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Summary

1. Environmental variables are often used as indirect surrogates for mapping biodiversity because

species survey data are scant at regional scales, especially in the marine realm. However, environ-

mental variables are measured on arbitrary scales unlikely to have simple, direct relationships with

biological patterns. Instead, biodiversity may respond nonlinearly and to interactions between

environmental variables.

2. To investigate the role of the environment in driving patterns of biodiversity composition in large

marine regions, we collated multiple biological survey and environmental data sets from tropical

NE Australia, the deep Gulf of Mexico and the temperate Gulf of Maine. We then quantified the

shape and magnitude of multispecies responses along >30 environmental gradients and the extent

to which these variables predicted regional distributions. To do this, we applied a new statistical

approach, Gradient Forest, an extension of Random Forest, capable of modelling nonlinear and

threshold responses.

3. The regional-scale environmental variables predicted an average of 13–35% (up to 50–85% for

individual species) of the variation in species abundance distributions. Important predictors differed

among regions and biota and included depth, salinity, temperature, sediment composition and cur-

rent stress. The shapes of responses along gradients also differed and were nonlinear, often with

thresholds indicative of step changes in composition. These differing regional responses were partly

due to differing environmental indicators of bioregional boundaries and, given the results to date,

may indicate limited scope for extrapolating bio-physical relationships beyond the region of source

data sets.

4. Synthesis and applications. Gradient Forest offers a new capability for exploring relationships

between biodiversity and environmental gradients, generating new information on multispecies

responses at a detail not available previously. Importantly, given the scarcity of data, Gradient For-

est enables the combined use of information from disparate data sets. The gradient response curves

provide biologically informed transformations of environmental layers to predict andmap expected

patterns of biodiversity composition that represent sampled composition better than uninformed

variables. The approach can be applied to support marine spatial planning and management and

has similar applicability in terrestrial realms.
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Introduction

Many nations now embrace a broader ecosystem-based

approach to management (EBM, Garcia et al. 2003) to

address concerns about sustainability in response to increasing

anthropogenic pressures on the marine environment. EBM

includes conservation of biodiversity and strategies such as

marine spatial planning and marine protected areas (MPAs).

As on land, environmental mapping is a necessary foundation

for EBM and MPA planning (Cogan et al. 2009). However,

the marine environment is comparatively inaccessible and

expensive to observe and, as a consequence, biological survey

data are often sparse. Given national policy requirements to

implement EBM, the need for bioregional mapping has often

been met using surrogates such as geological or other physical

data (reviewed in McArthur et al. 2010) presented in hierar-

chical classifications (e.g. Greene et al. 1999), expert-derived

regionalizations (e.g. Thackway & Cresswell 1998), or

unsupervised clusterings (e.g. Whiteway et al. 2007). Surro-

gate-basedmaps are assumed to be representative of biological

patterns because an extensive literature on ‘species–environ-

ment relationships’ (SER) has correlated biological patterns

with factors such as depth, substratum, light and others (e.g.

Gray 1974; Snelgrove & Butman 1994; Levin et al. 2001).

However, in developing hierarchical or categorical mapping

schemes, SERs, if used, typically are considered only qualita-

tively or indirectly. There is no certainty that the relative

weighting of environmental variables in the mapping scheme is

proportional to the influence on biological patterns or that

category boundaries imposed on environmental gradients

coincide with substantive changes in assemblage composition.

A more biologically relevant approach is needed to directly

integrate quantitative and continuous biological response

information into bioregional mapping based on environmental

data. More fundamentally, some ecological theories hypothe-

size that species distributions, abundances and compositions

are determined by environmental tolerances and resource pref-

erences, while others emphasize alternative drivers such as

historical events, connectivity, recruitment and species interac-

tions. A more comprehensive approach to quantifying multi-

species responses to environmental gradients will therefore

make an important contribution to the basic understanding of

the drivers of biodiversity composition patterns (‘beta diver-

sity’, Whittaker 1972), as proposed by Legendre, Borcard &

Peres-Neto (2005).

