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Disruptions in brain connectivity have been widely reported in Alzheimer’s disease (AD).
Morphometric similarity (MS) mapping provides a new way of estimating structural
connectivity by interregional correlation of T1WI- and DTI-derived parameters within
individual brains. Here, we aimed to identify AD-related MS changing patterns and
genes related to the changes and further explored the molecular and cellular mechanism
underlying MS changes in AD. Both 3D-T1WI and DTI data of 106 AD patients and
106 well-matched healthy elderly individuals from the ADNI database were included in
our study. Cortical regions with significantly decreased MS were found in the temporal
and parietal cortex, increased MS was found in the frontal cortex and variant changes
were found in the occipital cortex in AD patients. Mean MS in regions with significantly
changed MS was positively or negatively associated with memory function. Negative
MS-related genes were significantly downregulated in AD, specifically enriched in
neurons, and participated in biological processes, with the most significant term being
synaptic transmission. This study revealed AD-related cortical MS changes associated
with memory function. Linking gene expression to cortical MS changes may provide
a possible molecular and cellular substrate for MS abnormality and cognitive decline
in AD.

Keywords: Alzheimer’s disease, morphometric similarity, Allen Human Brain Atlas, gene transcription, sMRI =
structural MRI

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease marked by progressive neuron loss,
manifested by short-term memory and other cognitive impairment symptoms (Wang et al.,
2020). AD-related neurodegeneration involves several brain regions, in which the entorhinal,
hippocampal and temporal cortices are the most reported (Lerch et al., 2005; Im et al., 2008; Morra
et al., 2008; Seong et al., 2010; Li et al., 2014; Femminella et al., 2018). Structural indicators of these
regions, including gray matter density (Frisoni et al., 2002), volume (Busatto et al., 2003), cortical
thickness (Pettigrew et al., 2017), and curvature (Im et al., 2008; Seong et al., 2010), have been found
to be decreased in AD patients. White matter studies based on diffusion tensor imaging (DTI) have
also demonstrated reduced integrity in the temporal lobe as well as white matter tracts connecting
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frontal and temporal regions in AD (Naggara et al., 2006;
Kantarci et al., 2017). In recent years, AD has been widely
regarded as a disconnected syndrome whereby a large-scale
brain network is progressively disrupted by neuropathological
processes. MR topological studies constructed whole-brain
structural networks and demonstrated abnormal topological
properties in multiple brain regions, including the hippocampal,
frontal, temporal, parietal and occipital regions, verifying brain
network disruption and disconnection between anatomically
connected brain regions in AD patients (Lo et al., 2010;
Yao et al., 2010).

All the above-mentioned multiregional changes in either
gray matter (from 3D T1WI) or white matter (from DTI)
may be attributed to dysconnectivity of large-scale brain
structural networks in AD. However, a structural covariance
network using T1WI could not be applied to single-subject
level analysis, and precisely estimating long-distance connections
still constrains DTI-based tractography. Here, we adopted a
different parameter from the past—“morphometric similarity
(MS)”—which is estimated as the inter-regional correlation
of multiple macro- and micro-structural multimodal MRI
variables, based on both structural T1WI and DTI (Stam
et al., 2007). It reflects the anatomical connections of different
brain areas from histological similarity and axonal connectivity
within an individual human brain (Seidlitz et al., 2018).
Given that AD has been considered a disconnection syndrome
due to regional vulnerability to cellular neurodegeneration
and disconnection of distant cortical regions (Gonzalez-
Escamilla et al., 2020), it is suitable to evaluate brain
anatomical connectivity in AD patients using MS as a
neuroimaging indicator.

