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A B S T R A C T   

This article explores on a stochastic couple models of ion sound as well as Langmuir surges 
propagation involving multiplicative noises. We concentrate on the analytical stochastic solutions 
including the travelling and solitary waves by using the planner dynamical systematic approach. 
To apply the method, First effort is to convert the system of equations into the ordinary differ
ential form and present it in form of a dynamic structure. Next analyze the nature of the critical 
points of the system and obtain the phase portraits on various conditions of the corresponding 
parameters. The analytic solutions of the system in an account of distinct energy states for each 
phase orbit are performed. We also show how the results are highly effective and interesting to 
realize their exciting physical as well as the geometrical phenomena based on the demonstration 
of the stochastic system involving ion sound as well as Langmuir surges. Descriptions of effec
tiveness of the multiplicative noise on the obtained solutions of the model, and its corresponding 
figures are demonstrated numerically.   

1. Introduction 

Unpredictability and fluctuations have recently been a much more interesting research area in the context of wave phenomena in 
nature. Reducing arbitrary fluctuations of waves and signals played a significant role in the fields of electromagnetic theory, signal 
processing, biological behaviors as neutral agents, finance system, oceanography nonlinear optic and many engineering applications 
[1–5]. The models, which reflect the random fluctuations with times, are mostly connected to the stochastic differential systems [6,7]. 
Most of such systems are high frequencies and have unique characteristics in the form of ion sound wave with random amplitudes that 
occurs under the action of ponder-motive force. Thus, it is one attractive attention to study ion noise as well as Langmuir solitonic 
surges amid to their different behaviors. Due to this purpose, we concentrate our attention on the system of stochastic dynamical 
models for the ion noise in addition Langmuir surges [8,9] including multiple racket during Ito logic. The stochastic dynamical couple 
models (SDCMs) of ion noise together with Langmuir surges is given by, 
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Ftt − Fxx − 2
(
|G|

2
)

xx
= 0

iGt +
1
2
Gxx − GF = iκGεt

(1)  

where F(x, t) and Geiwpt , κ and ε(t) as sign the normalized density perturbation and electric region to the Langmuir wavering, sound 
potency and the usual Wiener progression, respectively. We assume that the racket is an invariable throughout the overall space. One 
dimensional model for Langmuir instability has been derived in Ref. [8], which coincides to the model (1) treated as κ = 0. Langmuir 
solitons and various types of solutions of distinct nature have been done [9–12]. In fact, the weak Langmuir turbulence was also 
investigated by Musher [9], and Langmuir collapsed under pumping with energy dissipation was done by Degtiarev et al. [10]. Two- 
and three-dimensional Langmuir collapse systems have been numerically studied by Dyachenko et al. [11] and Zakharov et al. [12] 
respectively. Yajima et al. [13] was formed solitonic interaction solutions of the Sonic-Langmuir wave model with ion-acoustic waves 
through the inverse scattering approach. However, there are huge new techniques to derive various exact dynamical solutions to the 
nonlinear complex models literally, in particular, the Jacobi elliptic function expansion [14], the Improved Kudryashov [15], the 
modified simple equation [16], the variational iteration [17], the modified piecewise variational iteration [18], the tan 
(φ/2)-expansion [19], the Riccati-Bernoulli sub-ODE function [20], the Petrov-Kudrin-Xiong [21], the first integral method [22], the 
finite difference [23], the exp( − φ(η))-expansion [24], the Hirota bilinear [25–27], the sumudu homotopy perturbation [28], Ado
mian’s decomposition [29], the (G′/G)-expansion [30,31], the unified [32,33] and the bifurcation scheme with theory of dynamic 
systems approach [34,35], which have been effectively employed to obtain new travelling brandish solutions of complex nonlinear 
precise models. Among these methods, the bifurcation as well as theory of dynamic structures approach are one most qualitative as this 
can derive the exact solutions according to the energy orbits of their phase portraits. Besides, stochastic soliton of stochastic nonlinear 
models are highly investigated by recent young scientists [36–39] to reducing arbitrary fluctuations of wave’s amplitudes. It is still 
unexplored the stochastic wave solution following each energy orbits of phase portraits from Hamiltonian of the model. 