Several existing methods can link biodiversity patterns with

environmental data for ecological and management applica-

tions. For example, constrained canonical correspondence

analysis (CCA, ter Braak 1986) uses a multiple linear regres-

sion framework to fit an ordination of chi-squared distances of

site-by-species data as a function of linear combinations of

environmental variables; and generalized dissimilarity

modelling (GDM, Ferrier et al. 2007) uses a generalized linear

modelling framework to fit Bray–Curtis dissimilarities between

sites as a linear combination of spline functions of environmen-

tal differences between sites. Tomore fully explore the patterns

and magnitude of changes in species composition along

environmental gradients, we applied a new more flexible

nonparametric approach, Gradient Forest (http://r-forge.r-

project.org/projects/gradientforest/), developed by Ellis, Smith

& Pitcher (2012) for our application here. The new method

extends Random Forest (Breiman 2001), which fits an

ensemble of regression tree models between individual species

abundance and environmental variables. From these, Gradient

Forest accumulates standardized measures of species changes

along the gradients for multiple species and uses them to build

empirical nonlinear functions of compositional change for

each variable. Thus, Gradient Forest is a new exploratory tool

for ecological investigations, the statistical foundation for

which is presented in Ellis, Smith & Pitcher (2012) who also

compare technical aspects of this new method with those of

some existingmethods.

Here, we present the first ecological application of Gradient

Forest, analysing multiple large-scale seabed biodiversity sur-

vey data sets with the overall goal of contrasting and interpret-

ing compositional responses along environmental gradients

among three different marine regions. The standard Random

Forest method can address our first two specific objectives: (1)

to quantify the overall extent to which environmental variables

can predict distribution patterns; and (2) to quantify the

importance of each variable to the predictions (but see meth-

ods re conditional importance). Gradient Forest adds the tools

necessary to address our next two objectives: (3) to explore the

empirical shape and magnitude of changes in composition

along environmental gradients; and (4) to identify any critical

values along these gradients that correspond to threshold

changes in composition. The consistency of these patterns and

thresholds across regions, which is of particular interest in ecol-

ogy and its applications, is examined herein. We also illustrate

how Gradient Forest outputs, having integrated biological

information, provide improved use of surrogates for biore-

gional mapping applications with an example map for one of

our study regions.

Materials and methods

REGIONAL B IOLOGICAL DATA SETS AND

ENVIRONMENTAL VARIABLES

We collated biological and environmental data sets from three regio-

nal-scale (2–5 · 105 km2) marine ecosystems: the continental shelf of

the Great Barrier Reef system (GBR), the Gulf of Maine area

(GoMA) and the deep Gulf of Mexico (DGoMx) (Table 1). The bio-

logical data sets comprised site-by-species abundance data from sea-

bed trawl, epi-benthic sled and ⁄ or grab ⁄ core surveys considered

representative for characterizing assemblages at meso-scales (10s km)

(see Appendix S1 in Supporting Information for details and data

sources). All data were standardized for sampling effort and

log(x + min(x,x > 0)) transformed, and surveys of different

device types, seasons or time periods were analysed separately. The

physical, geological and environmental data sets comprised the most

comprehensive suite to date of available marine variables considered

potentially important for influencingmarine species distributions and

composition at meso-scales, including attributes of bathymetry,

sediments, water chemistry and ocean colour (see Appendix S2 in

Supporting Information for code definitions, descriptions and data

sources). Values of the environmental variables were matched by spa-
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tial position to the sites sampled for biological data – herein, these are

called predictors and their observed ranges are called gradients.

We selected available environmental variables relevant to the appli-

cation of surrogates for mapping biodiversity patterns at regional

management scales. To be useful as a surrogate in this context, the

predictor variables must be readily available as full coverage layers at

the scales of interest. This goalmay differ from those of purely ecolog-

ical studies, where fine-scale habitat variables may be collected along

with biological data, at the scale of the sites, but these variables may

not be available beyond the sampled sites for larger-scale prediction.

Similar considerations affected temporal aspects of the data. Tempo-

rally varying environmental data were summarized as a climaticmean

and variation; where possible, to coincide with broad periods when

biological surveys occurred to minimize temporal mismatch. While

these broad spatial and temporal data sets may not account for some

fine-scale biological responses, we emphasize that we wished to assess

the performance of regional-scale surrogates for mapping relatively

stable patterns of biodiversity.

Many of the predictors were interpolated in various ways to obtain

full coverage. This inextricably intertwines space and environment;

however, space was not explicitly included as a predictor. Spatial non-

independence was not considered an issue because sites were located

sufficiently far apart to ensure a high likelihood of spatial indepen-

dence of observations in each survey. For example, the GBR sites

averaged c. 13 km apart compared with earlier variogram and corre-

logram studies that indicated local autocorrelation ranged to about

4 km (Pitcher et al. 2007). Similarly, Kraan et al. (2010) found that

residual autocorrelation was negligible beyond c. 2Æ5 km. Further,

supplementary analyses of the GBR data sets incorporating geo-

graphic distance confirmed that space was not an important contribu-

tor (seeDiscussion).

