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In the CA1 region of the hippocampus pyramidal neurons and GABAergic interneurons form
local microcircuits. CA1 interneurons are a diverse group consisting of many subtypes,
some of which provide compartment-specific inhibition specifically onto pyramidal neuron
dendrites. In fact, the majority of inhibitory synapses on pyramidal neurons is found on
their dendrites. The specific role of a dendrite-innervating interneuron subtype is primarily
determined by its innervation pattern on the distinct dendritic domains of pyramidal
neurons. The efficacy of dendritic inhibition in reducing dendritic excitation depends on
the relative timing and location of the activated excitatory and inhibitory synapses. In
vivo, synaptic properties such as short-term plasticity and neuro-modulation by the basal
forebrain, govern the degree of inhibition in distinct dendritic domains in a dynamic,
behavior dependent manner, specifically during network oscillation such as the theta
rhythm. In this review we focus on two subtypes of dendrite-innervating interneurons:
the oriens-lacunosum moleculare (O-LM) interneuron and the bistratified interneuron.Their
molecular marker profile, morphology, and function in vivo and in vitro are well studied. We
strive to integrate this diverse information from the cellular to the network level, and to
provide insight into how the different characteristics of O-LM and bistratified interneurons
affect dendritic excitability, network activity, and behavior.
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INTRODUCTION
Interneurons in the hippocampus play a fundamental role in
rhythmic oscillations, of which the theta rhythm (4–10 Hz) is the
most prominent (Jung and Kornmüller, 1938; Green and Arduini,
1954; Buzsáki, 2002; Klausberger and Somogyi, 2008; Forro et al.,
2013). Remote input from the medial septal nucleus and the
diagonal band of Broca (MSDB) to hippocampal interneurons
drives theta oscillations, which are predominantly observed during
movement, rapid eye movement (REM) sleep and states of arousal
(Petsche et al., 1962; Jouvet, 1969; Vanderwolf, 1969; O’Keefe,
1976). In early recordings of hippocampal electroencephalogra-
phy (EEG) and single units, local GABAergic interneurons were
described as “theta cells” due to the phase relationship of their
firing to theta oscillation (Ranck, 1973). GABAergic interneurons
in the CA1 region of the hippocampus are a highly diverse group
targeting CA1 pyramidal neurons and/or other interneurons (Fre-
und and Buzsáki, 1996; Somogyi and Klausberger, 2005). A main
parameter used for classification of CA1 interneurons that target
pyramidal neurons is the specific subcellular domain on which
they form GABAergic synapses.

For example, basket cells extend their axonal arbor to the
stratum pyramidale (s.p.). In fact, pyramidal neuron somata
are contacted extensively by GABAergic synapses from these
cells forming characteristic basket-like structures (Sik et al., 1995;
Megías et al., 2001; Somogyi and Klausberger, 2005). This strate-
gic perisomatic location of basket cell synapses, where the input
to the cell has to pass after dendritic processing, allows them to

exert influence on all inputs received by pyramidal dendrites. Thus
basket cells are thought to control the ability of inputs to gener-
ate action potential output and are able to synchronize the firing
of the pyramidal neuron population (Cobb et al., 1995; Miles
et al., 1996). Chandelier or axo-axonic cells are another exam-
ple of an interneuron subtype characterized by its highly specific
innervation pattern. As the names suggest, their terminals on the
axon initial segments of pyramidal neurons look like rows of can-
dles on a chandelier (Szentágothai and Arbib, 1974; Szentágothai,
1975; Howard et al., 2005). By innervating ∼2500 pyramidal neu-
rons they also contribute to the output synchronization of CA1
principal cells (Li et al., 1992).

In contrast to the nearly exclusive GABAergic innervation of
the somata and axon initial segments, inhibitory and excitatory
synapses intermingle on pyramidal neuron dendrites. Despite this
lower relative density of GABAergic synapses, 92% of all inhibitory
synapses are found on pyramidal neuron dendrites (Megías et al.,
2001). In the CA1 region, at least 12 interneuron subtypes, roughly
sorted into four groups, can be classified as dendrite-targeting
(Klausberger, 2009). The first group consists of oriens-lacunosum
moleculare (O-LM) and bistratified interneurons, which both
express parvalbumin (PV) and somatostatin (SST). Interneurons
of the second group express cholecystokenin (CCK) including
three interneuron subtypes, e.g., Schaffer collateral associated cells.
Neurogliaform and ivy-cells form the third group and are charac-
terized by a very dense axonal plexus. The fourth group consists
of five different long-range GABAergic projection neurons. The
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specific function of all these dendrite-innervating interneurons
in the hippocampal network is yet not fully understood. In this
review, we focus on O-LM and bistratified cells comprising the first
group of dendrite-targeting interneurons (Klausberger, 2009). O-
LM and bistratified cells fire in phase with theta oscillations and
are most likely targeted by afferents from the medial septal region.
This region plays a crucial role for hippocampal rhythm genera-
tion in the behaving animal (Freund and Antal, 1988; Gulyás et al.,
1990; Buzsáki, 2002; Klausberger, 2009; Leão et al., 2012; Lovett-
Barron et al., 2014). Thus, O-LM and bistratified cells are likely to
mediate network-state dependent inhibition on specific parts of
pyramidal neuron dendrites.

Excitatory inputs from the two main pathways, the per-
forant path and the Schaffer collaterals, terminate on distinct
CA1 pyramidal neuron dendritic domains. The perforant path
terminates on the distal tuft dendrites of CA1 pyramidal neu-
rons, while Schaffer collaterals target the more proximal radial
oblique and basal dendrites in stratum radiatum (s.r.) and
stratum oriens (s.o.; Amaral and Witter, 1989). O-LM and
bistratified cells counteract the excitation in these domains by
providing GABAergic inhibition onto the distal dendritic tuft or
the proximal dendrites of the pyramidal neurons, respectively
(Klausberger, 2009).

Excitatory inputs onto CA1 pyramidal neuron dendrites inte-
grate linearly or supralinearly, depending on active dendritic
properties and the clustering of inputs in time and space
(Stuart et al., 1997; Golding and Spruston, 1998; Gasparini et al.,
2004; Losonczy and Magee, 2006). The activation of inhibitory
inputs reduces neuronal excitability by hyperpolarizing the mem-
brane potential and increasing membrane conductance (Koch
et al., 1983; Glickfeld et al., 2009). This affects linear integration of
excitatory inputs by reducing the gain and/or changing the offset
of the input–output function (Mitchell and Silver, 2003; Isaacson
and Scanziani, 2011). Supralinear events, such as dendritic spikes,
can be inhibited in an all-or nothing manner by the activation of
local inhibitory interneurons (Müller et al., 2012). Additionally,
network-state dependent short-term plasticity and external mod-
ulation of inhibitory interneurons by the MSDB could change the
balance between excitation and inhibition on dendrites dynam-
ically (King et al., 1998; Pouille and Scanziani, 2004; Leão et al.,
2012; Müller et al., 2012).