Thus, we sport light on the stochastic model (1) to establish more new dynamical stochastic solutions including the travelling and 
solitary wave solutions according to each energy orbit for various phase portraits depending on distinct parametric conditions of the 
mode by using the planner dynamical systematic approach. The analytic solutions of the system would like to achieve and illustrate 
graphically with impact of noise. 

2. The ODE structure of the model 

Due to obtain travelling surges of SDCM Eq. (1), we first utilize the subsequent complex renovation, 

G(x, t)= v(ξ)e(iΦ+κε(t)− κ2 t), ξ=wx+ st and Φ= px + ht, (2)  

where p, h, s,w are nonzero constants and v is a deterministic function. 
Plugging Eq. (2) together with its various derivatives into the second equation of (1), we attain to (real part only) 

1
2
w2v′′ −

(
1
2

p2 + hv
)

− vF = 0. (3) 

We now take the advantage of F(x, t) = U(ξ), ξ = wx+ st, it leads to 

Ftt = s2U′′,Fxx = w2U′′. (4) 

Inserting now Eq. (4) into the first equation of (1) reaches to 
(
s2 − w2)U′′ − 2w2( v2)′′e2κε(t)− 2κ2 t = 0. (5) 

Taking expectation on both sides, we obtain 
(
s2 − w2)U′′ − 2w2( v2)′′Ee2κε(t) = 0, (6)  

here U as well as v are functions to be resolved later. As ε(t) is the typical usual random function, we can choose E(eδε(t)) = eδ2
2 t for any 

real invariable δ into Eq. (6), which yields 
(
s2 − w2)U′′ − 2w2( v2)′′ = 0. (7)  

After two times integration regards to ξ, Eq. (7) reduces to 
(
s2 − w2)U − 2w2v2 = b1ξ + b2, (8)  

where b1 and b2 are constants of integration. Here we settle b1 = b2 = 0 into Eq. (8) transpire to 

U =
2w2v2

s2 − w2 . (9) 
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Utilizing Eq. (9) into Eq. (8), yields a second order ODE form as 

v′′ − r1v3 − r2v = 0, (10)  

where r1 = 4
s2 − w2 and r2 =

p2+2h
w2 . 

3. Bifurcation analysis of the model with phase portrait 

The model (10) can be rewritten in a dynamical system form as follows, 

v
′

= u
u′

= r1v3 + r2v
. (11) 

It is shown that system (11) has critical points O(0, 0), A
( ̅̅̅̅̅̅̅

− r2
r1

√
,0
)
,B

(
−

̅̅̅̅̅̅̅
− r2

r1

√
, 0

)
and also has a first integral form with the 

Hamiltonian 

Н(v, u)=
u2

2
−

r1

4
v4 −

r2

2
v2. (12) 

Determination of Jacobian matrices at the equilibrium points are: 

det JO = − r2, det JA = 2r2 and det JB = 2r2.

If r2
r1
< 0, the system has three-equilibrium points O,A,B and arises here two cases:  

(i) For r2 > 0 implies O-saddle. A,B–centers; there exists two homoclinic orbits ΓA and ΓB that connected at the saddle O. The 
centers are encircled by a family of periodic orbits as 

ΓA(h)=
{

H(v, u)= h, h∈
(

r2
2

4r1
, 0
)}

and ΓB(h)=
{

H(v, u)= h, h∈
(

r2
2

4r1
, 0
)}

(ii) For r2 < 0 implies O-center, A,B are saddles. The center is encircled by a family of periodic orbits as ΓO(h) =
{

H(v,u) = h,h∈
(

0,
r2
2

4r1

)}
. 

On the other parametric condition as r2
r1
> 0, the system has only one real equilibrium points at O.  

(i) For r2 > 0, implies O-saddle and (ii) For r2 < 0, implies O-center. 

Fig-1. (a) Stream flows with directions and (b) Phase orbits for r1 < 0, r2 > 0.  
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Thus, four cases arise depending on the values of r1, r2 such as 
Case1: r1 < 0, r2 > 0, Case2: r1 > 0, r2 < 0, Case3: r1 > 0, r2 > 0 and Case4: r1 < 0, r2 < 0. 