STATIST ICAL APPROACH

Gradient Forest has two components. The first is an extended version

of the RandomForest implementation ofRDevelopment Core Team

(2011) package randomForest (Liaw & Wiener 2002). This parti-

tioning method works by finding, at each tree branch, the split value

on one of the predictors that minimizes the sums-of-squares of the

species abundance in the child branches, that is, maximizes the fit

improvement; but to avoid the instability of individual trees, a forest

of trees (500, in our case) is fitted. Each tree in the forest is fitted to a

random sample (0Æ632, on average) of the observations (the ‘in-bag’),

each split is selected from a different random subset of one-third of

the predictors, and the performance of each tree is cross-validated

against the remaining ‘out-of-bag’ observations. We applied the

extended version (package extendedForest), which additionally

retains all split values and fit improvements for each species, in each

survey data set that had sufficient frequency of occurrence (Table 1;

Appendix S1).

The overall predictive performance of the forest was evaluated by

the proportion of out-of-bag data variance explained (R2) for each

species, which is a robust estimate of generalization error (objective 1,

output 1). The importance of each predictor to model accuracy was

assessed by quantifying the degradation in performance when each

predictor was randomly permuted (objective 2, output 2). However,

where predictors are correlated, as in our data sets, randomFor-

est’s standard marginal importance yields inflated measures of

importance. Alternatively, extendedForest takes a conditional

approach (Ellis, Smith & Pitcher 2012), where each predictor was

permuted only within blocks of observations defined by splits in the

given tree on any other predictors correlated above a specified

threshold (r > 0Æ5), up to a maximum number of splits (floor

(log2(n· 0Æ368 ⁄ 2)), where n = number of sites). Conditional impor-

tance is more robust than marginal importance, nevertheless, corre-

lated predictors can be truly disentangled only by orthogonal

experimentation – infeasible at large regional scales.

The second component, package gradientForest (Ellis, Smith

& Pitcher 2012), collated the numerous split values along each gradi-

ent and their associated fit improvements that were retained by ex-

tendedForest, for each predictor in each tree and each forest. This

information was then used to construct empirical nonlinear functions

of compositional change along each environmental gradient for the

entire assemblage (objectives 3 and 4) as follows. For each species, the

split improvements were standardized by the density distribution of

the observed values of each predictor, to control for nonuniform sam-

pling along the gradients. The standardized splits were then normal-

ized to predictor importance and predictor importances were

normalized to species R2. The standardized and normalized split im-

portances for all species within a survey data set were then combined

along each gradient. Thus, each split improvement was re-expressed

in terms of its contribution to total variance explained by the predic-

tors and each species contributed to the quantification of composi-

tional change in proportion to its variance explained by the

predictors. The location and magnitude of compositional change

along each predictor gradient for each survey was quantified by

frequency distributions of the combined splits (output 3). The

cumulative compositional change along each gradient (in R2 units)

Table 1. Basic statistics for regional study areas and data sets (#sps +ve R2 = number of species with model having a positive R2. See

Appendix S1 for details and sources of biological data sets)

GBR GoMA DGoMx

Sled Trawl Grab Trawl Core Trawl

Area ’000 km2 c. 200 c. 250 c. 500

Depth range m 5–105 7–603 213–3732

#Predictors 29 29 26 27 20 20

#Data sets 1 1 1 4 3 2

#Sites 1189 458 478 5917 85 78

#Species 4240 2899 315 297 2553 637

#sps analysed 616 357 53 157 419 232

#sps +ve R2 405 272 25 127 254 166

Data type Weight Weight Count Count Count Count

Mean R2 (range) 0Æ13 (0–0Æ52) 0Æ22 (0–0Æ67) 0Æ21 (0–0Æ63) 0Æ29 (0–0Æ78) 0Æ22 (0–0Æ72) 0Æ35 (0–0Æ85)

672 C. Roland Pitcher et al.

� 2012 The Authors. Journal of Applied Ecology � 2012 British Ecological Society, Journal of Applied Ecology, 49, 670–679



was quantified by aggregating the normalized splits as cumulative

distributions. These cumulative importance curves were plotted for

each species and for the aggregated composition of each survey

(outputs 4 and 5).

The results from each within-region survey-type were combined,

using a common density standardization for each predictor in each

region, based on the combined density distribution of the observed

values of the predictors across all within-region survey-types. The

standardized splits were normalized and aggregated as above and the

cumulative curves plotted to represent overall within-region composi-

tional change along each gradient. These combined cumulative

importance curves from all regions were also plotted together, for

each predictor, to facilitate the cross-regional contrasts that were the

overall goal of this study.

