly inhibited by salt stress.

These findings indicate that it is a feasible idea to study the regulation mechanism of

salinity on barley seed germination and embryo growth from the aspect of starch-

related source-sink communication.
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1 | INTRODUCTION

Barley (Hordeum vulgare L.) is one of the most widely produced cereal

crops worldwide. Besides being used for brewing beer and feeding

animals, barley is also traditionally cooked along with rice in Asia.

Since barley has similar nutritional value as corn and wheat, it is also

processed into diverse foods, including pasta, breakfast cereals, baked

products, and noodles (Islam et al., 2021). Therefore, whether it is

used as a food crop or a cash crop, barley production is the key to

ensuring human food security. Barley seeds with excellent

performance during grain development, seed dormancy, and germina-

tion are critical for guaranteeing high yield and quality, which also is

the key to meeting the high production and market demand.

Barley seeds contain the caryopsis, which can be divided into two

types depending on whether the kernel has a hull or not. The struc-

ture of hulled barley seeds includes husk, pericarp, testa, aleurone

layer, endosperm, and embryo. In cereal seeds, the embryo contains

most of the genetic information, while the endosperm stores the

nutrients and is the edible part (Diaz et al., 2019; Gomez et al., 2021).

As the dominant component of the barley seed, starch comprises
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amylose and amylopectin. Amylose is synthesized by the granule-bound

starch synthase (GBSS) encoded by Waxy, while amylopectin is synthe-

sized by various forms of the starch synthase (Huang, Sreenivasulu, &

Liu, 2020; Källman et al., 2015; Li et al., 2018). Editing these starch

synthesis genes in barley grains can affect their amylose content,

resistant starch content, and starch fine structure, all of which are

associated with their appearance quality, eating and cooking quality,

nutritional quality, and germination traits (Huang, Li, et al., 2020).

As the planting of barley is mainly direct sowing, seed germination

traits have always been the focus of the improvement and breeding of

elite barley varieties. High-vigor seeds that can improve germination

and seedling rates are suitable for direct seeding production with

reduced labor cost and high work efficiency (Yu et al., 2021). Several

genes, including cathepsin B-like (HvPap-19), cathepsin F-like (HvPap-1),

and proteinaceous inhibitors of cathepsin F-like (Icy-2), which simulta-

neously regulate grain filling, composition, and germination, have been

found in barley (Diaz et al., 2016; Gomez et al., 2021). Briefly, seed

germination is a well-ordered series of physiological and morphologi-

cal changes post imbibition and expansion of seeds, which usually

begins with the rapid absorption of water and ends with radicle pro-

trusion (Bewley, 1997; Li et al., 2016; Xiong, Feng, et al., 2022). In the

early stage of germination, the activation and mobilization of the seed

reserve provide most of the nutrients for the growth of heterotrophic

embryos via the source-sink communication (Xiong et al., 2021). The

classical model of starch degradation during barley germination postu-

lates that the secretion of gibberellins (GAs) from the embryo to the

endosperm cells via the scutellum, triggers the early seed reserve

mobilization (Andriotis et al., 2016; Ritchie et al., 2000). GA in aleu-

rone cells promotes amylase synthesis, which then is secreted to pro-

mote the degradation of starch to glucose (Gubler et al., 1995;

Jacobsen & Beach, 1985). The more resistant amylose-only starch bar-

ley line shows a slower post-germination growth state than the wild-

type control because of slower starch degradation efficiency based on

weaker α-amylase activity during germination (Shaik et al., 2014). This

mechanism by which amylase promotes the starch conversion into

sugars that subsequently affects the germination and post-

germination growth is common in cereal crops (Diaz et al., 2019;

Wang et al., 2021; Xia et al., 2011; Xiong, Yu, et al., 2022).

Salt stress is a key environmental factor limiting plant growth,

which leads to osmotic stress, ionic stress and secondary stresses, par-

ticularly oxidative stress (Yang & Guo, 2018). Special attention should

be paid to the harm of salinity to the morphogenesis of seed germina-

tion and seedling stage in crop, which will affect the subsequent

development and reproduction stage. Liu et al. found that salinity

inhibited rice seed germination by reducing the content of bioactive

GAs, and exogenous bioactive GA could relieve this inhibition (Liu

et al., 2018). In addition to decreasing the content of endogenous GA,

increasing the content of endogenous ABA is also a feasible way to

delay cotton seed germination (Chen et al., 2021). In addition, ABA

also indirectly down-regulated the α-amylase activity during seed ger-

mination (Damaris et al., 2019).