A fundamental task in understanding interneuron diversity
is to link structural aspects to physiological functions from the
level of the single cell to the network activity in the behaving
animal. In the following chapters we attempt to shed light on
both, structural and functional aspects with the aim to eluci-
date the function of two dendrite-innervating interneurons: the
O-LM and bistratified cells, in the hippocampal network during
behavior.

STRUCTURAL CHARACTERIZATION OF O-LM AND
BISTRATIFIED INTERNEURONS
A characteristic feature of hippocampal interneurons is their mor-
phological diversity (Freund and Buzsáki, 1996). In this section,
we will discuss the structural features and molecular markers of O-
LM and bistratified cells, highlighting differences and similarities
that may contribute to their function.

ORIENS-LACUNOSUM MOLECULARE CELLS
In 1893, Ramón y Cajal described neurons with large somata
located in the s.o., near the border to the alveus, with axons ascend-
ing to stratum lacunosum moleculare (s.l.m.). This is probably the
earliest description of the interneuron type today known as O-LM
cells. They have horizontal dendrites, which possess filopodial
appendices and span the s.o. but spare the other layers of the hip-
pocampal CA1 region (Figure 1A; Freund and Buzsáki, 1996). It
has been estimated that in total 1640 O-LM interneurons can be
found in CA1, which is 4.3% of all CA1 interneurons (Bezaire and
Soltesz, 2013).

O-LM cells receive excitatory glutamatergic input from the
axon collaterals of CA1 pyramidal neurons, and hence fulfill the
morphological requirements for feedback or recurrent inhibitory
interneurons (Figures 2A,B; Sun et al., 2014). Interestingly, the
recurrent axon collaterals of the pyramidal cells in the CA3 region
are not restricted to s.o. but extend further into the s.r. Accord-
ingly, the dendrites of CA3 O-LM interneurons also extend into
this layer following their presynaptic partners in the feedback loop
(Gulyás et al., 1993).

Although a comprehensive picture on GABAergic innervation
of O-LM cells by other interneurons is not known, there is evidence
that these cells are innervated at least by CA1 interneurons specif-
ically innervating other interneurons (ISIs), putative bistratified
cells (Leão et al., 2012), and other O-LM interneurons (Acsády
et al., 1996; Ferraguti et al., 2004; Kogo et al., 2004).

The axons of the O-LM cells target pyramidal neurons (89%)
and interneurons (11%; Katona et al., 1999; Bezaire and Soltesz,
2013). Sik et al. (1995) were the first to recover a full morphology of
an in vivo filled O-LM cell. They reported a rather compact axonal
arbor forming 16 874 boutons, predominantly in the s.l.m., where
the pyramidal neuron tuft dendrites are located, and only a small
amount in the s.o. (7% of all terminals), where the basal dendrites
of CA1 pyramidal neurons are located (Figure 1A). It has been
estimated that there are in total 77 O-LM synapses per pyramidal
cell and that a single O-LM cell makes 10 synapses per connection
(Maccaferri et al., 2000; Bezaire and Soltesz, 2013).

Neurochemical markers to identify O-LM interneurons are SST
and the glutamate receptor 1α subunit (Figure 1B; Naus et al.,
1988; Shigemoto et al., 1996; Maccaferri et al., 2000; Klausberger
et al., 2003). Furthermore, recent work showed that the nico-
tinic acetylcholine receptor α2 subunit (nAChRα2) is expressed
on O-LM dendrites with a high specificity (Leão et al., 2012).
Thus, antibodies targeting nAChRα2 provide an additional tool
to identify O-LM cells.

BISTRATIFIED CELLS
The bistratified cells in the CA1 region were firstly described by
Buhl et al. (1994). Similar to the O-LM cells, bistratified cells are
immunopositive for SST and PV; however, the expression inten-
sities are complementary. Bistratified cells additionally express
the neuropeptide Y (NPY; Figure 1C; Somogyi and Klausberger,
2005). SST and NPY might be released by bistratified cells dur-
ing high frequency firing, such as that observed during sharp
wave-ripple oscillations in vivo (see Behavioral Relevance of Den-
dritic Inhibition; Klausberger et al., 2004; Katona et al., 2014).
Their release has been shown to down-regulate the glutamatergic
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FIGURE 1 | (A) Reconstructions of an in vivo recorded neurobiotin-labeled
(NB) O-LM interneuron (leftmost cell) and a bistratified interneuron (rightmost
cell). Red: somata and dendrites; black: axons. The gray cell in the middle is a
reconstructed pyramidal neuron for comparison. Scale bar: 100 μm. (B) Left
panels: the NB O-LM interneuron is immuno-positive for somatostatin (SST),
parvalbumin (PV), and mGluR1α. Right panels: in vivo firing probability
histograms of pyramidal cells and of O-LM interneurons during theta and

ripple oscillations and the gamma modulation depth of the firing. (C) Left
panels: the NB bistratified interneuron is immuno-positive for PV, SST, NPY,
and GABAAα1. Right panels: in vivo firing probability histograms of pyramidal
cells and of bistratified interneurons during theta and ripple oscillations and
the gamma modulation depth of the firing. [(A,B) are modified from Tukker
et al. (2007); (A,C) from Klausberger et al. (2004), and (B,C) from Klausberger
and Somogyi (2008) with permissions].

transmission of the Schaffer collaterals, and thus may prevent
hyper-excitable, epileptiform activity (Moore et al., 1988; Vezzani
et al., 1999; Baraban and Tallent, 2004; Klausberger et al., 2004).

The somata of bistratified cells are located in s.o. (24%), s.p.
(70%), and s.r. (6%). It has been estimated that a total of 2210
bistratified interneurons can be found in CA1, which is 5.7% of
all CA1 interneurons (Bezaire and Soltesz, 2013). The bistratified
cells possess aspiny dendrites, which span all layers of the CA1
region but the s.l.m. (Maccaferri et al., 2000).

Bistratified cells receive feedforward excitatory input exclu-
sively from the Schaffer collaterals and commissural projections
(Klausberger et al., 2004). They also participate in the feedback cir-
cuitry by receiving excitatory input from CA1 pyramidal neurons
via axon collaterals in s.o. (Figures 2A,B; Ali et al., 1998).

Bistratified cells receive GABAergic input from other local
interneurons including O-LM cells (Buhl et al., 1996; Leão
et al., 2012). Furthermore, bistratified cells contain a high
number of extrasynaptic GABAA receptors, which indicates
that they are strongly regulated by tonic GABAergic inhibition
(Baude et al., 2007). A sufficient GABA concentration in the
extracellular space for activation of these receptors could be
mediated by several mechanisms: synaptic spillover of GABA
during high frequency release, volume transmitted GABA or

by the action of GABA transporters (Farrant and Nusser, 2005;
Oláh et al., 2009). Basket cells show a similarly high number
of these extrasynaptic receptors. Both bistratified and bas-
ket cells receive strong excitatory input from CA3 pyramidal
neurons during ripple oscillations and fire phase-modulated
action potentials with very high temporal precision in vivo
(see O-LM and Bistratified Cells in the CA1 Microcircuit and
Behavioral Relevance of Dendritic Inhibition; Klausberger et al.,
2003, 2004). It has been hypothesized that the strong tonic
inhibitory control of bistratified and basket cells is necessary
to integrate the substantial excitatory input they receive dur-
ing fast oscillations into temporally precise output (Baude et al.,
2007).