Results

In this study, we describe the ecological information avail-

able from the outputs of Gradient Forest, beginning with

detailed results for selected predictors in the GBR epi-ben-

thic sled data set. We then compare and contrast key results

from the three regional ecosystems, focussing on the degree

of influence of environmental variables and interpretation of

the shape and magnitude of compositional changes along

their gradients. Detailed description of the within-region bio-

logical results will be the focus of separate regional publica-

tions. Nevertheless, for completeness, the full results for all

survey data sets, each matched with up to 29 regional

environmental predictors, are presented in Appendix S3 in

Supporting Information.

GBR EPI -BENTHIC SLED PATTERNS

Objective 1: Performance: The suite of environmental variables

predicted a relatively modest fraction of the variation in

biomass distributions ofGBRepi-benthic sled species (Table 1,

mean R2 and range, output 1) for which these variables had at

least some predictive capacity (positive R2 in Table 1).

Predictiveperformancemayhavebeen compromisedby factors

such as sampling variability, diurnal, tidal, lunar and seasonal

cycles, weather and other ecological processes (Pitcher et al.

2007).

Objective 2: Predictor Importance: The most important

predictors for these species were sediment grain size fractions,

sediment carbonate composition and tidal current stress

(Fig. 1, output 2). The importance of these factors for driving

distributions of benthic biota is well known (Gray 1974;

Snelgrove & Butman 1994) and these results provide corrobo-

ration at large regional scale. Bottom-water chemistry and

nutrients were of intermediate importance, as were depth and

satellite-sensedpredictors.Often, seasonal ranges (sr) of predic-

tors were more important than their averages (av), suggesting

that environmental variability may drive distributions along

with mean climate. For example, in the case of bottom-water

oxygen, high seasonal range may be indicative of stratification

and seasonally low oxygen levels that may exclude active

species. Aspect (the direction of seabed slope) was the least

important (Fig. 1).

Objectives 3 and 4: Gradient Responses and Thresholds:

The frequency distributions of split importances (output 3)

show that changes in the GBR sled assemblage along environ-

mental gradients were nonuniform. For example, along the

sediment mud gradient, many important splits occurred in the

range c. 0–20%mud (Fig. 2a, grey histogram), indicating that

large changes in species abundance and composition corre-

sponded with small changes in mud content. In the range c.

25–100%mud, splits had low importance, indicating relatively

little compositional change across this broad range of mud

content. Most sites sampled on the GBR shelf had low mud

content (Fig. 2a, red ‘density of data’ line); because of this bias

we also indicate the expected density of splits had the mud gra-

dient been sampled with uniform density (Fig. 2a, blue

line = ratio of observed density of splits (black line) standard-

ized by the data density). Locations on the gradient where the

splits density was greater than data density (ratio > 1,

Fig. 2a) indicate higher relative importance for compositional

change. Similarly, along a gradient of tidal current stress, loca-

tions of high relative rates of assemblage change were around

c. 0Æ4 and c. 0Æ9 Nm)2 (Fig. 2a, blue line), corresponding to

thresholds where currents were strong enough to scour away

fine sediments exposing harder or consolidated substrata suit-

able for the attachment of large sessile fauna. This information

on rates of compositional change (Fig. 2a) has important

applications for identifying category boundaries on gradients

whereGIS-based classification approaches are used for habitat

mapping.

Aspect
B_Irr_sr

Phos_av
Chlor_sr
B_Irr_av
Phos_sr

Slope
Nitr_sr

Chlor_av
K490_av
K490_sr

Nitr_av
Oxyg_av
Temp_sr
Oxyg_sr
SST_sr

Salin_av
Salin_sr

Temp_av
Depth

Trawl_Eff
SST_av
Silic_av
Silic_sr

Sand
Carbonate

Stress_T
Gravel

Mud

R2 weighted importance

0·000 0·004 0·008 0·012

Aspect of slope
Benthic irradiance sr
Phosphate av
Chlorophyll sr
Benthic irradiance av
Phosphate sr
Seabed slope
Nitrate sr
Chlorophyll av
Light attenuation av
Light attenuation sr
Nitrate av
Oxygen av

Seabed temperature sr
Oxygen sr

Sea surface temperature sr
Salinity av
Salinity sr
Seabed temperature av
Seabed depth
Trawl effort intensity