In China’s eastern coastal areas, barley is often grown as a pio-

neer crop for salt tolerance. In this present study, two local barley

varieties (recently selected and cultivated by Jiangsu Coastal Area

Institute of Agricultural Sciences) with good sensory and beer-making

properties were used to study the mechanism of salinity affecting ger-

mination. Our study aims to investigate the important role of high

salinity inhibition on starch mobilization efficiency in delaying barley

seed germination and embryo growth.

2 | MATERIALS AND METHODS

2.1 | Plant materials and growth conditions

Two-rowed barley Yanmai7 (YM7) and Y12133 with good beer-making

properties were used in this study. YM7 was obtained by crossing

Supi4 and Shan2, while Y12133 was obtained from Yanhei1 � C2118.

For grain quality analyses, two barley varieties were planted in the

same field at the experimental farm of Jiangsu Coastal Area Institute of

Agricultural Sciences in Yancheng, Jiangsu, China. During their growth

period, the standard procedures for field management, disease treat-

ment, and pest control were followed to prevent yield loss. All mature

barley seeds were harvested and air-dried on the same day.

2.2 | Analysis of seed germination

Germination analysis of barley seeds was performed as described ear-

lier (Gomez et al., 2021) with minor modifications. For each experi-

ment, 30 barley seeds were sterilized with 70% (v/v) ethanol and

washed twice with Milli-Q water. Sterilized seeds were placed in

10 cm � 10 cm culture plates and imbibed in solutions with 250 mM

sodium chloride (NaCl) treatment or control treatment. The seeds

were subsequently germinated in darkness in an artificial climate incu-

bator (26 �C and 70% relative humidity). Seeds with a broken grain

coat or testa were considered as successfully germinated (Diaz

et al., 2016). The lengths of the shoots and roots of the germinated

seeds were measured at the indicated time points using the ImageJ

software. Each seed germination assay included at least three inde-

pendent biological replicates.

2.3 | Qualitative analysis of α-amylase activity

The α-amylase activity was determined qualitatively using the starch

board test method as described previously (Xie et al., 2007). The bar-

ley seeds were fully sterilized by soaking in 70% (v/v) ethanol for

20 minutes, and then washed twice with Milli-Q water. The embryo-

less half seeds were then transferred on 2% (w/v) agar in petri dishes

and incubated in the dark at 28 �C for 3 days. The agar plate con-

tained .2% potato starch, 20 mM calcium chloride, and 20 mM sodium

succinate (pH 5.0). After incubation, the starch plate was soaked in

iodine solution [.1% I2 (w/v) and 1% KI (w/v)] for 5 minutes. The size

of colorless haloes around the half seeds caused by starch hydrolysis

is positively correlated with α-amylase activity. After being photo-

graphed, the diameter data of the haloes were measured using the

ImageJ software.
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2.4 | Analysis of total starch contents

The barley kernels were ground into powder using a coffee machine.

The total starch content of the milled barley flour was determined

using a K-TSTA total starch assay kit (Megazyme, Wicklow, Ireland).

The detailed test steps follow the manufacturer’s instructions.

2.5 | RNA isolation and quantitative real-time PCR
(qRT-PCR) analysis

At least 30 barley seeds were used for RNA extraction. Total RNA from

germinated seeds was extracted with an RNAprep Pure Plant kit

(Tiangen, Beijing, China). The first strand of cDNA was synthesized from

1.5 μg of total RNA in a 30 μl reaction volume with a FastQuant RT kit

(Tiangen, Beijing, China). qRT-PCR was performed in 96-well blocks on

a MyiQ real-time system (Bio-Rad, California, USA) using the 2 � SYBR

Premix UrTaq II (Nobelab, Beijing, China). Three biological replicates

were included for each sample. α-Tubulin was used as an internal con-

trol to normalize expression of the target genes. The primers for qRT-

PCR were used in previous studies (Shen et al., 2020; Sheng

et al., 2018), and their details are shown in Supplemental Table S1.