Case-1. If s = 1,w = 2,p = 2,h = − 1, then r1 = − 4
3 and r2 = 1

2 provides the streamlines and phase portrait in Fig-1. 

Case-2. If s = 2,w = 1,p = 1,h = − 1, then r1 = 4
3 and r2 = − 1 which provides the streamlines and phase portrait in Fig-2. 

Case-3. If s = 2,w = 1,p = 2,h = − 1, then r1 = 4
3 and r2 = 2 which provides the streamlines and phase portrait in Fig-3. 

Case-4. If s = 1,w = 2,p = 1,h = − 1, then r1 = − 4
3 and r2 = − 1

4 that provides the streamlines and phase portrait in Fig-4. 

4. Solitary and travelling wave solutions 

Suppose that the stochastic model has a continuous solution v(ξ), ξ ∈ R and lim
ξ→∞ v(ξ) = u1, lim

ξ→ − ∞ v(ξ) = u2. If u1 = u2, the 

result v(ξ) is a solitary wave, as, it is a kink (anti-kink) wave result. It is recognized that the bell types solitary, kink (anti-kink) even 
cyclic wave solutions occur, respectively, for homoclinic, hetero-clinic and periodic orbits of the phase portraits. The perfect para
metric presentation for the bounded orbit of v(ξ) can be illustrated by the exact travelling wave solutions of (11). We utilize the 
Hamiltonian (12) to construct such solutions with the first equation of (11), which yields 

Fig-2. (a) Stream flows with directions and (b) Phase orbits for r1 > 0, r2 < 0.  

Fig-3. (a) Stream flows with directions and (b) Phase orbits for r1 > 0, r2 > 0.  
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∫
dv

̅̅̅
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅
Κ4(v)

√ =

∫

dξ, (13)  

where Κ4(v) = h + r1
4v4 + r2

2v2 in v.. 
Depending on the values of r1, r2 and on a certain level of energy h, we can evaluate the integral of Eq. (13) and construct a wave 

solution for Eq. (1). The total energies or Hamiltonian values at the critical points are HO = 0, HA = r2
2

4r1 
and HB = r2

2

4r1
. According to these 

results, we obtain various families of wave solutions as follows: 
Family-1: In the Fig-1, there are three types of orbits for dynamical system (11) and these orbits are identified by Н(u, v) = h for 

dissimilar energy states h as h > 0,h = 0,h ∈ .. 
• For the energy level h > 0, a family of orbits cut the v-axis (v= 0) at two points, as identified by green coloured curves in Fig-1(b). 

As a result, the polynomial (13) has two real and two complex conjugate zeros, presented by k4(v) = − r1
4 (v1

2 − v2)(v2
2 + v2). After 

integration of Eq. (13), and using the transformation Eq. (2): G(x, t) = v(ξ)e(iΦ+κε(t)− κ2t),ξ = wx+ st,Φ = px+ ht, we get the required 
result 

G(x, t)=
v2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v1

2 + v2
2

√ ×

cn
[

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− r1

2 (v1
2 + v2

2)
√

(ξ + a), − v2̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(v1 2+v22)

√

]

dn2

[
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− r1

2 (v1
2 + v2

2)
√

(ξ + a), − v2̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(v1 2+v2 2)

√

]e(iΦ+κε(t)− κ2 t). (14) 

It is shown that the travelling wave solution (14) is periodic with periodic 4
̅̅̅̅̅̅
2

− r1

√
k
(

− v1̅̅̅̅̅̅̅̅̅̅̅̅
v12+v22

√

)

, where Κ(k) is a Jacobi elliptic 

integral of the first type. 
• For energy level zero h = 0, the orbits are passing through the origin (a saddle point) and returns to it again, as demonstrated by 

blue coloured curves in Fig-1(b). It is homoclinic orbit that can refer habitually to the continuation of bell type solitary wave. Such 

orbit cuts the v-axis (u= 0) in three points presented by K4(v) = r1
4v2

(
v2 + 2r2

r1

)
. Corresponding result after integration and using Eq. 