Sea surface temperature av
Silicate av
Silicate sr

Sediment % sand
Sed. % carbonate

Tidal current stress
Sed. % gravel

% Mud

Fig. 1. Overall conditional importance of environmental variables for

predicting distributions of GBR epi-benthic sled species, calculated

by weighting the species-level predictor importance by the species R2

and then averaging (av = annual average; sr = seasonal range; see

Appendix S2 for full descriptions of predictors).
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The standardized and accumulated split importance values

show the shapes of cumulative change in abundance of each

species (Fig. 2b, output 4). Changes for individual species var-

ied in magnitude and threshold values along these gradients,

and those contributing to overall compositional change can be

identified. For example, a number of species changed substan-

tially between 0 and 10% mud and several others changed

quite rapidly at c. 20% mud (Fig. 2b). Normalizing all stan-

dardized splits for all species by R2 and accumulating provides

the overall assemblage importance curves (Fig. 2c, output 5)

that relate compositional change to each environmental gradi-

ent. In these nonlinear curves, shallow slopes indicate low rates

of change in species composition, whereas steep slopes indicate

high rates, with thresholds corresponding to more pronounced

transitions between assemblages.

REGIONAL PATTERNS AND CONTRASTS

Objective 1: Performance: Abundance patterns in the GoMA

and DGoMx data sets tended to be predicted better by the

environmental variables than in the GBR. In all regions, the

trawl-sampled species were predicted better than those sam-

pled with smaller devices (Table 1; Appendix S3-1), possibly

because the larger area sampled by trawls reduced data vari-

ability.

Objective 2: Predictor Importance: The rank-order impor-

tance of predictors differed among the three regions (Table 2)

but was relatively consistent between sampling devices within

regions. Compared with the GBR, depth was important in

both GoMA and DGoMx and spanned a broader range, sug-

gesting that the gradient range of a predictor may influence

its importance outcome. Also unlike in the GBR, in both

GoMA and DGoMx water column parameters were more

important predictors of seabed fauna. For example, remotely

sensed SST and chlorophyll – indicative of circulation pat-

terns, water column mixing and food supply to the benthos

(Pettigrew et al. 1998; Thomas, Townsend & Weatherbee

2003) – were important in GoMA, as was exported particu-

late organic carbon (E.POC) in DGoMx (Wei et al. 2010).

Seabed temperature (Temp_av) was also important in both
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Fig. 2. Key graphical outputs of Gradient Forest for GBR epi-benthic sled along gradients of sediment %mud content and tidal current stress.

(a) Splits location and importance on gradient (histogram), density of splits ( ) and observations ( ) and ratio of splits standardized by

observation density ( ). Each distribution integrates to predictor importance (as per Fig. 1). Ratios >1 indicate locations of relatively greater

change in composition. (b) Cumulative distributions of standardized splits importance for each species scaled byR2; each line denotes a separate

species. (c) Cumulative importance curves showing overall pattern of compositional change (R2) for all species. For other gradients, see

Figs S3-3Æ1, S3-4Æ1 and S3-5Æ1 inAppendix S3.
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regions and is known to influence trawled fish distributions in

GoMA (Perry & Smith 1994). Salinity was moderately impor-

tant in GoMA and highest ranked in DGoMx where it may

indicate different vertical water masses (e.g. Jochens & DiM-

arco 2008). The force of tides was of high importance in the

GBR and in the GoMA, both tidal and wind stress (Stress_T

and Stress_tW) were of moderate importance and are known

to influence biota in this region (Kostylev et al. 2005). Topo-

graphic predictors (e.g. slope, aspect, complexity and BPI)

were unimportant in all regions; however, these had a narrow

range at sites that could be sampled by extractive devices.

Hard, topographically complex habitats are known from

optical sampling to have biotic compositions that differ from

sedimentary habitats (Kostylev et al. 2001; Pitcher et al.

2007) and results from analyses of such data may show

greater importance of topography.

Objectives 3 and 4: Gradient Responses and Thresholds:

The cumulative importance curves for survey-types, some

combined across multiple data sets within regions, plotted

together for all regions (Fig. 3), show strong contrasts in com-

positional responses to environmental gradients among

regions. The results for selected predictors are presented and

discussed in the following paragraphs in decreasing order of

overall importance (per Fig. 3); regional contrasts in responses

along 25 environmental gradients, including seasonal ranges,

are presented in Fig. S3-7Æ1 inAppendix S3.

Along the depth gradient, most compositional changes

occurred shallower than 300–800 m (Fig. 3); a range where

many physiologically important predictors have greatest varia-

tion. The DGoMx samples extended deeper by another

3000 m, over which composition continued to change, increas-

ing the overall importance of depth in that region. In GoMA,

depths of 50–150 m and c. 350 m corresponded with impor-

tant compositional changes. Depth per se was unlikely to be

directly influential but was highly correlated with about one-

third of the other predictors, including those considered influ-

ential, such as salinity, temperature, oxygen and light (Snel-

grove & Butman 1994), and exported carbon (Wei et al. 2010).