2.6 | In vitro shoot elongation assay

The in vitro embryo culture was performed following the published

protocol in rice with minor modifications (Xiong et al., 2021). Briefly,

the plumules were carefully isolated from barley seeds 4 h after imbi-

bition (HAI) and cultured in 250 mM NaCl solution. After 72 hours of

growth, the lengths of elongated shoots originating in the plumules

were measured using the ImageJ software.

2.7 | Statistical analysis

All data are presented as means ± standard deviation (SD). The stu-

dent’s t-test was used to identify the level of significance for experi-

ments with a single pairwise comparison (* p < .05, ** p < .01). Data

from experiments with multiple comparisons were analyzed with

Duncan’s multiple range test at p < .05 (with different letters).

3 | RESULTS

3.1 | Two barley varieties have excellent yield
components

As beer-producing varieties, YM7 and Y12133 seeds are converted

into malt through the malting process when brewing, with the malt

amount being closely related to the barley yield (Tomasi et al., 2019).

The investigation results indicate that YM7 and Y12133 have the

potential to achieve high yield when it comes to yield characters.

There was no difference between the two barley varieties in terms of

grain length, grain width, grain thickness, and 1,000-grain weight, with

the number of grains per panicle being almost indistinguishable

(Figure 1 and Table 1). The seed husks of the Y12133 and YM7 were

black and yellow, respectively (Figure 1).

3.2 | High salinity delays barley seed germination

With the continuous water absorption of barley seeds, the dormancy-

breaking seeds showed changes in their germination rate, shoot

length, and radicle length, which are important indicators that reflect

the germination process (Diaz et al., 2016). Under the treatment of

F I GU R E 1 Panicle traits of the two
barley varieties. (a) Shows the morphology
of barley panicles. Scale bar = 20 mm.
(b) Represents the number of grains per
panicle of barleys. Error bars represent
the SDs of three biological replicates
(n = 3, each replicate contained
10 panicles).

T AB L E 1 Grain traits of the two barley varieties.

Grain length (mm) Grain width (mm) Grain thickness (mm) 1,000-grain weight (g)

YM7 8.86 ± .34 3.73 ± .04 2.78 ± .1 46.36 ± 1.61

Y12133 9.01 ± .39 3.7 ± .05 2.77 ± .12 47.1 ± .81
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250 mM sodium chloride (NaCl), the salt tolerance phenotype of bar-

ley seeds during germination was investigated. After NaCl treatment,

a noticeable delay in both germination and post-germination growth

was observed, whether in YM7 or Y12133 (Figures 2 and 3). At each

measured time point, the germination rate of the NaCl treatment was

consistently lower than its corresponding control group, with a signifi-

cant difference of approximately 50% (Figure 3a). Additionally, the

shoot length of barley was observed to be significantly shorter under

salt stress condition compared with the control group at 72 h after

imbibition (HAI) (Figure 3b). The radicle length change was also con-

sistent with that of shoot length at 72 HAI (Figure 3c). In conclusion,

high salinity can inhibit barley seed germination, including shoot and

radicle growth.

3.3 | Starch mobilization efficiency in germinated
barley seeds weakened by NaCl treatment

In barley, starch mobilization determines the process of seed germina-

tion. To investigate the correlation between NaCl treatment and ger-

mination delay, we analyzed the starch content of seeds both at the

initial stage (0 HAI) and 72 HAI. The study found that the starch con-

tent in YM7 seeds was 56.30% at 0 HAI (Figure 4a). At 72 HAI, the

starch content of YM7 treated with NaCl and the control group

decreased to 52.89% and 50.48%, respectively (Figure 4b). Subse-

quent analysis revealed that the seeds treated with NaCl experienced

F I GU R E 2 Morphology of the germinating seeds at 72 h after
imbibition of YM7 and Y12133 with or without 250 mM NaCl. Scale
bar = 10 mm.