The axons of the bistratified cells predominately terminate in
s.o., s.p., and s.r. (Figure 1A; Sik et al., 1995). 96% of the axon
terminals are located on basal, apical shaft and oblique den-
drites, and only 4% on the somata of pyramidal neurons (Halasy
et al., 1996). It has been estimated that a bistratified cell forms
in total 15,970 synaptic contacts in CA1, with about 6–10 of
them on a single pyramidal neuron (Buhl et al., 1994; Sik et al.,
1995; Klausberger et al., 2004; Bezaire and Soltesz, 2013). Thus,
one bistratified cell innervates approximately 2500 CA1 pyramidal
neurons (Sik et al., 1995).
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FIGURE 2 | (A) Schematic drawings of different forms of microcircuit
organizations. Dark gray neuron: CA1 pyramidal cell (PC); light gray: CA3
pyramidal cell; blue: CA1 interneuron. (B) Schematic drawing of the CA1

microcircuit involving dendrite-innervating O-LM and bistratified interneurons
and septal modulatory innervation. Asterisks indicate likely but unproven
connections.

In summary both O-LM and bistratified interneurons prefer-
entially innervate CA1 pyramidal neuron dendrites. However, they
terminate on two very different dendritic domains. Each interneu-
ron subtype is thus specialized to counteract synaptic excitatory
drive received from one of the two main excitatory input regions.

FUNCTIONAL ASPECTS OF O-LM AND BISTRATIFIED
INTERNEURONS IN THE CA1 MICROCIRCUIT
In the following paragraphs, we connect the structural character-
istics of O-LM and bistratified interneurons with their functional
relevance.

ACTIVATION OF O-LM CELLS
An action potential in a CA1 pyramidal neuron evokes an
excitatory post-synaptic potential (EPSP) of about 1 mV in
the O-LM cell (mean amplitude: 0.93 ± 1.06 mV; Ali and
Thomson, 1998), which alone is likely to be insufficient to
cross action potential threshold. However, excitatory input onto
the O-LM cells facilitates with repeated firing of the pyrami-
dal neuron. With sufficient inputs O-LM cells generate action
potential output with high reliability but low temporal pre-
cision (Figure 3; Ali and Thomson, 1998; Losonczy et al.,
2002; Pouille and Scanziani, 2004; Müller et al., 2012). This
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FIGURE 3 | Schematic drawing of CA1 microcircuit including O-LM

and bistratified interneurons during oscillations, e.g., at gamma or

theta frequency. The bistratified interneuron strongly inhibits the proximal
dendrites of the pyramidal cell at the beginning (blue background) and is
losing its impact during repeated activation of the network. In contrast,
the O-LM interneurons display low output at the beginning but gain

strength in response to repeated activation. As a result of the dynamic
changes of the distal and proximal inhibition in response to rhythmic
activation, the excitability in the distal and proximal dendrites is controlled
in a network-state dependent manner (red: highly excitable, gray: less
excitable). In this way the right cell assembly might become active during
rhythmic network activity.

facilitation is a prominent feature of the CA1 pyramidal neu-
ron to O-LM interneuron synapses, and is thought to be
mediated by the extracellular leucine-rich repeat fibronectin con-
taining protein 1 (Elfn1). This protein is selectively expressed
by O-LM cells and regulates the release probability of the
pyramidal neuron synapses onto O-LM dendrites (Sylwestrak
and Ghosh, 2012). Additionally, the pyramidal neuron to O-
LM synapse is likely to be regulated by another target-cell-
specific presynaptic mechanism: pyramidal neuron terminals
that are presynaptic to mGluR1α expressing interneurons, such
as the O-LM cells, contain a ∼10 fold higher amount of the
metabotropic glutamate receptor 7 (mGluR7). The high level
of mGluR7 results in a frequency dependent auto-regulation
of transmitter release in the pyramidal to O-LM cell synapses.
Consequently, glutamate release at these synapses is suppressed
at high frequencies, and may only be reliably released at
lower frequencies, such as in the theta frequency range. How-
ever, the expression of the mGluR1α per se appears not to
be a crucial factor, since this regulatory mechanism could
also be observed in transgenic mice lacking these receptors
(Shigemoto et al., 1996).

Long positive current injections lead to sustained output of
O-LM cells. The action potentials display spike frequency adap-
tation and are followed by a pronounced afterdepolarizations
(Lacaille and Williams, 1990; Zhang and McBain, 1995). Fur-
thermore, long negative current injections into O-LM cells will
lead to hyperpolarization followed by depolarization resembling a
voltage-“sag.” These characteristics indicate a strong contribution
of the hyperpolarization activated cation current (H-current/IH;
Maccaferri and McBain, 1996; Zemankovics et al., 2010). The
expression of the underlying cyclic nucleotide-gated channel can
result in spontaneous firing (Maccaferri and McBain, 1996), and
equips O-LM cells with an intrinsic resonance frequency at theta
(Pike et al., 2000). A preferential tuning of O-LM output to
theta frequencies may also be supported by the action of kainate
receptors, found in the excitatory synapses terminating on O-LM
dendrites in mice (Yang et al., 2006; Goldin et al., 2007).

In summary, a facilitation of glutamate release at the pyramidal
neuron to O-LM synapse in response to repeated stimulation, the
action of inwardly rectifying AMPA receptors and the intrinsic
resonance of O-LM cells at theta frequency, suggest that repeated
excitatory input to the O-LM cells is preferentially transformed
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into sustained output at low frequencies most likely in the theta
frequency band. As a consequence, the post-synaptic pyramidal
neuron tuft dendrites would receive theta-rhythmic inhibition.

O-LM CELL MEDIATED INHIBITION
When GABA is released from a presynaptic terminal, receptor
channels permeable to chloride and bicarbonate are opened in the
post-synaptic dendrite (Kaila, 1994). Under physiological condi-
tions in the adult hippocampus the synaptic reversal potential of
these conductances lies below the dendritic membrane potential
resulting in a net influx of chloride ions, which hyperpolarizes
the dendrite (Kaila, 1994; Glickfeld et al., 2009). The dendritic
hyperpolarization propagates and electrotonically attenuates with
distance from the input site (Stuart et al., 2008). Therefore, the
effectiveness of hyperpolarizing inhibition to counteract coinci-
dent synaptic excitation is dependent on the distance between the
inhibitory and excitatory input. Additionally, the activation of
an inhibitory synapse reduces the local input resistance. While
the inhibitory conductances are open, excitatory synaptic cur-
rents are short-circuited or shunted. Shunting inhibition is very
effective near the site of the inhibitory input and on the path
between an excitatory synapse and the action potential initiation
site (Koch et al., 1983; Liu, 2004; London and Häusser, 2005;
Stuart et al., 2008; Pouille et al., 2013), but may also be potent
at off-path locations (Gidon and Segev, 2012). The relative con-
tribution of both inhibitory mechanisms to reduce excitability
is dependent on the intracellular chloride concentration, deter-
mining the reversal of the GABAergic conductance, and the
relative locations of the activated GABAergic and glutamatergic
synapses.