AD is a highly heritable disease (Bellenguez et al., 2020).
Investigating the link between related gene expression
and internal brain structure helps to understand the
pathophysiological processes of the disease. The Allen Human
Brain Atlas (AHBA) can present gene transcription information
in the same standard space as neuroimaging data, providing
a new approach for linking gene expression to neuroimaging
phenotypes. With this approach, only a few reports combine
gene transcription data with gray matter volumes in AD.
However, it is unclear which genes related to AD-specific
MS changes are specific to which neurological functions and
how the expression of these genes affects MS changes. In the
current study, we investigated the MS changing pattern map
in AD and spatially associated the MS changing pattern map
with anatomically patterned gene expression using data from
the AHBA. We aimed to identify AD-related MS changing
patterns and genes closely related to the changes and further
explore the cellular and molecular mechanism underlying
MS changes in AD.

MATERIALS AND METHODS

Participates
A total of 113 AD patients with their initial 3T MRI scans,
including both 3D T1WI and DTI data, were obtained from

ADNI database1 which followed the standard ADNI-GO and
ADNI-2 protocols (Jack et al., 2010; Weiner et al., 2017). The
main inclusion criteria were as follows: (1). subjective memory
concern as reported by subject, study partner or clinician; (2).
abnormal memory function documented by scoring within the
education adjusted ranges on the Logical Memory II subscale
from the Wechsler Memory Scale-Revised; (3). Mini-Mental
State Exam (MMSE) score between 20 and 26; (4). Clinical
Dementia Rating 0.5 or 1.0; and 5. NINCDS/ADRDA criteria
for probable AD. All images were visually inspected by two
radiologists, and seven patients with poor image quality (2
patients’ 3D T1WI and five patients’ DTI) were excluded.
Finally, 106 AD patients with qualified image data were included
(63 males and 43 females; mean age 75, ranging from 55 to
90 years). For comparison, an equal number of age- and gender-
matched healthy elders with qualified 3D-T1WI and DTI were
selected from the ADNI database (63 males and 43 females;
mean age 75, ranging from 55 to 90 years). The detailed scan
parameters are provided in Supplementary Table 1. General
cognitive function was assessed by the MMSE and the Clinical
Dementia Rating. Memory function was evaluated by a memory
composite score obtained for the majority of participants (94
subjects with AD and 99 subjects with healthy elderly individuals)
(Crane et al., 2012).

Morphometric Similarity Estimation
Surface-based morphology parameter estimation from high-
resolution T1WI was performed using FreeSurfer v6.0.0.2 The
DTI data were preprocessed according to the pipeline of FMRIB’s
Diffusion Toolbox implemented in FSL 5.0.10.3 The detailed
preprocessing procedures for T1WI and DTI data are provided
in Supplementary Material.

The DTI parameters of fractional anisotropy and mean
diffusion were defined as myelination metrics. Among the
surface-based morphology parameters, the gray matter, surface
area and cortical thickness were defined as gray matter metrics,
and the intrinsic/Gaussian curvature and mean curvature were
the curvature metrics.

To adjust the variation from multiple sites and scanners,
the ComBat harmonization of surface-based morphology and
diffusion parameters across scanners and sites was performed
before the downstream morphometric similarity estimation
(Fortin et al., 2017, 2018). Then, these metrics were Z-score
transformed to improve normality.

The Pearson correlation of gray matter, curvature and
myelination metrics between each pair of cortical regions
was performed to generate 308 × 308 MS matrices for each
subject. Then, the 308 × 308 MS matrices were averaged
across the 308 cortical regions to calculate the regional MS
for every 308 cortical regions. From the brain connectome
perspective, the regional MS represents the weighted degree
of each cortical node, which was connected by signed and

1http://adni.loni.ucla.edu
2http://surfer.nmr.mgh.harvard.edu/
3http://www.fmrib.ox.ac.uk
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weighted edges of pairwise similarity to all other cortical nodes
in the whole brain.