F I G U R E 3 Salt stress inhibited the

seed germination of barley. (a) the
germination rate from 0 to 72 h after
imbibition (HAI). (b) the shoot length at
72 HAI with or without 250 mM NaCl.
(c) the root length at 72 HAI with or
without 250 mM NaCl. Error bars
represent the SD (n = 3, each replicate
contained 30 seeds). Different letters
indicate the significant differences at
p < .05 by Duncan’s multiple range test.
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a 3.41% reduction in starch content, whereas the control group expe-

rienced a 5.82% reduction. Similar starch results were also observed

in Y12133 seeds treated and untreated by NaCl (Figure 4c). These

findings suggest that NaCl treatment may have hindered barley seed

germination by slowing down the reduction of starch content.

3.4 | High salinity inhibits α-amylase activity in
barley seeds

α-amylase mobilizes the degraded storage starch, which positively

regulates the barley seed germination (Andriotis et al., 2016). There-

fore, we study whether NaCl also regulates seed germination by the

starch plate test, a method for qualitative comparison of α-amylase

activity. Briefly, the embryo-less half-seeds can secrete α-amylases to

degrade starch in plate, thus producing the colorless halo around the

seed. There is a positive correlation between halo diameter and

α-amylase activity of seed. Our results showed that the halo diame-

ters around YM7 and Y12133 in the salt-treated plate were smaller

than those in the control plate (Figure 5a). In more detail, high salinity

reduced the halo diameter of YM77 by 32.02% and Y12133 by

28.85%, suggesting that reduced α-amylase activity could be one

important reason for the delayed seed germination with NaCl treat-

ment (Figure 5b).

To understand the difference of Na/K accumulation in germi-

nated barley seeds under salt stress, we detected the expression of

some salt-responsive genes, including three salt overly sensitive genes

(SOS1, SOS2 and SOS3), three Na+/H+ antiport genes (NHX1, NHX3,

NHX5) and one high affinity potassium transporter gene (HKT1;5) (Fu

et al., 2018). The results showed that the expression of these genes

was up-regulated in seeds treated with NaCl at 36 HAI and 72HAI

(Figure 6). To further study which α-amylase family member directly

connects the salt pathway and seed starch degradation, we also exam-

ined the expression of α-amylase genes in barley. The qRT-PCR

revealed that the expression of Amy1, Amy2 and Amy3 genes

decreased significantly in YM7 after NaCl treatment at 36 HAI and

72 HAI (Figure 6a and c). Similar results were found in Y12133

(Figure 6b and d). These results are consistent with our starch mobili-

zation and amylase qualitative data, indicating that high salinity can

inhibit the activity of α-amylase in germinated barley seeds.

3.5 | High salinity hinders shoot elongation

Salt affects the degradation efficiency of starch in germinated seeds,

which leads to different sugar supply required for embryo growth. To

eliminate the potential interference from the endosperm, we used the

in vitro embryogenic culture system to study whether embryo growth

F I GU R E 4 Determination of starch content in barley seeds. (a) Seeds of YM7 and Y12133 germinated for 0 hours. (b) Seeds of YM7
germinated for 72 hours under NaCl treatment. (c) Seeds of Y12133 germinated for 72 hours under NaCl treatment. Error bars represent the SDs
of the three biological replicates (n = 3, each replicate contained 10 seeds). *, p < .05; **, p < .01 (Student’s t-test).

F I GU R E 5 Analysis of α-amylase
activity after NaCl treatment. (a) the
qualitative comparison of α-amylase

activity with or without NaCl
treatment at 72 HAI. Scale
bar = 10 mm. (b) Quantitative
analysis of the halo diameters in the
starch plate test. Error bars represent
the SDs of the three biological
replicates (n = 3, each replicate
contained 10 seeds). Different letters
indicate the significant differences at
p < .05 by Duncan’s multiple
range test.
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was affected by salinity under equal sugar supply. In this assay, iso-

lated plumules at 2 HAI were cultured in vitro. After 72 hours of culti-

vation, the shoot length under NaCl treatment was significantly

shorter than that of the control, which was observed in both two bar-

ley varieties (Figure 7).

In summary, all data show that NaCl treatment can delay barley

seed germination both by inhibiting starch mobilization and by pre-

venting shoot elongation.