When measured at the soma of a CA1 pyramidal neuron, the
inhibitory post-synaptic potential (IPSP) elicited by a single O-LM
interneuron has a small amplitude and slow kinetics (Maccaferri
et al., 2000). Keeping in mind the distance of several hundred
micrometers between input site and somatic recording site, it can
be assumed that the IPSP is several-fold larger locally at the dis-
tal dendrite. Taking into account that in total ∼80 O-LM cell
synapses are found per pyramidal neuron (Bezaire and Soltesz,
2013), it is likely that the O-LM mediated inhibition very effec-
tively controls the excitatory input onto the tuft. Interestingly, 20%
of the O-LM synapses are formed on dendritic spines (Sik et al.,
1995; Katona et al., 1999). It has been demonstrated in neocorti-
cal circuits that SST expressing interneurons, forming inhibitory
synapses on spines, can control the excitation of individual spines
(Chiu et al., 2013). The impact of such inhibitory conductances
on a single spine is likely to be spatially restricted, due to the spine
neck resistance. In this way, O-LM interneuron-mediated inhibi-
tion in CA1 could counteract the excitatory input in a synapse
specific manner.

The main termination zone of O-LM cells are the pyrami-
dal neuron dendritic tuft, where excitatory glutamatergic input
from the entorhinal cortex (EC) is received. This excitatory
input alone is sufficient to evoke place related firing in pyrami-
dal cells (Brun et al., 2002), and is likely controlled by O-LM
mediated inhibition. Compared to the oblique dendrites, gluta-
matergic input to the tuft dendrites evokes EPSPs with a larger
NMDA/AMPA ratio (Otmakhova et al., 2002). Additionally, the

contribution of stronger, perforated synapses is higher on the
tuft dendrites (Nicholson et al., 2006). Together, these synap-
tic properties counteract the distance dependent attenuation of
distal EPSPs. The strong impact of excitatory inputs locally on
the distal tuft dendrites could be balanced by the two to three
fold higher density of GABAergic synapses observed on tuft
dendrites compared to oblique dendrites (Megías et al., 2001).
The dendritic filtering of distal post-synaptic potentials is coun-
teracted by the H-current, which is highly expressed in distal
dendrites (Magee, 1998). This current curtails the post-synaptic
potentials (PSPs) and reduces the input site dependent slowing
of the time-course of distal PSPs (Williams and Stuart, 2000).
Briefer and more precise PSPs would improve the accuracy of
coincidence detection with signals from further proximal sites
(Magee, 1998).

In response to clustered excitatory inputs, it has been shown
that apical tuft dendrites generate supralinear dendritic events
(dendritic spikes), which can overcome the strong distance
dependent attenuation (Jarsky et al., 2005). Experimentally, this
is usually demonstrated under conditions during which inhi-
bition is blocked (Golding et al., 2001; Jarsky et al., 2005;
Takahashi and Magee, 2009). However, inhibition could play a
crucial role in controlling the supralinear integration in tuft
dendrites. Since inhibition on more proximal dendrites is able
to prevent supralinear integration, O-LM mediated inhibition
may have a substantial impact on dendritic supralinear inte-
gration in the tuft (Lovett-Barron et al., 2012; Müller et al.,
2012; Stuart, 2012). We have previously shown that activation
of recurrent inhibition, to which O-LM cell are a main con-
tributor, strongly reduces local excitation in the tuft dendrites
(Müller et al., 2012).

ACTIVATION OF BISTRATIFIED CELLS
In contrast to O-LM cells, glutamatergic input onto bistratified
cells is not exclusively mediated by CA1 pyramidal neurons via
axon collaterals, but also by CA3 pyramidal neurons via the
Schaffer collaterals. A single action potential of a CA1 pyrami-
dal neuron was found to evoke an EPSP of 3.4 ± 3.1 mV, when
measured at the soma of a bistratified cell (Ali et al., 1998). This
input is much larger compared to the excitation an O-LM cell
receives from a single CA1 pyramidal neuron. However, O-LM cell
dendrites can amplify dendritic input by the recruitment of den-
dritic sodium channels (Martina et al., 2000) and thereby produce
reliable output. Both bistratified and O-LM cells receive pha-
sic glutamatergic synaptic input primarily mediated by calcium
permeable AMPA receptors (Oren et al., 2009; Wondolowski and
Frerking, 2009; Nissen et al., 2010). In contrast to AMPA recep-
tors on pyramidal neurons or CCK expressing dendrite-targeting
interneurons, these calcium-permeable AMPA receptors display
inward rectification, i.e., the synaptic currents are suppressed at
depolarized membrane potentials. The activation of these cal-
cium permeable AMPA receptors leads to precise calcium influx
into the interneuronal dendrites (Topolnik et al., 2005), which can
induce calcium-dependent, NMDA receptor independent plastic-
ity at subthreshold membrane potentials (Nissen et al., 2010; Szabo
et al., 2012; Camiré and Topolnik, 2014). Thus, these specific glu-
tamate receptors enable bistratified and O-LM cells to respond to
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specific input patterns with synaptic plasticity, whereas synapses
onto other dendrite-targeting interneurons (e.g., CCK expressing
interneurons) would remain unaffected by the same input.

In response to repeated firing of presynaptic CA1 pyramidal
neurons the excitation in the bistratified interneuron under-
goes synaptic depression (Figure 3; Ali et al., 1998; Pouille and
Scanziani, 2004; Müller et al., 2012). In response to repeated firing
of presynaptic CA3 pyramidal neurons, in contrast, the excitatory
input onto bistratified cells might facilitate (Wierenga and Wad-
man, 2003). Also, more complex patterns of short-term plasticity
were found in this interneuron type (Losonczy et al., 2002).

When excitation in bistratified interneurons crosses the
action potential threshold, non-accommodating action poten-
tials, burst firing and maximum firing rates above 100 Hz
can be observed. This allows them to perform high fre-
quency discharges, e.g., during ripple oscillations observed
in vivo (Buhl et al., 1996; Pawelzik et al., 2003; Klausberger
et al., 2004; Baude et al., 2007; Katona et al., 2014). As
in O-LM cells, the firing mode of bistratified interneu-
rons may be influenced by the action of H-currents, which
imposes a subthreshold resonance at 2–6 Hz onto these cells
(Zemankovics et al., 2010).