Transcription-Imaging Association
A compiled transcription matrix of six postmortem adult
brains from the AHBA4 was acquired from the data directory
for Neuroscience in Psychiatry Network manuscript,5 which
provided expression values for each of 20,737 genes estimated
in 151 cortical regions of the left hemisphere. PLS regression
was used to identify genes whose transcriptional profiles
were significantly associated with regional MS differences.
In this study, the independent variable was the compiled
AHBA transcription matrix (151 regions × 20,737 genes),
and the dependent variables were the vector of regional
MS case-control T-values from the left hemisphere (151
regions). The first PLS component (PLS1) weight of each
gene was assigned in terms of its contribution to the
overall model. Then, the ratio of each gene’s PLS1 weight
to its bootstrapped standard error (1,000 resamplings with
replacement of the 151 cortical regions) was calculated as a
Z score. Here, genes with | Z score | > 4.72 (Bonferroni
correction of P < 0.05) denoted the PLS1 gene set. Details
about the transcription-imaging association are provided in
Supplementary Material.

Disease Enrichment Analyses
Disease enrichment analyses were used to explore whether
the PLS1 gene set was enriched in AD-related differentially
expressed genes (DEGs). The expression dataset with series
accession number GSE5281 from the Gene Expression
Omnibus database6 was acquired to screen the AD-related
DEGs. The LIMMA package (version 3.42.2) of R software
was used to analyze the DEGs between AD and normal
elderly individuals. P < 0.01 and | log2 (fold change) |
> 1 were defined as the thresholds for screening AD-
related DESs. Fisher’s exact test was used to evaluate the
significance of the overlap between PLS1 gene sets and AD-
related DEGs. The Bonferroni method was used to correct
for multiple comparisons (both up- and downregulated
DEGs) (Pc < 0.05, an uncorrected P < 0.05/2 = 0.025).
Details about the disease enrichment analyses are provided in
Supplementary Material.

Cell-Type-Specific Analysis
The RNAseq dataset with series accession number GSE73721
from the Gene Expression Omnibus database was acquired
to perform cell-type-specific analysis. pSI v1.17 was used to
determine the specific neocortical cell type for which the PLS1-
genes were enriched. A pSI threshold of 0.05 was used to generate
the cell-type-enriched gene lists for each type of cortical cell.
Fisher’s exact test was used to evaluate the significance of the
overlap between PLS1 gene sets and cell-type-specific genes for

4http://human.brain-map.org/
5https://doi.org/10.6084/m9.figshare.2057796.v1
6https://www.ncbi.nlm.nih.gov/geo/
7http://genetics.wustl.edu/jdlab/psi_package/

each type of cortical cell. The Bonferroni method was used
to correct for multiple comparisons (5 cell types) (Pc < 0.05,
an uncorrected P < 0.05/4 = 0.01). Details about the cell
type-specific analysis are provided in Supplementary Material.

Gene Ontology Analysis
The clusterProfiler package (v3.14.3) of R software was used to
perform the gene ontology (GO) analysis. Our study only focused
on the biological process of GO terms in which the PLS1 gene
sets were enriched. A Bonferroni adjusted P-value < 0.05 was
considered significant.

Statistical Analysis
The statistical analyses for demographic and cognitive data were
performed using the Statistical Package for the Social Sciences
(SPSS version 18.0). Comparisons between AD patients and
healthy elderly individuals were performed using a two-sample
T-test for continuous variables with a normal distribution and

TABLE 1 | Demographics and cognition.

AD (n = 106) NC (n = 106) T/χ2 P-value

Age, years 74.94 ± 8.02 74.92 ± 7.84 0.026 0.979

Education, years 15.59 ± 2.60 16.27 ± 2.50 −1.92 0.06

Gender, male/female 63/43 63/43 0 1

MMSE 22.92 ± 3.13 28.57 ± 1.73 −16.26 0.0001

CDR 0.81 ± 0.27 0.04 ± 0.13 26.13 0.0001

Memory composite score* −0.85 ± 0.50 0.79 ± 0.54 −22.01 0.0001

The data are shown as means (SD). The symbol * indicates that the composite
memory score was available from 94 of the 106 AD and 99 of the 106 NC. AD,
Alzheimer’s disease; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State
Examination; NC, normal control subject.

