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Lactobacillus elicits a 'Marmite effect' on the chicken cecal
microbiome
Angela Zou1,2, Shayan Sharif3 and John Parkinson1,2,4

The poultry industry has traditionally relied on the use of antibiotic growth promoters (AGPs) to improve production efficiency and
minimize infection. With the recent drive to eliminate the use of AGPs, novel alternatives are urgently required. Recently attention
has turned to the use of synthetic communities that may be used to ‘seed’ the developing microbiome. The current challenge is
identifying keystone taxa whose influences in the gut can be leveraged for probiotic development. To help define such taxa we
present a meta-analysis of 16S rRNA surveys of 1572 cecal microbiomes generated from 19 studies. Accounting for experimental
biases, consistent with previous studies, we find that AGP exposure can result in reduced microbiome diversity. Network
community analysis defines groups of taxa that form stable clusters and further reveals Lactobacillus to elicit a polarizing effect on
the cecal microbiome, exhibiting relatively equal numbers of positive and negative interactions with other taxa. Our identification
of stable taxonomic associations provides a valuable framework for developing effective microbial consortia as alternatives to AGPs.
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INTRODUCTION
The association of antibiotic growth promoter (AGPs) usage with
antimicrobial resistance is prompting the poultry industry to seek
alternative feed supplements.1 AGPs are used to increase
production efficiency and reduce flock infections.1 While their
precise mode of action is not known, AGPs are thought to work
through altering the microbial community (microbiome) in the
livestock gastrointestinal tract.2 Currently, interest lies in finding
combinations of previously identified probiotics that can be used
to promote the development of a healthy microbiome. To better
understand stably associating taxa, we present a meta-analysis of
published 16S rRNA surveys of the chicken ceca to identify key
interactions/influencers in the chicken cecal microbiome. Previous
publications have reported microbiome responses under a variety
of conditions; including the effects of feed additives, Eimeria
challenge, and breeding conditions. However, experimental biases
of individual studies have led to conflicting results, especially
when investigating the effects of AGPs.3 By combining datasets, it
may be possible to discern general patterns of microbiome
behaviour that are consistently found across all studies.

RESULTS AND DISCUSSION
Limitations of technical biases on microbiome meta-analyses
16S rRNA gene sequences from 1572 chicken cecal samples were
collated from 19 studies (Supplementary Table 1). We assigned
~22 million 16S rRNA gene sequences to 3300 OTUs (See
Supplemental Information). Consistent with previous studies,4

Bacteroidetes, Firmicutes, and Proteobacteria were the dominant
phyla, with relative proportions varying by breed (Fig. 1a and
Supplementary Fig. 1). Relative to other breeds, broilers from
commercial primary breeders, Cobb and Ross, exhibited similar

profiles albeit Cobb exhibited a higher proportion of Christense-
nellaceae and Lactobacillus. Of the two layers included in this study
(White leghorn and Lohmann), the microbiome profile of
commercial Lohmann layers closely resembled the profiles of
Chinese Tibetan chicken samples, which were sequenced and
extracted by the same study, potentially reflecting study bias.
Indeed, PCoA revealed that microbiome structure segregated by
individual studies (Fig. 1b, Supplementary Fig. 2), suggesting they
may be influenced by technical biases present, similar to the
results of other microbiome meta-analyses.5,6

Moreover, sequencing region strongly influenced alpha diver-
sity comparisons; we observed that AGP-treated samples
sequenced using the V4, V3, and V6-V8 hypervariable regions
exhibited significantly higher diversity (t-test; p-value < 0.05) than
non-AGP-treated samples, most of which were sequenced by V1-
V3 and 454 Roche (Supplementary Fig. 3). However, after
partitioning data based on the region of the 16S rRNA gene
targeted for sequencing, AGP-treated samples consistently display
equal or lower diversity compared to control groups regardless of
hypervariable region used (Supplementary Fig. 4, Supplementary
Table 2), consistent with previous studies. Given that different
regions of the 16S rRNA gene vary in length and sequence
diversity,7 it is not unexpected that phylogenetic resolutions and
subsequent within-diversity analysis were also found to differ for
each region (Supplementary Fig. 3). Furthermore, sequencing
platforms differ in error rates and sequencing depth, both of
which were found to impact the number of OTUs detected within
a sample (Supplementary Fig. 3). This is consistent with findings
from other meta-analyses5,8 and highlights the need to be
cautious when interpreting results from 16S rRNA-based meta-
analyses, particularly when datasets may be generated using
different methodologies.
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Fig. 1 Microbial diversity of 1572 cecal samples from chicken. a Relative abundance of the most abundant genera by chicken breeds. Number
on top of bars represent the number of sequencing samples for each breed, note that certain samples are pooled from multiple chicken cecal
samples (see supplementary table 1). Only taxa present at greater than 1% were included. b Principal-coordinate analysis plot of unweighted
UniFrac distances coloured according to hypervariable region. Numbers in brackets are the number of samples sequenced using each
hypervariable region
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Co-occurrence network identifies unstable microbial clusters
To identify groups of microbes that co-exist in natural commu-
nities, we constructed a network of taxonomic associations (See
Supplemental Information). In general, we found that Lactobacillus
strains are negatively correlated with Ruminococcaceae and