BISTRATIFIED CELL MEDIATED INHIBITION
The IPSCs evoked by bistratified interneurons in pyramidal
neuron oblique and basal dendrites are larger compared to
O-LM mediated IPSCs, when measured at the soma (∼50 pA
compared to 2.6 pA; Maccaferri et al., 2000). The large ampli-
tude of a somatically measured bistratified cell evoked IPSP
(−0.86 ± 0.55 mV; Pawelzik et al., 1999) could partially be
explained by the proximal input site, which results in less
attenuation along the dendrite to the somatic recording site.
It has been estimated that a single pyramidal neuron receives
inhibitory input from ∼10 different bistratified interneurons
making on average ∼10 synapses per connection, preferentially
on the small caliber dendrites in s.o. and s.r. of the pyra-
midal neurons (Klausberger et al., 2004; Bezaire and Soltesz,
2013). Therefore, it can be assumed that bistratified interneu-
rons provide strong dendritic inhibition and can thereby control
the transformation of CA3 excitatory input to action poten-
tial output in CA1 pyramidal neurons (Klausberger et al., 2004).
Inhibitory synapses in general and those formed by a single
bistratified cell are unlikely to be clustered on a specific pyra-
midal neuron dendritic branch. Consequently, the idea that
single interneurons may functionally veto excitation on a single
dendritic branch is not supported; rather a global and dis-
tributed inhibitory innervation of dendrites can be expected (Buhl
et al., 1994; Liu, 2004). However, some evidence for a selective
suppression of specific dendritic compartments by the feedfor-
ward interneuron population, including bistratified cells, has
recently been provided by single cell voltage imaging experiments
(Willadt et al., 2013).

The basal and proximal oblique dendrites of the CA1 pyramidal
neurons are capable of integrating excitatory input supralinearly in
form of dendritic spikes (Stuart et al., 1997; Golding and Spruston,
1998; Gasparini et al., 2004; Losonczy and Magee, 2006). Den-
dritic spikes have been shown to be effective triggers of action

potential output and synaptic plasticity (Golding and Spruston,
1998; Golding et al., 2002; Ariav et al., 2003; Remy and Spruston,
2007; Müller et al., 2012). One important requirement for the
induction of dendritic spikes is the temporal and spatial cluster-
ing of excitatory input on dendritic branches (Gasparini et al.,
2004; Losonczy and Magee, 2006). These conditions are likely
to be found during sharp wave-ripples in vivo (Csicsvari et al.,
2000). It has been shown in experiments using simultaneous
GABA and glutamate iontophoresis or uncaging that the activation
of GABAergic synapses, on the path between the dendritic spike
initiation and the somatic recording site, suppresses dendritic
spiking (Lovett-Barron et al., 2012; Müller et al., 2012). Bistrati-
fied interneurons are ideally suited to block dendritic spikes by
providing strong inhibition onto small caliber dendrites.

In experiments using optical activation and cell type-specific
pharmacogenetic silencing, dendritic inhibition in general was
more effective in shunting dendritic spikes and action potential
burst firing than somatic inhibition, and determined the gain of
the input–output transformation in these neurons (Lovett-Barron
et al., 2012). In these experiments, the surprisingly small effect of
somatic inhibition on the input–output transformation in pyra-
midal neurons was explained by interneuron–interneuron connec-
tions. Consequently, the silencing of soma-targeting interneurons
resulted in disinhibition of dendrite-innervating interneurons so
that these still reduced pyramidal neuron output (Lovett-Barron
et al., 2012).

When a subpopulation of recurrent interneurons including bis-
tratified cells is activated by alvear stimulation, inhibition onto
oblique and basal pyramidal neuron dendrites is evoked. This
is sufficient to block dendritic spiking and to narrow the time
window for excitatory signal integration and action potential gen-
eration. However, when activated repeatedly at theta frequency,
the recurrent inhibition on proximal dendrites is reduced, due to
the depressing excitatory input from the CA1 pyramidal neurons
to the interneurons innervating these dendrites, including bis-
tratified cells (Pouille and Scanziani, 2004; Müller et al., 2012).
Subsequently, the inhibition of dendritic spiking mediated by
these interneurons is less effective. A subset of dendritic branches
however, which give rise to strong dendritic spikes, can escape
inhibitory control (Müller et al., 2012). Therefore, the activation
of a presynaptic CA3 pyramidal neuron subpopulation is likely to
generate action potential output in CA1 pyramidal neurons, either
when it provides clustered input to a specific dendrite, which gen-
erates a strong dendritic spike; or when the impact of the inhibitory
microcircuit is decreased as a result of synaptic depression during
repetitive, rhythmic activity.

O-LM AND BISTRATIFIED CELLS IN THE CA1 MICROCIRCUIT
In the CA1 region both feedback and feedforward inhibitory cir-
cuits are found (see Structural Characterization of O-LM and Bis-
tratified Interneurons, Activation of O-LM Cells, and Activation
of Bistratified Cells). The two forms of microcircuit organiza-
tions have functional consequences for dendritic inhibition. In
feedforward microcircuits inhibitory interneurons are activated
by afferent input, e.g., CA3 pyramidal neurons (Figure 2A) and
subsequently inhibitory and excitatory inputs coincide in the post-
synaptic neuron, e.g., the CA1 pyramidal neurons (Karnup and
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Stelzer,1999; Pouille and Scanziani,2001). Thereby, a high number
of excitatory inputs could be balanced by stronger simultaneously
activated feedforward inhibition. Feedforward inhibition thus can
serve to increase the dynamic range of excitatory input integration
(Pouille et al., 2009, 2013). The postsynaptic neuron remains sen-
sitive to small excitatory inputs, and at the same time saturation
is prevented so that strong excitatory inputs can still be discrim-
inated. Feedforward inhibition might prevent the post-synaptic
population from firing at all; feedback inhibition however, requires
output from the CA1 pyramidal neurons. Consequently, O-LM
interneurons, which are exclusive feedback interneurons, are not
able to inhibit CA1 pyramidal neuron output per se, but are able
to control the duration of the CA1 activation and to modulate the
relative contribution of excitatory EC input to output generation.

Bistratified cells, in contrast, take part in both, feedforward and
feedback microcircuits (Figure 2A). Due to the different input
dynamics in response to sustained activation by either CA3 or CA1
pyramidal neurons (see Activation of Bistratified Cells; Wierenga
and Wadman, 2003), the extent to which bistratified cells engage
in either feedforward or feedback inhibition might depend on the
duration and frequency of the excitatory inputs they receive from
the presynaptic population.

In its classical meaning, feedback inhibition in CA1 requires
action potential output of a CA1 pyramidal neuron popula-
tion. When firing a population of CA1 pyramidal neurons
and thus activating a subset of feedback interneurons by using
alvear stimulation, simultaneously recorded pyramidal neurons
receive IPSPs. Firing of the recorded CA1 pyramidal neuron
itself in response to stimulation is scarce and has not been
reported (Pouille and Scanziani, 2004; Müller et al., 2012). The
lack of action potentials in the cell, which actually receives
inhibition, implies that in the case of predominant lateral inhi-
bition persistent excitatory output by a CA1 pyramidal neuron
subpopulation could lead to inhibition of a different subpop-
ulation of CA1 pyramidal neurons (Jonas and Buzsáki, 2007;
Dupret et al., 2013).