FIGURE 1 | Case-control differences in regional morphometric similarity
(P < 0.05, FDR corrected). Regions in blue indicate significantly decreased
morphometric similarity in AD, whereas regions in red indicate significantly
increased morphometric similarity in AD. FDR, false discovery rate; L, left; R,
right.
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TABLE 2 | Cortical regions of case-control differences in regional morphometric similarity.

Cortical regions Coordinates (MNI) T value P-value FDR

x y z

L_middletemporal_part5 −60.019 −27.635 −13.299 −4.8294 2.66E-06 7.74E-04

L_fusiform_part1 −30.238 −46.494 −17.452 −4.2592 3.11E-05 3.196E-04

R_bankssts_part1 53.969 −39.123 1.4973 −4.1341 5.18E-05 3.986E-03

L_superiorparietal_part8 −23.65 −73.056 29.861 −3.5866 4.18E-04 0.021429

L_parahippocampal_part1 −25.991 −25.187 −25.332 −3.5065 5.57E-04 0.021429

R_lateraloccipital_part2 44.513 −70.022 −2.0359 −3.4184 7.59E-04 0.024105

L_entorhinal_part1 −24.011 −5.8614 −32.827 −3.4094 7.83E-04 0.024105

L_bankssts_part2 −53.141 −49.843 8.2646 −3.2373 0.001405 0.035229

R_parahippocampal_part2 27.448 −24.861 −24.205 −3.0702 0.002426 0.04151

L_supramarginal_part7 −49.357 −38.912 32.554 −3.0206 0.00284 0.046042

R_superiorfrontal_part7 9.6868 8.2947 60.026 4.6868 5.03E-06 7.74E-04

R_superiorfrontal_part11 9.2005 24.389 53.686 4.0632 6.87E-05 4.232E-03

R_paracentral_part2 5.3566 −16.772 61.135 3.5071 5.56E-04 0.021429

R_frontalpole_part1 9.8338 62.819 −10.737 3.285 0.0011976 0.033534

R_lateraloccipital_part1 18.646 −99.162 −7.394 3.2203 0.001487 0.035229

L_lingual_part2 −6.5596 −88.407 −8.0452 3.1896 0.001646 0.036218

L_superiorfrontal_part2 −11.687 −8.4248 64.785 3.1488 0.001882 0.038635

R_superiorfrontal_part6 10.21 54.909 26.16 3.1191 0.002073 0.039895

R_superiorfrontal_part3 12.367 −3.2651 65.643 3.0906 0.002272 0.041168

The cortical regions above the middle line of the table are regions with significantly decreased morphometric similarity in AD, whereas the cortical regions under the middle
line of the table are regions with significantly increased morphometric similarity in AD. FDR, the corrected P-value with the false discovery rate method.

FIGURE 2 | The relationship between the memory composite score and regional morphometric similarity. (A) The average morphometric similarity in regions with
significantly increased morphometric similarity in AD is significantly negatively correlated with the memory composite score. (B) The average morphometric similarity
in regions with significantly decreased morphometric similarity in AD is significantly positively correlated with the memory composite score.

a chi-squared test for categorical variables. To test whether the
MS of brain regions with significant case-control differences were
associated with memory function, partial correlation analysis was
conducted with age, gender, and years of education as nuisance
covariates. The Pearson correlation analysis was used to test the
association between the Z scored expression values of PLS1 gene

sets and the T statistics of case-control differences in MS. The
resulting P-values above were Bonferroni corrected for multiple
comparisons. The case-control difference in regional MS was
estimated by fitting linear models with age, gender and education
as covariates, and the resulting P-values for each region were false
discovery rate (FDR) corrected for multiple comparisons.