The assessment of predictor importance by conditional permu-

tation aimed to account for such correlations, and the remain-

ing importance of depth may be indicative of other influential

factors correlated with depth and not accounted for by other

variables, such as boundaries between different water masses

with different conditions, circulation patterns and species

pools.

Several lines of evidence indicated that the major broad-

scale faunal changes in the regional data sets were linked with

different water masses. Along the salinity gradient (Fig. 3), the

Table 2. Rank-order conditional importance for each predictor, after averaging over species weighted by R2 within each region, by sampling

device (see Appendix S2 for definitions and descriptions of predictors)

GBR GoMA DGoMx

Sled Trawl Grab Trawl Core Trawl

Mud Mud SST_av SST_av Salin_av Salin_av

Gravel Carbonate Depth Depth Depth Depth

Stress_T Stress_T Strat_sum Temp_av E.POC_av Temp_av

Carbonate Trawl_Eff Sand Chlor_av Temp_av Temp_sr

Sand Depth Chlor_sr Salin_av Temp_sr E.POC_av

Silic_sr Sand B_Irr_av Stress_tW Oxyg_av Salin_sr

Silic_av Silic_av Gravel Stress_T E.POC_sr SST_av

SST_av Salin_sr Stress_tW SST_sr Salin_sr K490_sr

Trawl_Eff Salin_av B_Irr_sr B_Irr_sr K490_av Oxyg_av

Depth SST_av Chlor_av B_Irr_av NPP_av SST_sr

Temp_av SST_sr Mud Mud Mud Mud

Salin_sr Gravel SST_sr Temp_sr Slope Sand

Salin_av Temp_av Salin_av Gravel Sand NPP_sr

SST_sr Silic_sr Stress_T Chlor_sr Chlor_av Chlor_sr

Oxyg_sr Oxyg_sr Oxyg_av K490_av SST_av E.POC_sr

Temp_sr Temp_sr K490_sr Sand SST_sr Slope

Oxyg_av Nitr_av Temp_av Salin_sr NPP_sr K490_av

Nitr_av Oxyg_av Stratif_av K490_sr K490_sr Chlor_av

K490_sr K490_sr K490_av Silic_av Chlor_sr NPP_av
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DGoMx composition changed very sharply at 35Æ1–35Æ2&,

possibly reflecting limited exchange between Antarctic Inter-

mediate Water transported into the Gulf of Mexico by the

Loop Current beneath a warmer high-salinity water mass (Jo-

chens & DiMarco 2008). In the GoMA, composition changed

more gradually over a c. 4& range of salinity (Fig. 3) with

trawl composition changing more steeply at c. 34–35&, corre-

sponding to the transition to upper slope water at the shelf

edge (Flagg 1987) and in deeper waters within the interior of

the Gulf (Ramp, Schlitz & Wright 1985). A small step change

in the GBR data sets at c. 36Æ2& also corresponded with the

shelf edge. Along the SST gradient, the GoMA seabed assem-

blage changed very steeply at c. 12 �C (Fig. 3), where warmer

northwards-flowing Gulf Stream-influenced waters in south-

ern offshore areas transition to cooler southwards-flowing

boreal-influenced waters north and inshore. This steep change

corresponds closely with the well-known provincial transition

in the region (Briggs 1974), which reflects patterns of connec-

tivity for sessile and sedentary benthic biota (Jennings et al.

2009). In contrast, SST was of moderate to low importance in

the GBR and DGoMx. In DGoMx, SST corresponded with

other depth-correlated gradients, and in the GBR, a slightly

steeper change at c. 24Æ5 �C separated the southernmost sec-

tion, where some subtropical species occur, frommore tropical

assemblages to the north. Along the seabed temperature gradi-

ent (Fig. 3), the DGoMx and GoMA trawl data sets showed

strong compositional changes through c. 7–10 �C; a range

known in the GoMA to influence the distribution of several

fish species (Perry & Smith 1994) and benthic assemblages

(Mountain, Langton &Watling 1994). The GBR composition
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Fig. 3. Cumulative importance curves (R2) for selected predictors available in two or more regions, in order of overall importance, showing con-

trasting compositional responses along gradients among regions (av = annual average; see Appendix S2 for full descriptions of predictors; see

Fig. S3-7Æ1 inAppendix S3 for other predictors, including seasonal ranges).
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changedmuch less over a similarly wide range ofmuchwarmer

seabedwater temperature.