Likewise, it is not clear how strictly the concept of feedfor-
ward inhibition is implemented in the connections between CA3
and CA1, particularly, whether a CA3 cell population inhibits
exclusively the CA1 cell population that is simultaneously excited.
Or if feedforward inhibition is a tool to increase the contrast
between different cell groups, regarding their excitability. The dif-
ferent cell groups separated by inhibition could serve as neuronal
assemblies, which encode distinct pieces of information (Geisler
et al., 2007; Buzsáki, 2010). Neuronal assemblies might be formed,
e.g., during spatial navigation of the animal, where participat-
ing CA1 principal neurons show correlated phase precession in
subsequent theta cycles (O’Keefe and Recce, 1993; Skaggs and
McNaughton, 1996; Maurer et al., 2006a; Geisler et al., 2007).
Also interneurons participate in place- and phase-related firing
and may support assembly formation (McNaughton et al., 1983;
Kubie et al., 1990; Marshall et al., 2002; Maurer et al., 2006b;
Geisler et al., 2007). Soma-innervating fast spiking interneurons,
such as basket cells, have been identified as ideal candidates to
serve this function (Geisler et al., 2007). However, bistratified
cells have many similar properties to basket cells, they both: are
recruited in the feedforward and feedback microcircuitry (Ali

et al., 1998; Wierenga and Wadman, 2003), can fire high fre-
quencies (Buhl et al., 1996), respond similarly to gamma rhythmic
repeated input (Pouille and Scanziani, 2004), their firing in vivo
is strongly modulated by gamma oscillations (see Behavioral Rel-
evance of Dendritic Inhibition; Klausberger and Somogyi, 2008),
and they both receive strong excitatory input during sharp-waves
(see Bistratified Cells; Klausberger et al., 2003, 2004). There-
fore, bistratified cells could be the dendrite-targeting complement
to basket cells serving a similar function in the network with
respect to assembly formation. Since O-LM interneurons show
no phase precession it is less likely that they support the for-
mation of assemblies encoding correlated spatial information
(Geisler et al., 2007).

The separation of cell assemblies may not only be a result of the
fixed wiring between pyramidal neurons and local interneurons.
As described in Section “Activation of O-LM Cells and Activa-
tion of Bistratified Cells,” the synapses between pyramidal cells
and O-LM or bistratified interneurons exhibit short-term plas-
ticity in response to certain input patterns, e.g., theta or gamma
rhythmic input from presynaptic pyramidal neurons (Figure 3;
Ali and Thomson, 1998; Ali et al., 1998; Pouille and Scanziani,
2004; Müller et al., 2012; Sylwestrak and Ghosh, 2012). This
could lead to dynamic changes of the synaptic weights during
different activity states of the network. The changed impact of
distinct interneuron groups, acting on specific dendritic domains,
could help to separate cell assemblies by tweaking their activity
(Buzsáki, 2010).

In conclusion, the effect of inhibition on dendritic excitation
is mainly determined by the domain specificity of the axonal
arborization of the interneuron subtype, the dynamic and the
resulting synaptic strength of dendritic inhibition, and by the
pattern of the excitatory input. Among the diverse interneu-
ron subpopulations the synapses formed by dendrite-targeting
interneurons are placed in strategic positions to counteract den-
dritic excitation, to prevent dendritic supralinearities and, as a
consequence, action potential output (Buzsáki et al., 1996; Miles
et al., 1996; Takahashi and Magee, 2009; Lovett-Barron et al., 2012;
Müller et al., 2012). O-LM and bistratified cells provide path-
way specific inhibition, and thus may play an important role
in matching the direct sensory input from the EC to the infor-
mation that is relayed through CA3. A temporally coordinated
interaction of the two excitatory pathways may be essential for
CA1 pyramidal neurons to subserve the comparator function
(Vinogradova, 2001; Takahashi and Magee, 2009). The path-
way specific inhibition by O-LM and bistratified cells changes
dynamically when the network is repeatedly activated (Pouille
and Scanziani, 2004; Müller et al., 2012). A dynamic change from
predominant proximal dendritic to predominant distal dendritic
inhibition could lead to preferential processing of input from one
pathway over the other, depending on the network-state. Addi-
tionally, O-LM cells directly inhibit feedforward interneurons,
including bistratified cells. Thus, activating O-LM cells not only
inhibits the perforant path excitatory input, but also amplifies
the impact of the Schaffer collateral excitatory input. This lat-
ter effect is due to the reduction in feedforward inhibition by
bistratified cells and other interneurons (Leão et al., 2012). This
mechanism could consolidate the activity dependent weighting
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of the two excitatory inputs to the CA1 pyramidal neuron den-
dritic domains. Furthermore, the perforant path excitation has
been shown to increase Schaffer collateral plasticity depending
on the relative input timing (Remondes and Schuman, 2002).
This gating mechanism could be controlled by the pathway spe-
cific dynamic inhibition provided by O-LM and bistratified cells.
The recruitment in different microcircuits in CA1 could allo-
cate bistratified and O-LM cells with distinct roles during specific
network activities in vivo (see Behavioral Relevance of Dendritic
Inhibition).

SEPTAL MODULATION OF O-LM AND BISTRATIFIED CELL
MEDIATED INHIBITION
During theta oscillations, the activity of hippocampal interneu-
rons is modulated by the MSDB (Freund and Antal, 1988;
Tóth et al., 1997; Sun et al., 2014). Different septal cell types
discharge at theta frequencies in vivo and project to the hip-
pocampal formation via the fimbria/fornix fiber bundle (King
et al., 1998). One main projection is cholinergic and termi-
nates specifically on hippocampal interneurons (Bland and Bland,
1986; Frotscher et al., 1986). The action of acetylcholine is
mediated by muscarinic and nicotinergic receptors. When the
muscarinic receptor agonist carbachol is bath applied to a hip-
pocampal slice in high concentrations, cells depolarize and action
potential output at theta frequency is facilitated (Bland et al.,
1988). CA1 interneurons are also activated by application of
muscarinic receptor agonists and consequently more IPSPs in
pyramidal neurons can be observed (Pitler and Alger, 1992). In
O-LM interneurons the pharmacological activation of muscarinic
receptors leads to enhanced action potential firing (Lawrence
et al., 2006b). Furthermore, the output reliability and preci-
sion of action potential firing in response to theta patterned
input is improved (Lawrence et al., 2006a). Recent work by
Nagode et al. (2011) confirmed these results using an optogenetic
approach.

Since muscarinic receptors are also found in presynaptic ter-
minals they may additionally modulate transmitter release. Zheng
et al. (2011) demonstrated that glutamatergic EPSPs in putative
O-LM interneurons were reduced in amplitude when muscarinic
receptors were activated. In contrast, interneurons located in
s.r., including putative bistratified cells, received increased glu-
tamatergic input, emphasizing the diversity of cholinergic effects
on hippocampal interneurons.

Upon electrical stimulation of the fimbria/fornix fiber bundle,
in a septo-hippocampal slice preparation, O-LM and bistratified
cells show clearly discrete responses: the O-LM cells depolar-
ize, whereas the bistratified cells are either unaffected or show
a biphasic response, consisting of first hyper- and subsequent
depolarization. However, it has to be noted that by stimulating
these afferents electrically, also other neurotransmitters may be
released, potentially underlying some of the diverse response pat-
terns (Widmer et al., 2006). Leão et al. (2012) showed that, when
evoking nicotinergic transmission by fimbria/fornix stimulation,
O-LM cells received fast excitatory currents mediated by the nico-
tinic receptors containing the α2 and α7 subunit. These cholinergic
projections from the MSDB can excite O-LM cells sufficiently to
cross action potential threshold (Lovett-Barron et al., 2014). There

is evidence that also bistratified interneurons might be activated
by acetylcholine receptors containing the α7 subunit (Buhler and
Dunwiddie, 2002; Son and Winzer-Serhan, 2008).