Frontiers in Neuroscience | www.frontiersin.org 4 September 2021 | Volume 15 | Article 731292

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-731292 October 4, 2021 Time: 15:5 # 5

Zhang et al. Linking Morphometric Similarity With Transcription

FIGURE 3 | The relationship between PLS1 gene set expression and regional morphometric similarity differences. (A) The regional morphometric similarity
case-control T map in the left hemisphere. The regions in red indicate increased morphometric similarity in AD, whereas the blue color indicates decreased
morphometric similarity in AD. (B) The PLS1 + gene set expression map illustrates that regions in red have increased expression of the PLS1 + gene set, whereas
regions in blue have decreased expression of the PLS1 + gene set. (C) The PLS1- gene set expression map illustrates that regions in red have increased expression
of the PLS1- gene set, whereas regions in blue have decreased expression of the PLS1- gene set. (D) The point plot in red shows that the expression of the
PLS1 + gene set is significantly positively correlated with the regional morphometric similarity difference between AD patients and healthy elderly individuals. (E) The
blue point plot shows that the expression of the PLS1- gene set is significantly negatively correlated with regional morphometric similarity differences between AD
patients and healthy elderly individuals.

RESULTS

Demographics and Cognition
A total of 106 AD patients and the same number of age-
and gender-matched healthy elderly individuals with qualified
image data were ultimately included in the present study. The
demographic and cognitive data of these subjects are shown in
Table 1. Significant differences were found in terms of MMSE
(P = 0.0001), Clinical Dementia Rating (P = 0.0001), and memory
composite scores (P = 0.0001). No significant differences were
observed in terms of age (P = 0.98), gender (P = 1), or years of
education (P = 0.06).

Morphometric Similarity Differences
Between Alzheimer’s Disease and
Healthy Elders
The cortical map in Figure 1 demonstrated the significant
differences in regional MS at each cortical area between AD and
healthy elderly individuals. Cortical regions with significantly
decreased MS were observed in the left middle temporal
lobe, left fusiform gyrus, bilateral banks of superior temporal

sulci, bilateral parahippocampal lobes, left entorhinal cortex,
left superior parietal lobe, left supramarginal gyrus and right
lateral occipital lobe (Table 2). Cortical regions with significantly
increased MS were found in the bilateral superior frontal lobes,
right paracentral lobe, right frontal pole cortex, left lingual gyrus
and right lateral occipital lobe (Table 2). The partial correlation
analysis showed that the mean MS average across the 10 regions
with decreased MS was significantly positively associated with
the memory composite score (r = 0.43, P = 0.0001), and the
mean MS average across the nine regions with increased MS was
significantly negatively associated with the memory composite
score (r =−0.35, P = 0.0001) (Figure 2).

Gene-Morphometric Similarity Spatial
Correlations and Characters
First PLS Component Gene Expression Associated
With Morphometric Similarity Difference
The PLS regression analysis revealed 1,932 genes with normalized
PLS1 weights Z score < −4.72 (Bonferroni correction of
P < 0.05), which were defined as the PLS1- genes, and 2,139
genes with normalized PLS1 weights Z score > 4.72 (Bonferroni
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FIGURE 4 | AD-related DEG enrichment analyses for PLS1 gene sets. (A) The volcano plot shows 708 upregulated genes in red on the right and 1,092
downregulated genes in blue on the left. (B) The PLS1- genes significantly overlapped with downregulated genes. The number of overlapping genes was 176,
accounting for 0.9% of the total genes. The purple circle indicates 1,092 downregulated genes, the yellow circle indicates 1,932 PLS1- genes and the green circle
indicates 20,177 background genes. (C) The PLS1 + genes did not significantly overlap with downregulated genes. The number of overlapping genes was 126,
accounting for 0.6% of the total genes. The purple circle indicates 1,092 downregulated genes, the yellow circle indicates 2,139 PLS1 + genes and the green circle
indicates 20,177 background genes. (D) The PLS1- genes did not significantly overlap with the upregulated genes. The number of overlapping genes was 49,
accounting for 0.2% of the total genes. The purple circle indicates 708 up-regulated genes, the yellow circle indicates 1,932 PLS1- genes, and the green circle
indicates 20,177 background genes. (E) The PLS1 + genes did not significantly overlap with upregulated genes. The number of overlapping genes was 66,
accounting for 0.3% of the total genes. The purple circle indicates 708 upregulated genes, the yellow circle indicates 2,139 PLS1 + genes and the green circle
indicates 20,177 background genes. DEGs, differentially expressed genes; FC, fold change; PLS, partial least squares regression.
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TABLE 3 | The significance of the overlap between PLS1- genes and
cell-type-specific genes.