Along the sediment mud gradient, the GBR trawl and sled

compositions changed more than the other regions (Fig. 3),

with greatest change at 0–20% as noted earlier. The GoMA

trawl composition changed more gradually, with a slight step

change at c. 15%mud. The other data sets showed less overall

response, with modest changes where mud content was high.

Along the tidal stress gradient (Fig. 3), the composition of

bothGoMA survey-types tended to have small step changes at

values similar to theGBRdata sets, with similar overall impor-

tance (Fig. 3; see also subsections S3-3 and S3-5 withinAppen-

dix S3).

On the oxygen gradient (Fig. 3), themost important changes

occurred at c. 4–5 ml l)1. While this range is above the thresh-

old commonly accepted for hypoxic conditions (c. 2 ml l)1),

sublethal effects can occur at higher oxygen levels, including

distributional responses (Vaquer-Sunyer & Duarte 2008). In

this respect, a threshold for oxygen in the DGoMx trawl com-

position (at c. 5 ml l)1) is greater than that for the box core (at

c. 3 ml l)1), possibly indicating preference for higher oxygen

among active trawled species compared with sedentary species

in the cores (cf. Vaquer-Sunyer&Duarte 2008).Along the rela-

tive benthic irradiance gradient (Fig. 3), the GoMA composi-

tion showed a step change at very low light levels separating the

few sites located in shallow water from the remainder. Along

the chlorophyll and light-attenuation gradients (Fig. 3), the

GoMA trawl composition changed most, corresponding to

higher productivity coastal and inshore andGeorges Bank sites

vs. other areas (Thomas,Townsend&Weatherbee 2003).

Discussion

Gradient Forest provides several new benefits for exploring

multi-species composition. It inherits the strengths of univari-

ate Random Forest, including predictive performance, auto-

mated model selection, accounting for complex interactions,

few data assumptions and does not require specialist model

building skills (for a full discussion, see Ellis, Smith & Pitcher

2012). Gradient Forest extends these strengths to multiple spe-

cies, providing a nonlinear and highly flexible method for

quantifying details of compositional change along gradients,

including thresholds. Further, because dimensionless R2 is

used to quantify change, information from multiple data sets

can be combined, even if disparate sampling methods have

been used. Thus, Gradient Forest uniquely is able to identify

steep compositional thresholds along gradients; for example,

on salinity in DGoMx, on SST in GoMA and on mud and

tidal stress in the GBR. Nevertheless, like all existing methods

used for similar purposes, Gradient Forest is correlative and

the results do not imply causal relationships.

The approach is also not guaranteed to have high perfor-

mance if SER are weak or sampling variability is great, despite

the power of the underlying Random Forests. In our analyses,

the abundance of almost one-third of species showed no pre-

dictable relationship with the environmental variables and for

those species that did these variables predicted an average of

only 13–35% of the variation in their abundance distributions

(R2, Table 1) but>50% for some species in all data sets (maxi-

mum = 85%). Our use of broad spatial and temporal scale

environmental layers as predictors, rather than fine-scale fac-

tors, may have contributed to the low variance explained for

most species and is an important reality check about the use of

such surrogates. Nevertheless, our results are not unusual for

marine benthic studies; for example, generalized linear models

of 850 species in theGBR data set performed similarly (Pitcher

et al. 2007) and other model comparison studies (e.g. Elith

et al. 2006) found that only half of the species analysed had

useable models and few had strong models, even for tree-

ensemble models that performed best. Further, our R2 results

are for cross-validated prediction performance on out-of-bag

samples, which is more conservative than explained variation

of fit to in-bag samples. In addition, we analysed abundance

data because it incorporates more detailed compositional

information, but also more variability, within survey data

compared with presence ⁄absence data. Finally, although the

environmental variables were imprecise for predicting local

abundance, at larger scales the effects of local heterogeneity are

averaged out and broad patterns become more predictable

(Wiens 1989); hence, environmental surrogates remain useful

for broad-scale bioregionalization.

Clearly, however, the environment is often not the primary

driver of species distributions and compositions. We note that

spatial processes per sewere not important at the scales analy-

sed (e.g. analyses of the GBR data set, using GDM with and

without geographic distance, indicated that space alone – over

and above spatially structured environment – explained

<0Æ1% of deviance; C. R. Pitcher, unpublished data). Our

results support the likelihood of multiple drivers of species dis-

tributions contributing to beta diversity patterns; some species

appear to be strongly environmentally driven, whereas others

only partly or not at all. The distributions of these latter species

may be driven by other processes such as missing or finer-scale

predictors, historical events, connectivity, recruitment variabil-

ity and species interactions (e.g. predation, competition and

facilitation). Spatial planning and management activities need

to consider these other processes that also drive biodiversity

patterns.