Lachnospiraceae strains, and instead form positive associations
with other Lactobacilli, Bacteroides and Christensenellaceae (Fig.
2a). Moreover, the network is scale-free (Supplementary Fig. 5), i.e.,
the network is dominated by a limited number of taxa exhibiting a
large number of connections that have a major influence on
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community structure, together with large numbers of taxa with
relatively few connections. To define groups of well-connected
microbes, we clustered taxa based on patterns of co-occurrence
(Figs. 2b, c). Two clusters (clusters 5 and 6) were largely composed
of Lactobacillus strains together with a more restricted set of
Bacteroides, Ruminococcaceae, and unclassified Bacteroidales.
Interestingly, both clusters exhibited negative correlations with
several clusters dominated by Clostridiales (clusters 1, 2, 3, 4, 7 11).
These negative associations may reflect the presence of members
of Mollicutes, Ruminococcaceae UCG-014, Clostridiales (vadinBB6),
and Christensenellaceae R-7 group, which are absent in the four
other Clostridiales-dominated groups (clusters 8, 9, 12 and 13) with
which no negative associations were observed.
Previous studies have suggested that microbiomes may be

classified into enterotypes based on the co-occurrence of discrete
groups of taxa.9 We therefore attempted to classify chicken ceca
microbiome into enterotypes by determining whether these
clusters were recapitulated in individual samples (Supplementary
Fig. 6). Consistent with a recent study in humans, which suggests
that enterotypes are an artefact of analysis,10 we found only a
small fraction of samples captured all members of any one cluster.
For example, only clusters 5 and 6 had at least 25% of their
members present in more than 20% of the samples. This suggests
that the cecal microbiomes are not readily classified into distinct
enterotypes, but rather display considerable variability in taxo-
nomic interactions.

Lactobacillus has a polarizing effect on community composition
Therefore, instead of defining stable consortia through cluster
memberships, we were interested in identifying keystone taxa in
the cecal microbiome. The removal of species with a high number
of interactions (hubs) has been known to significantly impact
microbiome structure.11 Here, we extend this finding to form the
hypothesis that the most influential taxa are likely to form many
positive and negative associations with other taxa. We correlated
the types of associations (positive or negative) of each taxon with
its “hubness” (Fig. 2d). Remarkably, the vast majority of taxa
displaying relatively large numbers of both negative and positive
associations were Lactobacilli, suggesting a major influential role
for this taxon in the cecal microbiome. This finding was consistent
across studies for which Lactobacillus was present in 10% or more
samples, i.e., studies based on sequencing V1-V3 or the V6-V8
regions of the 16S rRNA gene (Supplementary Figs 7, 8 and 9).
While we showed above that cecal microbiomes are not readily
classified into distinct enterotypes, the presence of Lactobacilli in
clusters 5 and 6 may nonetheless help establish stable sub-clusters
of taxa identified in a significant proportion of samples. For
example, we note that at least 30% of the 1572 samples contain at
least 25% of the members assigned to clusters 5 and 6
(Supplementary Fig. 6). Further, Lactobacillus dominates the most
widely represented combinations of OTUs found across samples
(Supplementary Table 3).
Despite experimental biases affecting our conclusions concern-

ing the influence of different treatments on microbiome diversity,

we find that Lactobacilli elicit a “Marmite effect” on other members
of the cecal microbiome, so named after the British yeast-based
spread known for producing a polarized “love/hate” reaction
amongst consumers. This potential to influence community
composition may partially explain the prominence of Lactobacillus
strains as probiotics targeting foodborne infections.12 Through
defining stable taxonomic associations, this study will help guide
development of synthetic microbial consortia to promote gut
health in chickens.

METHODS
Collation of chicken cecal datasets
Survey sequence data from 19 chicken cecal studies published before 31
May 2017 were collated prior to meta-analysis to identify strains associated
with healthy chickens (Supplementary table 1). Studies were identified
through a systematic literature search using the terms “chicken cecal
microbiome”, “chicken microbiome”, “chicken gut microbiome”, “broiler
microbiome”, and “layer microbiome” on NCBI PubMed13 and Google
Scholar, and the terms “poultry”, “chicken”, “broiler”, “layer” on the online
server MGRAST.14 To be included in the meta-analysis, the study needed to
be: (1) based on 16S rRNA survey sequence data (irrespective of
hypervariable region used); (2) publicly accessible; and (3) have associated
relevant metadata and sequence quality score information. Of 37 studies
initially identified, only 19 passed the aforementioned criteria. All data
were either found in the supplementary data of publications, the online
server MGRAST,14 NCBI SRA,13 or the European Nucleotide Archive.15