(2), yields 

G(x, t)= ±

̅̅̅̅̅̅̅̅̅̅

−
2r2

r1

√

sec h
{

−
̅̅̅̅
r2

√
(ξ+ a)}e(iΦ+κε(t)− κ2 t), (15)  

where ξ = wx+ st,Φ = px+ ht. 
• For the level energy in the interval h ∈, equation Н(u, v) = h defines periodic orbits around the two equilibrium points A,B. Every 

orbit of this family cuts the v-axis (u= 0) in four points identified by red-coloured circles in Fig-1(b), and so it can be written as Κ4(v) =
r1
4 (v1

2 − v2)(v2
2 − v2). The periodic travelling wave solution for this case can be expressed as 

G(x, t)= ± v2sn
[ ̅̅̅̅̅̅̅̅

− r1

2

√

(ξ+ a),
v2

v1

]

e(iΦ+κε(t)− κ2 t). (16) 

Fig-4. (a) Stream flows with directions and (b) Phase orbits for r1 < 0, r2 < 0.  
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Family-2: Following the Fig-2, there are four types of orbits for the dynamical system (11) and these orbits are identified via 
Н(u, v) = h for dissimilar energy states h as either h = r2

2

4r1
or h = 0or h > r2

2

4r1
or 0 < h < r2

2

4r1
. 

• For the energy level h = r2
2

4r1
, the existing family of orbits connects two saddle points described by H(v,u) =

r2
2

4r1
. The describing 

orbits are indicated by green coloured curves in Fig-2(b). Every orbit of this family cuts the v-axis (u= 0) at two points. Thus the 

expression (13) has two recurred real zeros and takes the structure k4(v) = r1
4

(
v2 + r2

r1

)2
. The corresponding result after integration and 

using Eq. (2), yields the explicit depiction of the kink wave solution 

G(x, t)= ±

̅̅̅̅̅̅̅̅
− r2

r1

√

tanh
̅̅̅̅̅̅̅̅
− r2

2

√

(ξ+ a)e(iΦ+κε(t)− κ2 t). (17) 

• For the energy level h = 0, a family of orbits existed there are sketched in Fig-2(b) in red color. Every orbit of this family does not 

cut the u-axis (v = 0). The expression (13) interprets by k4(v) = − r1
4 v2

(
v2 + 2r2

r1

)
, which admits the subsequent wave solution with Eq. 

(2) is 

Fig-5. Periodic wave solution of Eq. (14) for the parameters s = 1,w = 2,p = 2,h = − 1,a = 0: (a) absolute, (b) real part, (c) imaginary part for 
κ = 0; (d) absolute, (e) real part, (f) imaginary part for κ = 0.5; (g) absolute, (h) real part, (i) imaginary part for κ = 1.. 
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G(x, t)=
̅̅̅̅̅̅̅̅̅̅
− 2r2

r1

√

sec
̅̅̅̅̅̅̅̅
− r2

√
(ξ+ a)e(iΦ+κε(t)− κ2 t). (18) 

• For the energy level, h > r2
2

4r1
, a family of orbits exists indicating a black coloured curve in Fig-2(b). These orbits never cut the v-axis 

(u = 0), and have complex roots only as k4(v) = r1
4 (v

2 + v1
2)(v2 + v2

2), where v2
2,3 = g+ il. After integration of Eq. (13) and using Eq. 

(2), we acquire a travelling wave solution in form 

G(x, t)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g2 + l2

il − g

√

sn

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r1(g − il)

2

√

(ξ+ a),
g + il
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g2 + l2

√

]

e(iΦ+κε(t)− κ2 t). (19) 

• For the energy level in the interval 0 < h < r2
2

4r1
, a family of periodic orbits existed encircling the origin. Such a family is described 

by Н(v, u) = h indicate by blue-coloured curves in Fig-2(b). Every orbit of such family cuts the v-axis (u= 0) at four points can be 
expressed via k4(v) = r1

4 (v
2 − v1

2)(v2 − v2
2). After integration with the expression and utilizing Eq. (2) provides an explicit travelling 

wave solution 

G(x, t)= v2sn
[ ̅̅̅̅

r1

2

√

(ξ+ a),
v2

v1

]

e(iΦ+κε(t)− κ2 t). (20) 

