
A guidance ofmodel selection for
genomic prediction based on
linear mixed models for complex
traits

Jiefang Duan1, Jiayu Zhang1, Long Liu1* and Yalu Wen1,2*
1Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi,
China, 2Department of Statistics, University of Auckland, Auckland, New Zealand

Brain imaging outcomes are important for Alzheimer’s disease (AD) detection,

and their prediction based on both genetic and demographic risk factors can

facilitate the ongoing prevention and treatment of AD. Existing studies have

identified numerous significantly AD-associated SNPs. However, how to make

the best use of them for prediction analyses remains unknown. In this research,

we first explored the relationship between genetic architecture and prediction

accuracy of linear mixed models via visualizing the Manhattan plots generated

based on the data obtained from theWellcome Trust Case Control Consortium,

and then constructed prediction models for eleven AD-related brain imaging

outcomes using data from United Kingdom Biobank and Alzheimer’s Disease

Neuroimaging Initiative studies. We found that the simple Manhattan plots can

be informative for the selection of prediction models. For traits that do not

exhibit any significant signals from the Manhattan plots, the simple genomic

best linear unbiased prediction (gBLUP) model is recommended due to its

robust and accurate prediction performance as well as its computational

efficiency. For diseases and traits that show spiked signals on the Manhattan

plots, the latent Dirichlet process regression is preferred, as it can flexibly

accommodate both the oligogenic and omnigenic models. For the

prediction of AD-related traits, the Manhattan plots suggest their polygenic

nature, and gBLUP has achieved robust performance for all these traits. We

found that for these AD-related traits, genetic factors themselves only explain a

very small proportion of the heritability, and the well-known AD risk factors can

substantially improve the prediction model.

KEYWORDS

alzheimer’s disease, brain structure, genetic architecture, linear mixed model, model
selection, risk prediction

Introduction

Recent studies have shown that Alzheimer’s disease (AD) has become the fifth cause

of death for Americans aged 65 and above, and it is predicted that the number of AD

patients in the United States will increase to 13.8 million by 2060 (Association A.S., 2022)

and one in 85 people worldwide will have the disease by 2050 (Cacace et al., 2016). Age is
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one of the most important risk factors for AD.With the growth of

the elderly population, the family and social burden caused by the

care and nursing of AD patients will become increasingly heavy

in the future. AD, the most common cause of dementia, is an

irreversible neurodegenerative disorder characterized by

progressive cognitive and memory impairment that is enough

to interfere with daily life (Guerreiro et al., 2012; Cacace et al.,

2016; Zhu et al., 2019). At present, only symptomatic patients can

be treated, which cannot prevent the further deterioration and

development of AD (Jiang et al., 2012). However, the preclinical

stage of AD is as long as 7 years (Bischkopf et al., 2002), and

detecting high risk population during this pre-clinical stage could

postpone the progression to AD.