Processing of 16S rRNA gene sequences and data analysis
To maintain consistency across analyses, all datasets were processed using
the QIIME package. For Illumina-generated datasets, paired-end reads were
joined with fastq-join with an allowed maximum difference of 15 % and a
minimum overlap of 35 bp. Split_libraries_fastq.py command truncated
reads following three consecutive base calls with a Phred score of <20, and
then discarded reads whose length were <75% of their original length
following truncation. A custom script, suggested by QIIME developers
(https://gist.github.com/walterst/ab88ae59a8900a2fa2da), was used to
locate and truncate forward and reverse primers. For datasets generated
by the 454 FLX Roche platform, fastq files were first converted to fasta and
qual files, the split_libraries.py script removed primers, filtered out reads
with homopolymer runs greater than 6, an average Phred score < 25, and
read lengths outside of designated ranges. Appropriate read lengths for
each dataset were based on expected read length of the hypervariable
region being sequenced. Sequences were clustered into operational
taxonomic units (OTUs) at 97 % similarity against the SILVA database16

(v128) using the pick_closed_reference_otus.py script from QIIME with
reverse strand matching enabled. QIIME was also used to conduct
microbial composition and diversity analyses. Alpha diversity was assessed
using the Shannon and Chao1 index, beta diversity was assessed using the
unweighted and weighted UniFrac distances. Non-parametric t-test was
used for alpha diversity comparisons, p-values were adjusted for multiple
correction using the Benjamini-Hochberg false discovery rate.17 Spearman
correlations were computed between breeds using their taxonomic
profiles, and breeds were clustered using the Cluster 3.0 software (the
settings used were average linkage and correlation-centred).

Fig. 2 Co-occurrence network and analysis of OTUs chicken cecal samples. a Co-occurrence network built with SparCC with nodes
representing taxa (as defined by OTUs—see Methods) and edges representing positive (green) or negative (red) associations of co-occurrence
across samples. Thickness and opacity of the edges represent the strength of the correlation and node sizes represent the number of samples
that contain those taxa. Taxa are grouped by family, with major families labelled. Correlations with an absolute value smaller than 0.3 are not
shown. Colour of nodes indicate taxon (see legend), taxa that could not be resolved at the level of genus are noted with preceding order or
family. b Clustered co-occurrence network with only the interactions between clusters shown. Nodes, representing taxa, are organized into a
circular layout according to cluster membership. Each cluster is assigned a number for reference. c Number of taxa shared across clusters. Here
each cluster is depicted as a pie chart with sectors indicating proportion of each taxon. Cluster numbering is consistent with (b). Edges
between clusters indicate that there are taxa shared between clusters, thicker and darker edges represent more shared taxa. d Scatter plot of
ratio of negative to positive interactions against degree for every taxon. Taxonomic labels down to the species level were obtained from
sequence similarity searches against partitions of the NCBI’s non-redundant nucleotide database (see Supplemental Information)
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Co-occurrence network generation and clustering analysis
SparCC18 was used to generate all correlation networks. The correlation
network with all samples included was built for OTUs that had more than
100 reads. Correlation networks for individual studies sequenced by Roche
454 were generated for OTUs that had more than 10 reads, while
correlation networks for studies sequenced by Illumina MiSeq were
generated for OTUs with more than 200 reads (Each Illumina MiSeq sample
had approximately 20 times more coverage depth than Roche 454 sam-
ples). SparCC was run with 100 bootstraps to detect correlations between
OTUs, correlations with p-values less than 0.05 were considered significant.
To improve our understanding of relationships between co-occurring
OTUs, ClusterONE19 was employed to cluster OTUs into groups on the
basis of positive correlations of co-occurrence using default settings. The
interaction score between two clusters was computed by taking the mean
of all interaction scores between the OTUs within the two clusters. In the
final clustered network, rare genera (defined as those with less than 15
OTUs) are grouped under higher level classifications (order or family) to
reduce the complexity of the figure. The correlation network is visualized
using the software Cytoscape (3.6.0).20 Clustered network, proportion
stacked bar, charts and scatter plots where generated with matplotlib in
Python 3.6. The code is available on the Parkinson Lab github account
(https://github.com/ParkinsonLab/metaanalysis-chicken-ceca-paper).
When identifying specific species for select OTUs, OTU sequences were
compared against their own reference databases (e.g., Lactobacillus
sequences were only aligned with other Lactobacilli sequences in NCBI’s
non-redundant nucleotide collection database13 using BLAST.21 The eclat
function from the arules R package22 was used to determine the
combinations of OTUs that are present in the most samples.

DATA AVAILABILITY
All datasets analysed during the current study are included in the published articles
listed in Supplementary Table 1.
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