The effect of muscarinic receptor activation is slow (Hasselmo
and Fehlau, 2001; Buzsáki, 2002), and thus it is likely to increase
the overall excitability of pyramidal neurons and interneurons in
CA1 during theta episodes (Madison et al., 1987). In contrast,
nicotinergic input from the MSDB could rhythmically recruit
CA1 interneurons and therefore set the pace for synchronous CA1
interneuron activity (Freund and Antal, 1988; Buzsáki, 2002; Cobb
and Davies, 2005; Hangya et al., 2009). To fully understand the role
of the septo-hippocampal pathway on hippocampal theta oscilla-
tions, it is necessary to know, which specific interneuron subtypes
are targeted, and how muscarinic and nicotinergic receptors act
on these cells during behavior.

Interestingly, in a recent study using rabies virus mediated trac-
ing, excitatory glutamatergic input onto CA1 inhibitory interneu-
rons from the MSDB was found (Sun et al., 2014). The functional
implications of this additional extrinsic glutamatergic input in
general and specifically for bistratified and O-LM interneurons
are not yet understood. Furthermore, O-LM and bistratified cells
are targeted by axons from GABAergic projection neurons located
in the MSDB (Gulyás et al., 1990; Chamberland et al., 2010). These
GABAergic projections provide rhythmic inhibition onto O-LM
and bistratified neurons during theta oscillation and strengthen
their synchronous theta rhythmic firing observed in vivo (Tóth
et al., 1997; Bland et al., 1999; Klausberger, 2009). A potential
role of septal GABAergic projection neurons innervating CA1
interneurons was pointed out by Kaifosh et al. (2013), who imaged
the calcium signals in boutons from septal GABAergic projection
neurons onto CA1 interneurons located in s.o., including putative
O-LM cells. In response to diverse sensory stimuli with different
intensities the septal cells generated GABAergic theta modulated
output onto the CA1 interneurons and provided information
about the stimulus intensity but not its identity.

Clearly, there are still open questions about the specific modu-
lation of O-LM and bistratified interneurons by the MSDB during
behavior. Dendrite-innervating interneurons are powerful tar-
gets for MSDB modulation because of their potential to switch
weights of the two major excitatory input pathways terminating
on CA1 pyramidal neurons. The availability of a diverse modu-
latory toolset, extending the repertoire by which integration on
different dendritic domains can be fine-tuned by the MSDB, sug-
gests that modulation of dendritic inhibition may serve specific
functions during different behavioral states.

BEHAVIORAL RELEVANCE OF DENDRITIC INHIBITION
Theta oscillations are observed in the hippocampus during move-
ment, REM sleep and states of arousal (Grastyán et al., 1965;
Jouvet, 1969; Vanderwolf, 1969; O’Keefe and Nadel, 1978). In
the CA1 field of the hippocampus, theta oscillations are thought
to be regulated by cholinergic and GABAergic projections from
the MSDB (see Septal Modulation of O-LM and Bistratified Cell
Mediated Inhibition; Freund and Antal, 1988; Stewart and Fox,
1990; Buzsáki, 2002). In early in vivo recordings, it became clear
that not only the principal cells in the hippocampus participate
in rhythmic theta firing during behavior, but also that putative
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interneurons fired with high fidelity in relation to the theta rhythm
(Ranck, 1973).

O-LM and bistratified cells display theta rhythmic firing under
urethane anesthesia in vivo, and both discharge preferentially at
the trough of the theta oscillations (Figures 1B,C; Klausberger,
2009). This phase relationship has also been observed in awake
rodents (Varga et al., 2012; Katona et al., 2014). How could a sim-
ilar phase coupling of O-LM and bistratified cells during theta
oscillations influence signal integration on CA1 pyramidal neuron
dendrites? Synchronous discharge of O-LM and bistratified cells
would hyperpolarize the CA1 pyramidal neuron dendrites in both
major input domains. Thereby the membrane potential and the
integration of excitatory inputs on the whole dendritic tree would
become phase-modulated (Kamondi et al., 1998; Klausberger
et al., 2004). This could create windows of opportunity for excita-
tory synaptic inputs to initiate action potential output (Csicsvari
et al., 1999). Furthermore, it has been hypothesized that the
rhythmic hyperpolarization during theta oscillations, mediated
by dendrite-innervating O-LM and bistratified cells, could facili-
tate the recovery of dendritic low-threshold calcium channels from
inactivation (Magee and Johnston, 1995; Klausberger et al., 2004).
In this way, synchronized dendritic hyperpolarization could glob-
ally decrease the excitability in the pyramidal neuron population,
but maximize the bursting probability in a few cells that receive
strong excitatory input (Klausberger et al., 2004). This hypothesis
is supported by the finding that a place-cell is likely to fire bursts
at the opposite theta phase compared to when O-LM and bis-
tratified cells fire preferentially (O’Keefe and Recce, 1993; Harris
et al., 2001; Buzsáki,2002; Klausberger et al., 2004). Taken together,
theta rhythmic dendritic inhibition may not only regulate den-
dritic excitation by inhibiting synaptic input, but also dynamically
facilitate action potential output by the regulation of intrinsic ionic
conductances.

Interestingly, the recruitment of O-LM and bistratified cells
into other types of oscillatory activity is fundamentally different.
O-LM cells fire few bursts in vivo, decrease their firing when the
animal is sleeping, and show no phase-coupled firing to gamma
oscillations. Bistratified cells, in contrast, fire at high rates dur-
ing sleep, increase their firing during sharp wave-ripple episodes
and are likely to exhibit burst firing. (Figures 1B,C; Klausberger
et al., 2003, 2004; Tukker et al., 2007; Klausberger and Somogyi,
2008; Katona et al., 2014). Furthermore, it was demonstrated
that bistratified cells show a specifically strong gamma modu-
lated firing (Tukker et al., 2007). Gamma oscillations (25–140 Hz)
in the hippocampus are generated by inputs from CA3 and the
EC and are often nested in slower theta oscillations. They are
thought to coordinate the activation of neuronal assemblies on
short time scales, e.g., during memory retrieval. IPSPs onto pyra-
midal neurons have been identified to be the main source of the
gamma oscillation in the local field potential. These IPSPs are sup-
posed to be generated by basket and bistratified cells (Soltesz and
Deschênes, 1993; Penttonen et al., 1998; Colgin, 2011). Bistratified
cells receive strong excitatory input from CA3, and are thus likely
to transmit the CA3 dependent component of gamma to the CA1
region.