Brain imaging genetics can discover neural mechanisms

associated with AD by combining genetic information and

neuroimaging data of the same subjects. It is anticipated that

the investigation of brain-related imaging traits can

substantially facilitate the understanding of the

pathogenesis of AD and provide guidance for its treatment

and prevention. Currently, many different types of imaging,

such as Magnetic Resonance Imaging (MRI), Positron

Emission Tomography (PET), and Diffusion Tensor

Imaging (DTI), are used to facilitate AD diagnosis. They

contain both confirmatory and complementary information,

showing the changes of brain structure of patients from

different perspectives. For example, DTI provides the local

microscopic characteristics of water diffusion; structural MRI

can be used to describe brain atrophy; functional MRI

characterizes hemodynamic responses related to neural

activity; and PET measures metabolic patterns in the brain

(Wee et al., 2012). Studies have shown that some brain

regions, notably the Hippocampus, Parahippocampal gyrus,

Cingulate, and Entorhinal cortex, are reduced in patients with

mild cognitive impairment (MCI) and AD. Researchers have

found that both gray matter and white matter have

significantly decreased for individuals who underwent

transition from MCI to AD (Misra et al., 2009). Atrophy

of brain volume in these regions can reflect the stage of

disease development and predict the progression of AD

(Basaia et al., 2019). It has become a focus to identify

patients with brain diseases based on brain imaging. At

present, studies have shown that age, gender and

education level are the most important predictors for AD

(Rogaeva, 2002; Dumitrescu et al., 2019). Over the past

decades, genomics data, such as single nucleotide

polymorphisms (SNPs), have become increasingly

available, and they have provided valuable data resources

for investigating and predicting AD from genetic perspective

(Clark and van der Werf, 2013). It has been reported that

human brain structure is highly heritable and genetic factors

account for 58–74% of the risk of AD (Carmelli D et al., 1998;

Braskie et al., 2011; Satizabal et al., 2019). Therefore,

incorporating genetic factors into the investigation of AD

and AD-related traits hold great promise in better

understanding of AD.

Linear mixed models (LMMs) and their extensions have

become the method of choice for the risk prediction analysis

using genomic data. Their fundamental assumption is that

genetically similar individuals have similar phenotypes, and

the genetic similarities are usually measured by SNPs. The

differences in existing LMM-based risk prediction models

primarily lie in the assumption of the underlying disease

model that can be broadly categorized into two categories,

including the sparse and polygenic models. The sparsity

regression models are commonly used for prediction when it

is believed that the phenotypes are caused mainly by a limited

number of SNPs with moderate to large effects and the rest SNPs

are noise. Bayesian mixture models that utilize different prior to

reflect the assumed sparsity are one of the commonly used

methods. For example, BayesR (Moser et al., 2015) and

Bayesian Sparse Linear Mixed Model (BSLMM) (Visscher

et al., 2013) set the effect sizes of some SNPs to be zero to

introduce sparsity. While sparsity regression models can be

helpful for diseases that are caused mainly by SNPs with

moderate to large effects (e.g., Type I diabetes), for most

complex traits, the known disease-associated markers only

explain a small proportion of heritability (Marigorta et al.,

2018) and the sparse models are obviously not applicable. As

reported, the heritability of human height estimated by common

SNPs is larger than that obtained from significant SNPs (Yang

et al., 2010). The polygenic models that assume a large number of

SNPs have small to moderate predictive effects have been used

extensively for complex trait prediction. The genomic best linear

unbiased prediction (gBLUP) (Clark and van der Werf, 2013),

the seminal work in polygenic risk model, has been adopted

widely in genomic risk prediction studies (Alvarenga et al., 2020;

Bermann et al., 2021; Zhang et al., 2021). The gBLUP assumes

that effect sizes from all SNPs follow the same normal

distribution, and predicts the phenotypes of interest based on

the information provided by all SNPs. It was then extended to

accommodate more complex disease model assumptions. For

example, MultiBLUP (Speed and Balding, 2014) allows SNPs

from different genomic regions having different effect size

distributions, and the latent Dirichlet process regression

(DPR) (Zeng and Zhou, 2017) uses a Dirichlet process to

allow the effect sizes have any form of distributions instead of

assuming the normality. While polygenic models have achieved

various levels of success and have been used widely for complex

traits prediction in practice, their performance still highly

depends on the underlying disease model.