Combinations of environmental predictors were associated

with biodiversity composition patterns, and their relative

importance differed among regions. Although we collated

extensive regional data sets as available for these comparisons,

they were not fully orthogonal in terms of gear types (e.g. ben-

thic sledwas available only for theGBR) or the groups of biota

identified (e.g. primarily fishes in GoMA trawls, whereas

DGoMx trawls included many invertebrates and GBR sled

samples also included plants). These differences almost cer-

tainly contributed to the contrasting shapes of compositional

responses we observed among the three regions. The biggest

differences, however, were that both North American study

regions spanned provincial transitions (vertically in GoMx,

mostly horizontally in GoMA), whereas the GBR did not. The

substantial compositional changes across these transitions

were detected by sharp thresholds located on gradients of
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primarily salinity or SST, and depth, which were surrogates for

different water masses. The limited consistency among

responses observed here, suggest there may be limited scope

for extrapolating biophysical relationships beyond the source

region of the informing data sets.

Within regions, the cumulative importance curves that

quantify gradient response shapes and thresholds can be used

as biologically informed transformations of broad-scale envi-

ronmental data layers to map expected patterns of biodiversity

composition. The procedure for this follows the example pro-

vided by Pitcher, Ellis & Smith (2011). After transformation by

the cumulative importance curves, the principal components

of the transformed predictors provide a multidimensional rep-

resentation of variation in composition that is constrained by

relationships between the species and their environment. This

approach is akin to community analyses commonly practiced

in ecology (e.g. constrainedCCA, ter Braak 1986), but involves

a flexible nonlinear method rather than linear models. Conse-

quently, the Gradient Forest outputs represented biodiversity

composition patterns c. 25–50% better than could be achieved

with uninformed, standardized environmental variables

(Appendix S4 in Supporting Information). An example map

for theGBR (Fig. 4) shows a continuous representation of bio-

diversity composition patterns encompassed by the first two

dimensions of a biologically transformed environment space.

If required, this continuous representation can be clustered to

map expected assemblages.

Maps representing expected patterns of regional biodiversity

composition have important applications for EBM, including

marine spatial planning and conservation planning such as

MPAs. Characterizing andmapping themarine realm for these

purposes, using robust statistical techniques such as Gradient

Forest, which can directly integrate quantitative biological

response information into mapped environmental variables, is

a necessary initial approach that will assist the current global

need for precautionary management. Such techniques can also

identify areas of prediction uncertainty and data gaps to target

and facilitate sampling design, including stratification, of future

marine biodiversity surveys. In these marine applications, as

for terrestrial environments, there is a need to maximize the

utility of existing biological and environmental data sets given

the cost of new surveys. This utility is where Gradient Forest’s

ability to integrate quantitative results acrossmultiple disparate

surveys – contemporary and ⁄or historical, including those that
used different sampling methods – is of great value, with wider

applicability beyond ourmarine example.

Gradient Forest provides new detail about SER and compo-

sitional changes along gradients, relevant to hypotheses about

the drivers of beta diversity and for predicting patterns of biodi-

versity composition. The strengths and new capabilities ofGra-

dient Forest complement those of existing methods that

explore relationships between composition and environment,

such as constrained CCA and GDM. These three methods are

difficult to compare directly because of their contrasting tech-

niques and different diagnostics; also there is no standard mea-

sure of compositional patterns to serve as a benchmark. The

compositional patterns obtained from mapping the Gradient

Forest results for the GBR here were similar to patterns

obtained from comparable mapping of results from constrained

CCA andGDManalyses (C. R. Pitcher, unpublished data), but

a full comparison is beyond the scope of this study and detailed

comparisons on the same data sets would be valuable.

Our first analyses in three large, strongly contrasting marine

regions did not reveal ‘global’ consistencies in compositional

responses along environmental gradients that may have led to

generalizable transformation functions to improve first-order

bioregional mapping in jurisdictions lacking comprehensive

biological survey data. However, our study presented a very

harsh test. Further analyses of additional data sets, including

multiple sampling devices, biotic groups, environmental gradi-

ents and regions are required for filling gaps in data types and

predictor ranges to broaden the information available on bio-

physical relationships for marine assemblages. Accumulation

of these additional results will further our understanding of the

drivers of compositional change along environmental gradi-

ents and their use as surrogates for biodiversity.
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