Astrocytes Neurons Oligodendrocytes Microglia

Overlapped genes 139 195 33 71

Cell-type-specific
genes

1,160 1,770 684 746

Gene ratio 0.12 0.11 0.048 0.095

Pc values 1.83 × 10−5 1.74 × 10−5 1 0.57

PLS1, the first component of partial least squares regression; Overlapped genes,
the number of overlapping genes between PLS1- genes and cell-type-specific
genes; Gene ratio, gene ratio between the number of overlapping genes and the
number of cell-type-specific genes; Pc values, the Bonferroni corrected P-values.

correction of P < 0.05), which were defined as the PLS1 + genes
(Supplementary Table 2). The majority of cortical regions on the
PLS1 + gene expression map were in accordance with those on
the case-control T map of regional MS (Figures 3A,B), whereas
the majority of cortical regions on the PLS1- gene expression
map were in contrast with those on the case-control T map
of regional MS (Figures 3A–C). Pearson correlation analysis
revealed that the expression of PLS1 + genes was significantly
positively correlated with regional MS differences (r = 0.45,
P = 0.0001) (Figure 3D), whereas the expression of PLS1-
genes was significantly negatively correlated with regional MS
differences (r =−0.44, P = 0.0001) (Figure 3E).

Alzheimer’s Disease -Related Differentially Expressed
Genes Enrichment for First PLS Component- Genes
A total of 1,800 significant DEGs between AD and normal elderly
individuals were identified from the GSE5281 series, with 708
upregulated and 1,092 downregulated genes (Figure 4A and
Supplementary Table 3). Both upregulated and downregulated
genes were defined as AD-related DEGs. The enrichment
analysis revealed that PLS1- genes were significantly enriched in
downregulated DEGs (Pc = 5.43× 10−12) but not in upregulated
DEGs (Pc = 1) (Figures 4B–D). In addition, PLS1 + genes were
not significantly enriched in upregulated DEGs (Pc = 1) or in
downregulated DEGs (Pc = 1) (Figures 4C–E).

Cell-Type Specificity of First PLS Component- Genes
The cell-type-enriched gene lists for each type of cortical cell are
provided in Supplementary Table 4. The PLS1- genes showed
significant specific expression in neurons (Pc = 1.83 × 10−5)
and astrocytes (Pc = 1.74 × 10−5) but not in oligodendrocytes
(Pc = 1) or microglia (Pc = 0.57) (Table 3 and Figure 5A). The
PLS1 + genes were not significantly enriched in any type of
neocortical cell (Pc = 1 for all) (Table 4 and Figure 5B).

Gene Ontology Enrichment for First PLS Component-
Gene Sets
The GO analysis revealed that significant biological processes
of the PLS1- genes were mainly enriched in neuron-specific
terms, including synaptic signaling, neurotransmitter release,
axonogenesis, and cognition (Figure 6A and Supplementary
Table 5). However, the PLS1 + genes were involved in non-
neuron-specific biological processes, including potassium

ion transport and protein localization (Figure 6B and
Supplementary Table 5).