It is well accepted that there are no universal best models for

risk prediction analysis based on genomic data, and the

underlying genetic architecture is the key factor that

determines the predictive performance of these LMM-based

models. Existing studies that have identified numerous AD-

associated SNPs and genes (Daw et al., 2000; Sims and
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Williams, 2016). However, how to choose the most appropriate

statistical models for the prediction of AD and its related traits is

unknown. It is still not clear the exact amount of differences

among these commonly used risk prediction models given

different underlying genetic mechanisms. Therefore, in this

research, we first explored the relationship between disease

model and prediction performance for polygenic models

(i.e., gBLUP, MultiBLUP and DPR) and sparsity model

(i.e., BayesR) using the Wellcome Trust Case Control

Consortium (WTCCC) dataset that has seven diseases with a

broad spectrum of genetic architecture. We then build risk

prediction for a range of AD-related brain imaging traits

using the United Kingdom Biobank data (UKB), and further

validated these models using the data obtained from the

Alzheimer’s disease neuroimaging initiative (ADNI). Through

the above comprehensive analyses, we have provided guidance

on how to select an appropriate prediction model for a given

dataset. We also explored the genetic architecture as well as

appropriate methods and modeling strategies for AD-related

brain imaging traits, so as to identify the high-risk population

of AD at an early stage.

Methods and materials

In the following sections, we first described the datasets that

we analyzed, including WTCCC, UKB and ADNI, and their

corresponding quality control. We then briefly overviewed the

technical details of the four prediction models (i.e., gBLUP,

MultiBLUP, DPR and BayesR), and finally we detailed the risk

prediction analyses for eleven AD-related brain imaging traits in

our study.

Data description and quality control

WTCCC contains seven complex diseases with each having a

sample size of about 2000. These seven diseases include bipolar

disease (BD), coronary artery disease (CAD), Crohn’s disease

(CD), rheumatoid arthritis (RA), type 1 diabetes (T1D), type

2 diabetes (T2D), and hypertension (HT) (Feng and Zhu, 2010).

WTCCC also has a shared control group that consists of

1958 Birth Cohort (n = 1,500) and United Kingdom Blood

Service sample (n = 1,500). Since the seven diseases collected

by WTCCC covers a broad spectrum of genetic architecture, we

used this dataset to investigate the relationship between genetic

architecture and the accuracy of risk prediction models. DNA

samples were drawn from study participants and they were

analyzed using the Affymetrix 500 K platform (Gershon et al.,

2008). Genotypes were called by the CHIAMO algorithm and

directly downloaded the WTCCC website (https://www.wtccc.

org.uk/). Only autosome SNPs were considered in our analysis.

For its quality control, SNPs were excluded if they met any of the

following conditions: 1) missing rate >2%, 2) minor allele

frequency (MAF) < 1%, 3) p-value for Hardy Weinberg

equilibrium (HWE) test less than 1e-10 and 1e-6 for cases

and controls, respectively (Marees et al., 2018). Individuals

with missing rate larger than 2% were also removed. Each

case dataset was combined with the controls, and common

SNPs between cases and controls were retained. For each

combined data, we applied further quality control to remove

SNPs with missing rate >2%, MAF <5%, p < 1e-6 from HWE as

well as r2 > 0.2 from linkage disequilibrium and subjects with

missing rate >2%. After the quality control, the number of

individuals for each disease ranged from 4,862 to 4,926, and

the number of SNPs ranged from 67,281 to 68,412

(Supplementary Table S1).

Genetic and brain imaging data collected from both UKB

(Bycroft et al., 2018) and ADNI (Wyman et al., 2013) are used for

risk prediction studies. UKB is the largest prospective cohort

study to date, collecting health-related information including

demographic, lifestyle indicators, biomarkers in blood and urine,

brain imaging, and genetic information from nearly

500,000 subjects aged from 40 to 69 in the United Kingdom.

They have collected brain imaging data covering structural,

diffusion and functional imaging, which provide detailed

information for the brain structure. In addition, known risk

factors for AD, such as age, gender, and education (coded

according to 21,003-0.0, 6,138–0.0 and 31-0.0) have also been

collected. Blood DNA samples were obtained from study

participants. 49,950 samples were analyzed using the

Affymetrix Applied Biosystems United Kingdom BiLEVE

Axiom Array and the remaining 438,427 samples were

processed with the Applied Biosystems United Kingdom

Biobank Axiom Array. About 95% of the markers are the

same for these two arrays (825,927 markers), and we used

these markers for our analyses.