As hypothesized above, inhibition could provide a tool to select
specific cell assemblies (see O-LM and Bistratified Cells in the

CA1 Microcircuit; Figure 2A). The interneurons activated by
one CA1 pyramidal neuron assembly could inhibit another, dis-
tinct CA1 assembly. A recent study suggests that the activation of
interneurons in CA1 contribute to the reorganization of pyramidal
neuron assemblies, which plays an important role during spatial
learning tasks. Dupret et al. (2013) demonstrated that the estab-
lishment of a behaviorally relevant neuronal assembly involves
the modification of inhibitory microcircuits. The excitatory con-
nections from CA1 pyramidal neurons onto local interneurons
change dynamically according to the activity of the presynaptic
assemblies in CA1 (Pouille and Scanziani, 2004). Since they are
connected in this feedback/lateral inhibitory loop, the interneu-
rons may dynamically adjust the recruitment of specific pyramidal
neuron assemblies via short-term plasticity of the pyramidal cell to
interneuron synapses. The specific interneuron subtypes involved
in the assembly formation is not yet clear; however, the location of
the recorded interneurons in the s.p. suggests that O-LM cells are
unlikely to contribute, at least in the tested behavioral paradigm
(Dupret et al., 2013).

The specific roles of dendrite- versus soma-innervating
interneurons were investigated by Royer et al. (2012). They per-
formed in vivo recordings of the local field potential and unit
responses during locomotion on a treadmill in head restrained
mice. Using optogenetic tools, they specifically reduced either
the inhibition mediated by PV or SST positive interneurons in
CA1. Reducing the availability of SST positive putative dendrite-
innervating interneurons had the strongest effect on the spatially
modulated firing of pyramidal neurons. Dendritic inhibition
reduced both the overall firing and the burst firing, but not the
phase-relation of pyramidal neuron firing. A similar effect of den-
dritic inhibition had also been demonstrated in earlier in vitro
experiments (Miles et al., 1996). Putative soma-innervating PV-
positive interneurons were more likely to be recruited at the rising
phase of the theta cycle, dendrite-innervating interneurons at the
descending phase. The authors speculated that this could be due to
the delayed recruitment of interneurons innervating the distal tuft
dendrites of pyramidal neurons. As described above this delay may
be caused by the weak but short-term facilitating synaptic trans-
mission between pyramidal neurons and O-LM cells (Figure 3, see
Functional Aspects of O-LM and Bistratified Interneurons in the
CA1 Microcircuit; Pouille and Scanziani, 2004; Müller et al., 2012;
Royer et al., 2012).

A recent pioneering in vivo study demonstrated how the path-
way specific inhibition mediated by putative O-LM cells may be
relevant for behavior. In a fear conditioning experiment, Lovett-
Barron et al. (2014) associated an environmental context with an
aversive event. One important finding was that the discrete sen-
sory information about the environment is conveyed to the CA1
pyramidal neurons’ dendritic tuft from the EC. This sensory infor-
mation is integrated with context related information, contributed
by the CA3 input to the proximal dendrites of CA1 pyramidal
neurons. The authors find that the association with an aversive
stimulus can only be successful when the discrete sensory informa-
tion to the tuft dendrites is excluded by inhibition. This function
could be achieved by the O-LM cells, which selectively inhibit the
information from the EC about the discrete sensory cues (Lovett-
Barron et al., 2014). To examine this idea, Lovett-Barron et al.
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(2014) optogenetically targeted SST positive interneurons. Indeed,
inactivation of SST positive interneurons during conditioning and
recall prevented learning of the association. Since only a subpop-
ulation of the SST positive neurons were active during the aversive
stimulus, they concluded that this specific task is managed by
a subpopulation of SST positive interneurons, most likely the
O-LM cells. Additionally, they demonstrated that SST positive,
putative O-LM cells, could be driven by cholinergic excitation
from the MSDB. The cholinergic drive was essential to manage
the learning task, and could explain the rather puzzling finding
that the O-LM cells were activated, despite the CA1 pyramidal
neurons, providing the only glutamatergic innervation of O-LM
cells, did not fire during that specific task (Lovett-Barron et al.,
2014). Thus, the additional excitatory cholinergic drive from the
MSDB onto O-LM interneurons in CA1 appears to be necessary
for the association during a fundamental learning task such as fear
conditioning.

In the same study, the authors suggested that other dendrite-
innervating SST positive interneurons, such as the bistratified
cells serve a different function during learning (Lovett-Barron
et al., 2014). Bistratified interneurons are well suited to specifi-
cally counteract Schaffer collateral excitatory input due to their
unique preference for small to medium size dendrites (Klaus-
berger et al., 2004). During sharp wave-ripple episodes in vivo,
the CA3 excitatory input is synchronous and strong, which may
evoke dendritic spiking and associated synaptic plasticity (Remy
and Spruston, 2007; Remy et al., 2009). Specifically, bistratified
cells fire high frequencies and appear to be directly activated by
CA3 input, since they increase their firing already before the ripples
(Klausberger et al., 2003). In this way bistratified cells may coun-
teract the synchronous excitatory input during sharp-wave ripples,
which are thought to be important for memory consolidation
(O’Neill et al., 2010).

CONCLUSION
Even when focusing on only two of the at least 21 different subtypes
of GABAergic interneurons in the CA1 region of the hippocampus
(Klausberger and Somogyi, 2008), the high degree of functional
specialization of interneurons becomes obvious. A general motif
of O-LM and bistratified cell function in the CA1 microcircuit
is the pathway specificity of the dendritic inhibition they pro-
vide. It enables them to balance the impact of excitation from
the EC and CA3 on pyramidal neuron dendrites selectively. The
comparison of inputs from these two major pathways is a charac-
teristic operation of CA1 pyramidal neurons and may be crucially
supported by the activity of O-LM and bistratified cells. Further-
more, the microcircuits in the hippocampus could serve to form
distinct neuronal assemblies encoding for similar information.
Compared to O-LM cells, bistratified interneurons are the more
likely candidate to participate in this function of the hippocampal
microcircuits.

Both O-LM and bistratified interneurons are controlled by the
septo-hippocampal pathway. Cholinergic control by the MSDB
is relevant to master certain behavioral tasks. However, under-
standing the specific roles of the different cell types in the MSDB
projecting onto CA1 interneurons is a very important step, which
still requires extensive research.

In the behaving animal during place-related theta oscillations,
O-LM and bistratified cells may work together, as they fire at
the same phase, and thereby generate global dendritic inhibition.
During gamma oscillations, in contrast, only bistratified cells are
likely to play an important role in transmitting the CA3 dependent
gamma component to CA1. O-LM cells on the other hand, seem
to undertake a unique function during fear learning. Here, their
innervation pattern enables them to selectively silence extrinsic
input from the EC.

Although impressive progress has been made in elucidating the
function of specific interneuron subtypes during behavior, most
of them are still not functionally characterized. New experimental
tools, such as optogenetic targeting of interneurons expressing
unique marker-sets, open up the possibility to control selec-
tive interneurons during behavioral tasks. Optogenetic targeting
allows researchers to investigate the modulation of interneurons
by remote inputs, e.g., inputs from the MSDB, during behavior.
Additionally, genetically expressed calcium indicators in specific
interneuron subtypes will allow the recording of their activity pat-
terns in vivo, and aid in the understanding of how interneuron
activity contributes to specific behaviors.
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