DISCUSSION

Morphometric Similarity Changing
Patterns and Associated Memory
Function in Alzheimer’s Disease
The MS quantifies the similarity in terms of multiple MRI
parameters measured in each area. Compared with traditional
measurements based on a single MRI sequence, MS considering
multiple MRI morphometric indices (based on both structural
T1WI and DTI) could reflect the anatomical connections of
different brain areas based on histological similarity and axonal
connectivity within an individual human brain.

This study showed that AD patients had decreased regional
MS in multiple AD-susceptible regions in the temporal and
parietal cortex. Additionally, increased regional MS in several
frontal areas and variable changing MS in parts of the occipital
cortex were also detected in AD patients compared with healthy
elderly individuals. The mean MS average across those regions
with decreased regional MS was positively associated with
memory function. In contrast, the mean MS average across those
regions with increased regional MS was negatively associated
with memory function.

Our findings were consistent with a large number of studies
reporting decreased gray matter volume and cortical thickness
(Lerch et al., 2005; Femminella et al., 2018), lower average
mean curvature (Im et al., 2008; Morra et al., 2008) and
shallower sulcal depth (Im et al., 2008) in the hippocampus,
temporal lobe, fusiform gyrus, and entorhinal cortex in AD,
with the left hemisphere being dominant. DTI studies revealed
disruptions of white matter integrity in the early stage of AD in
limbic fiber tracks with direct connections to medial temporal
lobe structures (Kalus et al., 2006; Zhang et al., 2007; Sexton
et al., 2010). Moreover, decreased connectivity of multiple brain
regions, including the temporal lobe, hippocampus, fusiform
gyrus and parietal lobe, has also been documented as the cause of
cognitive decline in AD patients (Bokde et al., 2006; Stam et al.,
2007; He et al., 2008). Decreased MS in multiple brain regions,
including the temporal, parietal and part of the occipital cortical
regions in AD, reflected the weakening of the abovementioned
brain regions’ anatomical connections from the histological and
cellular architecture level and implied increased architectonic
differentiation and decreased axonal connectivity between these
cortical regions. We further found a correlation between the
weakening of this anatomical connection and the impairment of
memory function, suggesting that the anatomical disconnection
caused by the reduction of the similarity of histology and cellular
architecture may be the neural basis for the impairment of
memory function in AD patients.

Our result of elevated MS in the prefrontal areas and the left
lingual gyrus in AD patients suggested increased architectonic
similarity and enhanced axonal connectivity in these regions
in AD patients. These findings were consistent with enhanced
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FIGURE 5 | The percentage of gene ratio between overlapping genes and cell-type-specific genes for each type of neocortical cell. (A) The PLS1- genes significantly
overlapped with cell-type-specific genes in neurons and astrocytes (asterisk) but not in oligodendrocytes and microglia. (B) The PLS1 + genes did not significantly
overlap with cell-type-specific genes in any type of neocortical cell.

functional activation and connectivity within frontal regions in
the early stage of AD (Grady et al., 2003; Aganj et al., 2020). In
addition, at the local network level, changes in connectivity of the
left lingual gyrus were also reported to be significantly negatively
correlated with behavioral performance in AD patients (Chang
et al., 2020). We tended to interpret the increased prefrontal
and lingual MS in AD as a structural compensatory reallocation
of cognitive resources. This explanation was further supported
by the negative correlation between the average MS value of
the brain areas and increased MS and memory function in
AD patients. The more structural compensatory the increase
in MS is, the worse the performance of the memory function
is. As the disease becomes severe, the structural compensatory
increase may disappear, but this needs to be confirmed by
future longitudinal studies. Regarding the occipital areas, most
AD studies have reported atrophy, hypometabolism (Ten Kate
et al., 2018; Das et al., 2021) and connection changes (Huang
et al., 2020) in this area in AD patients. Studies have also found
an up-regulated signaling pathway located in the occipital area
in AD patients, which suggests that an enhancement in dying
or surviving neurons plays a protective role by compensating
for decreased neurotransmission during the progression of AD
(Jacobs et al., 2006). The inconsistent MS change patterns in the

TABLE 4 | The significance of the overlap between PLS1 + genes and
cell-type-specific genes.