ADNI (Wyman et al., 2013), including ADNI1, ADNI2,

ADNIGO and ADNI3, is a large-scale longitudinal study

designed to find the AD-related biomarkers and improve the

clinical diagnosis of AD. At baseline, demographic variables (e.g.,

age, sex and education), brain imaging outcomes including MRI

(e.g., structural, diffusion weighted imaging, perfusion and

resting state sequences) and PET, biomarkers, and genetic

information from each participant were collected. DNA

samples were obtained and analyzed using Illumina’s non-

CLIA whole genome sequencing. In our analysis, we focused

on the baseline brain imaging and genotype data collected from

all ADNI study participants except ADNI3.

Similar to WTCCC data, we only focused on autosome SNPs

for both ADNI and UKB. Since population structure can be a

serious confounder, only white and non-Hispanic individuals

were retained through principal component analysis (Marchini

et al., 2004). This can ensure that ADNI and UKB have the same

population structure, which allows for external validation. For

both ADNI and UKB, we first removed SNPs when 1) call
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rate <90%; 2) p < 1e-6 from HWE; or 3) MAF <5%. We also

excluded individuals with call rate <90%. For the remaining

samples, missing values for SNPs were imputed using the default

procedures in plink 1.9. With imputed data, we further filtered

out SNPs with call rate <99%, HWE < 1e-6 and MAF <5%, as

well as excluded individuals with call rate <99%. After the quality

control, 738 subjects with 6,250,600 SNPs were remained in

ADNI. 488,371 subjects with 211,127 SNPs were remained in

UKB. Finally, we extracted a total of 202,840 common SNPs from

ANDI and UKB for subsequent modeling.

We focused on brain imaging traits from both UKB and

ANDI studies. These traits include subcortical volumes

(hippocampus, accumbens, amygdala, caudate, pallidum,

putamen, thalamus), the volumes of gray matter, white matter

and brainstem+4th ventricle from T1 structural brain MRI, and

the volume of white matter hyperintensities from T2-weighted

brain MRI. The sample sizes for each phenotype in both UKB

and ADNI studies are summarized in Supplementary Table S2.

The technical details of risk prediction
models

gBLUP is one of the most widely used genomic risk

prediction model. It assumes that the effect sizes for all SNPs

follow a normal distribution, and models the outcomes as

yi � Xiβ +∑j gijγj + ϵi, where Xi is the demographic

variables (e.g., age and gender), gij is the genotype for the jth

marker for individual i, γj ~ N(0, σ2g) is predictive effect from

the jth marker, and ϵi ~ N(0, σ20). It is straightforward to see that
Y ~ N(Xβ, Kσ2g + Iσ20), where K � GGT is the genomic

similarity matrix (GSM) estimated based on all SNPs. Various

software has implemented the gBLUP method, and we used the

LDAK software with its default settings for our analysis.

MultiBLUP can be viewed as an extension of gBLUP, where

SNPs from different genomic regions are allowed to have

different effect size distributions. It splits the genome into R

regions and models the outcomes as

yi � Xiβ +∑R
r ∑j∈Sr girjγrj + ϵi, where Sr is the set of all

genetic markers in region r, girj is the jth genotype for the ith

individual in region r, and γrj ~ N(0, σ2r) with σ2r could be

different among regions. Consequently,

Y ~ N(Xβ, ∑R
r Krσ2r + Iσ20), where Kr � GrGT

r and Gr are a

matrix of all SNPs within region r. gBLUP is a special case of

MultiBLUP, where all σ2r are the same. MultiBLUP defines

regions either empirically or based on some annotations.