Family-3: Following Fig-3(b), there are three families of orbits designed for dissimilar values and restrictions on h. The explicit 

Fig-6. Periodic wave solution of Eq. (15) for the parameters s = 1,w = 2,p = 2,h = − 1: (a) absolute, (b) real part, (c) imaginary part for κ = 0; 
(d) absolute, (e) real part, (f) imaginary part for κ = 0.5; (g) absolute, (h) real part, (i) imaginary part for κ = 1.. 
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depiction for wave solution of system (11) is established through the polynomial (13) for distinct parametric values of h as follows: 
• For the level of energy zero (h = 0), a family of orbits passes through the origin indicated by blue-coloured curves in Fig-3(b). This 

family can be expressed via the polynomial (13) k4(v) = r1
4v2

(
v2 +2r2

r1

)
only, whose integration with Eq. (2) gives 

G(x, t)= ∓

̅̅̅̅̅̅̅
2r2

r1

√

csc h
̅̅̅̅
r2

√
(ξ+ a)e(iΦ+κε(t)− κ2 t), (21)  

where a is an integral constant. 
• For a positive energy level h > 0, a family of orbits appears here marked with golden colour in Fig-3(b). These orbits never 

intersect the v-axis (u= 0) and such orbits can be expressed by a polynomial (13), which contains no real zeroes, i.e. k4(v) = r1
4 (v1

2 +

v2)(v2
2 + v2). Its integral value together with Eq. (2), gives the result 

G(x, t)= − v1

sn
[
v2

̅̅̅r1
2

√
(ξ + a),

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − v1 2

v2 2

√ ]

cn
[
v2

̅̅̅r1
2

√
(ξ + a),

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − v12

v22

√ ]e(iΦ+κε(t)− κ2 t), (22)  

where sn(v, k), cn(v, k) and dn(v, k) are the Jacobi elliptic function. 
• For a negative energy level h < 0, the Hamiltonian (12) has a family of orbits marked with green colour in Fig-3(b). Such orbits 

Fig-7. Periodic wave solution of Eq. (16) for the parameters s = 1,w = 2,p = 2,h = − 1,a = 0: (a) absolute, (b) real part, (c) imaginary part for 
κ = 0; (d) absolute, (e) real part, (f) imaginary part for κ = 0.5; (g) absolute, (h) real part, (i) imaginary part for κ = 1.. 
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cut at the two points of v-axis and can be described by the polynomial k4(v) = r1
4 (v

2 − v1
2)(v2

2 +v2) which has a pair of complex 
conjugate zeros. After integration of (13) with k4(v) = r1

4 (v
2 − v1

2)(v2
2 +v2) and utilizing Eq. (2), yields 

G(x, t)=
cn
[

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅r1
2 (v1

2 + v2
2)

√
(ξ + a), v2̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(v1 2+v2 2)
√

]

dn2

[
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅r1
2 (v1

2 + v2
2)

√
(ξ + a), v2̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(v12+v2 2)
√

]e(iΦ+κε(t)− κ2 t). (23) 

Family-4: This case has one real critical point at the origin as a center only. Thus a family of periodic orbits arises enclosing the 
origin, showed in the Fig-4(b). Such family of orbits presented by the curves identified through Н(v,u) = h, where h > 0. Nature of the 
Fig-4(b) indicates that every orbit of such family cuts the v- axis (u= 0) at two points and can be presented by k4(v) = − r1

4 (v1
2 −

v2)(v2
2 + v2), where v1 =

̅̅̅̅̅̅
− 4h
r1

√
. Now, integral values of Eq. (13) with this k4(v) together with Eq. (2), leads to 

v= ±
v1
̅̅̅
2

√ sn
[

v1

̅̅̅̅̅̅̅̅
− r1

2

√

(ξ+ a),
− 1̅̅̅

2
√

]

e(iΦ+κε(t)− κ2 t). (24)  