Astrocytes Neurons Oligodendrocytes Microglia

Overlapped genes 67 153 62 61

Cell-type-specific
genes

1,160 1,770 684 746

Gene ratio 0.058 0.086 0.091 0.082

Pc values 1 1 1 1

PLS1, the first component of partial least squares regression; Overlapped genes,
the number of overlapping genes between PLS1 + genes and cell-type-specific
genes; Gene ratio, ratio between the number of overlapping genes and the number
of cell-type-specific genes; Pc values, the Bonferroni corrected P-values.

occipital areas in AD patients in the current study may be related
to different functional areas with distinct changing patterns in
the occipital lobe, which was supported by the evidence of
the dissociation between impaired explicit memory encoding
in secondary visual areas and intact implicit encoding in the
primary visual cortex in AD.

Linking Gene Expression to
Morphometric Similarity Difference Map
and Functional Annotation
PLS analysis showed that the PLS1 + gene was positively
correlated with the AD-related MS difference map, and the PLS1-
gene was negatively correlated with the AD-related MS difference
map. However, only PLS1- genes were significantly enriched in
downregulated AD-related DEGs. GO analysis and cell-type-
specific analysis showed that the PLS- genes were cytologically
enriched in neurons and astrocytes and functionally involved
in neuron-specific biological processes, including synaptic
signaling, neurotransmitter release, axonogenesis, and cognition.
Because PLS1+ genes were not enriched in AD differential genes
and implicated in non-neuron-specific functions, the following
discussion mainly focuses on the PLS1- genes.

The circuitry of the human brain is formed by neuronal
networks in which astrocytes embed. Synaptic signaling,
neurotransmitter release and axonogenesis are fundamental to
highly efficient neuronal networks, which maintain normal
cognition in humans (Verkhratsky et al., 2010). The loss of
neurons and synapses and axon destruction are common findings
in AD neuropathology and are related to cognitive decline in
AD patients. Exposure of astrocytes to Aβ may induce astrocyte
activation (Diniz et al., 2017) and release proinflammatory
cytokines, contributing to neuronal death (Wood et al., 2015). As
PLS1- genes were significantly enriched in downregulated AD-
related DEGs, it can be presumed that the reduced expression
of PLS1- genes may lead to neuron death, axon deterioration
and synapse loss, causing histological similarity and anatomical
connectivity destruction and, thus, abnormal MS changes in AD.
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FIGURE 6 | The significant gene ontology terms of biological process for PLS1 gene sets. (A) The PLS1- genes were significantly enriched in synaptic signaling,
neurotransmitter release, axonogenesis and cognition. (B) The PLS1 + genes were significantly enriched in potassium ion transport and protein localization. Pc, the
Bonferroni corrected P-values.

The PLS1- genes acted as a whole gene set in the enrichment
analysis for AD-related DEGs, cortical cell types and GO terms.
We cannot ensure that every single gene in the PLS1- gene set was
enriched in AD-related DEGs, cortical cell types and GO terms
simultaneously. The significance of the enrichment analysis did
not represent for the true biological connection. Further in vitro
and in vivo experiments are warranted to validate our hypothesis.
Although variation from multiple sites and scanners could be
moderately adjusted using ComBat harmonization, different scan
protocols still affected the results. More robust methods are
needed in the future to properly control the batch effect from
multiple sites and scanners.

In summary, this study revealed AD-related cortical MS
changes associated with memory function. Linking gene
expression to cortical MS changes, the negative MS-related
genes were found to be enriched explicitly in neurons and
astrocytes, participate in neuron-specific biological processes
and be significantly downregulated in AD. These findings may
provide a possible molecular and cellular substrate for MS
abnormalities and cognitive decline in AD.
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