4 | DISCUSSION

Barley, as one of the most salt-tolerant cereals, may be a pioneer in

shifting crop production to saline lands. Therefore, much attention

has been paid to breeding and deciphering the underlying mechanism

of salt-tolerant barley varieties (Gupta et al., 2022; Hura, 2020; Jadidi

et al., 2022; Jiang et al., 2022; Munns & Tester, 2008). After growing

in the solution or sand culture containing NaCl for 3 weeks, barley

showed a higher increase of the shoot dry matter than other cereals,

including rice (Oryza sativa), durum wheat (Triticum turgidum ssp

durum), and bread wheat (Triticum aestivum) (Munns & Tester, 2008).

However, at 250 mM NaCl, the shoot dry matter of barley hardly

increased. Interestingly, low salinity (1–20 mM NaCl) promoted

seedling growth as salt stimulates the synthesis of phenolic compo-

nents by promoting related gene and protein expression and key

enzyme activity (Wang et al., 2020). Considering that most barley

seeds are planted in coastal areas by direct seeding production, it is

particularly important to study the mechanism of high salt tolerance

during seed germination. In this study, two barley varieties with good

yield characters and different seed husk colors were used to test the

salt tolerance during seed germination. High salinity could delay the

germination process by more than 48 h, along with the shortening of

shoot length and root length (Figures 2 and 3). Ion transporters,

including SOS, HKT and NHX family members, play key roles in Na and

K transporting and K/Na homeostasis under salt stress (Munns &

Tester, 2008; Shen et al., 2020). We also detected the expression of

SOS1, SOS2, SOS3, NHX1, NHX3, NHX5 and HKT1;5 in barley seeds,

and the results showed that they were up-regulated in response to

salt signal (Figure 6).

In cereal, source-sink communication and its regulatory mecha-

nism during seed germination is a classical research direction of

plant science. Once the germination starts, there will be a supply

chain of carbon flowing from the endosperm (source) to the hetero-

trophic embryo (sink) (Lee et al., 2014; Yu et al., 2015). For source,

the conversion of starch to glucose in endosperm is catalyzed by

various hydrolytic enzymes including α-amylase. In sink, the turned-

F I GU R E 6 Expression of salt-responsive genes and α-amylase genes is regulated by NaCl treatment in barley seeds. (a) qRT-PCR analysis in
YM7 at 36 HAI. (b) qRT-PCR analysis in Y12133 at 36 HAI. (c) qRT-PCR analysis in YM7 at 72 HAI. (d) qRT-PCR analysis in Y12133 at 72 HAI.
Error bars represent the SDs of the three biological replicates (n = 3, each replicate contained 20 seeds). *, p < .05; **, p < .01 (Student’s t-test).
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over glucose is used directly for growth or for the synthesis of

other polysaccharides (Xiong et al., 2021). Interfering with any other

link can affect the original process of seed germination. The best

example in barley is that gibberellin (GA) accelerates starch mobiliza-

tion by increasing the secretion of α-amylase to promote seed ger-

mination (Gubler & Jacobsen, 1992; Rajjou et al., 2012;

Washio, 2003). NaCl treatment reduced starch mobilization in barley

(Figure 4), indicating that the gene expression of α-amylase was

inhibited by salt signal. Therefore, we used the starch plate test to

prove that high salinity inhibited the α-amylase activity in YM7 and

Y12133 (Figure 5). Further, qRT-PCR test also confirmed that the

expression of α-amylase genes Amy1, Amy2 and Amy3 was down-

regulated by salt signal (Figure 6). It has been found in rice that

NaCl treatment reduces bioactive GA content to inhibit seed germi-

nation by decreasing α-amylase activity via down-regulation of

α-amylase gene expression (Liu et al., 2018). Exogenous salicylic acid

(SA) can reduce the damage of salinity to rice seed germination by

positively regulating GAs and ABA homeostasis (Liu et al., 2022).

Further, Li et al. found that ABA-mediated salt stress tolerance in

rice depends on the short-term brassinosteroid (BR) signal activation

(Li et al., 2021). As to whether these regulatory mechanism exists in

barley, more evidence of the interaction between salt stress and

plant hormone is still needed.

In addition to starch mobilization in barley, we had also studied

whether salt stress can interfere with the embryo growth. The result

of embryogenic culture system showed the barley shoot growth

in vitro was significantly inhibited by salt stress (Figure 7). Therefore,

it is necessary to pay attention to the direct inhibition of salinity on

embryo growth to reduce the delayed barley germination.
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