5. Comparison, interpretations and impact of noise on the wave propagation 

This study is devoted to highlighting the wave behaviors and the effect of noise on the ion sound wave solutions of model (1), which 
was studied through He’s semi-inverse, the Riccati–Bernoulli sub-ODE and the sine–cosine techniques by Mohammad et al. [38]. They 
used only auxiliary schemes to find stochastic solutions, but we derived solution following energy orbits from Hamilatonian of the 
model. All of our solutions are satisfying dynamical nature of phase portraits. How the action of a nonlinear force in which a charged 

Fig-8. Periodic wave solution of Eq. (17) for the parameters s = 2,w = 1,p = 1,h = − 1: (a) absolute, (b) real part, (c) imaginary part for κ = 0; 
(d) absolute, (e) real part, (f) imaginary part for κ = 0.5; (g) absolute, (h) real part, (i) imaginary part for κ = 1.. 
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element acquires an observation in an inhomogeneous fluctuating electro-magnetic ground owing to elevated amplitude also. Indeed, 
the model acts as many crucial cases to illustrate the high-frequency Langmuir oscillation with rising noise. The phase orbits and 
solutions according to each energy orbit have been constructed by the planner dynamical theory of the SDCM model. The achieved 
results and their physical structures will help us to visualize dynamical characteristics and their sensitivity to different initial con
ditions as well. It can significantly change the qualitative activities and effects of novel characters. The solutions are addressed to 
illustrate the numerical structures in the following descriptions. 

The stochastic solutions (14), (16), (19), (20), (22), (23), and (24) appear in terms of Jacobi elliptic functions that exhibit periodic 
behaviors with oscillations. Among the results, Eqs. 14 and 23 are supper periodic waves; (16), (20), (24) are periodic waves; and (18), 
(19), and (22) are singular periodic waves. The nature of the solutions (14), (16) and (18) are illustrated only in Fig-5, Fig-7 and Fig-9 
respectively. Besides these, we achieve stochastic soliton solutions that seem in the hyperbolic function form such as (15), (17) and 
(21). The solutions (15) and (17) are also graphically displayed in Fig-6 and Fig-8 whose natures are respectively the Bright and Dark 
bells, while properties of result (21) is a singular bell soliton. The dark as well as bright solitons transmit thru nonlinear dispersive 
medium and these solitons designate solitary waves with lesser and larger peak intensity respectively. We are predominantly attracted 
to the impact of noise acting on wave transmission as it is an indispensable problematic in plasma, electromagnetic fields and nonlinear 
optics. In this research, we also show the configurations of each result by changing the stochastic coefficients κ = 0,0.5,1. It is shown 
that the amplitude of any travelling waves remains the same as κ = 0 always though time increases. It is evident from the figures that 
for the increases of the value of the coefficients the higher amplitudes wave gradually goes to diminish with oscillation as times in
crease and ultimately diminished as t→∞.. 

Fig-9. Periodic wave solution of Eq. (18) for the parameters s = 2,w = 1,p = 1,h = − 1: (a) absolute, (b) real part, (c) imaginary part for κ = 0; 
(d) absolute, (e) real part, (f) imaginary part for κ = 0.5; (g) absolute, (h) real part, (i) imaginary part for κ = 1.. 
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6. Conclusions 

The stochastic models of ion noise as well as Langmuir surges amid multiple rackets are considered here due to present their 
significant applications in the high frequency charged electric field. We investigated the bifurcation analysis of the nonlinear model 
through a planer dynamical scheme. All possible phase portraits are found owing to various conditions on the involved parameters. We 
derived analytic nonlinear wave solutions of the model according to each energy orbit of all phase portraits. As a result, we achieved 
stochastic Dark and Bright bell soliton solutions as well as stochastic super periodic and periodic wave solutions. Due to the effects of 
the noise term, we observed that Langmuir oscillation arising on the wave profile and the amplitude of the oscillating wave gradually 
going down to diminish as time goes on. The wave amplitude is going to diminish as quickly as they increase in racket strength. Finally, 
graphical illustrations are provided to show the effect of parameters on the obtained wave solutions. It is evident that the planer 
dynamical approach is much more suitable as it provides all possible results following each orbit of the phase portraits. In near future, 
one can find interaction of stochastic solitons and chaotic chaos dynamics of the same model, which is not stated here. 
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