Therefore, some of the regions can have similarly σ2r and

could be combined. The adaptive MultiBLUP (AMB) that

combines regions with similar σ2r can reduce the

computational complexity for the LMM model, and thus is

used more often in practice. Therefore, for our analysis, we

adopted the AMB, which is implemented in the LDAK

software. We used its default setting, where the genome was

divided into chunks with the size of 75,000 base pairs. After the

LR-ratio test, regions were formed by merging each chunk with

p < 10–5 with its neighboring regions that have p-value less

than 10–2.

DPRmodels the phenotypes using the samemodel as gBLUP,

except the variance of effect sizes is modelled using a non-

parametric Dirichlet process σ2 ~ G, G ~ DP(H, λ), where H

is the base distribution and λ is the concentration parameter that

describes how the distribution G deviates from the base

distribution H. DPR uses the inverse Gamma as the base

distribution and uses data at hand to infer λ. With the stick-

breaking constructive representation and using the same

concentration parameter, the effect size γj is effectively

modelled as:

γj ~ ∑
+∞

k�1
πkN(0, σ2k) and πk � vk ∏

k−1

l�1
(1 − vl), vk ~ Beta(1, λ).

(1)
With the infinite normal mixture prior, DPR can

approximate a large class of unimodal distribution, and thus

can robustly predict traits with various genetic architecture. Its

parameters can be estimated by the traditional Markov Monte

Carlo Chain (MCMC) algorithm, denoted as DPR. MCMC, or by

the mean variational Bayesian (VB) approximation algorithm,

denoted as DPR. VB. Both DPR. MCMC and DPR. VB are

implemented in the DPR software. As demonstrated in Zeng

et al. (Zeng and Zhou, 2017), DPR. VB can achieve similarly level

of prediction accuracy with much faster computational speed

than DPR. MCMC. Therefore, for all our analyses, we used

DPR.VB. In addition, the default implementation of DPR does

not take covariates into account. To consider their contribution,

we adopted a commonly used iterative two-step procedure

(Bolormaa et al., 2017), where the traits were first regressed

on covariates and then the residuals were analyzed using the DPR

model. These two steps continued until convergence.

BayesR (Moser et al., 2015) predicts the phenotypes using the

same model as gBLUP, except that the effect size γj is assumed to

follow a normal mixture:

γj ~ π1N(0, 0σ2g) + π2N(0, 10−4σ2g) + π3N(0, 10−3σ2g)

+ π4N(0, 10−2σ2g) (2)

where ∑4
i πi � 1. Apparently, the mixture proportions determine

the sparsity of the model (Erbe et al., 2012). Gibbs sampling is

used for inference in BayesR (Bolormaa et al., 2017). The

posterior inclusion probability can be used to infer how likely

a SNP is predictive. BayesR can be viewed as a sparsity regression

model and it can have better prediction performance than

polygenic models when phenotypes are affected by several

SNPs with large effects. We used BayesR implemented in the

BayesR software in our analysis. Rather than using their default

setting that can be extremely computationally demanding, we set

the Markov chain length to be 4,000, with the first 800 samples
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discarded as burn-in and posterior estimates of parameters are

based on 3,000 samples drawing every 10th sample after burn in.

These parameters were chosen from a set of Markov chain

lengths that provided the highest Pearson correlation.

All the above four models can be viewed as a linear mixed

model, and differ mainly in the assumption on effect size

distribution (Table 1). We chose to analyze our traits using

these methods primarily because of their popularity and their

capacity in modeling traits with various genetic architecture (e.g.,

the sparsity model and the infinitesimal model). We believe these

models can provide us an insight into how to best model AD-

related traits given their unknown underlying genetic

mechanisms.

The analysis workflow

For the analysis ofWTCCC, we first conducted genome-wide

association studies to explore the genetic architecture of each

disease, and then used the four methods (i.e., gBLUP, AMB, DPR,

and BayesR) to build prediction models for them. Specifically,

GWAS was conducted using the plink software (version 1.9),

where the default setting (i.e., logistic regression with SNPs

assumed to have additive effects) is used. We visualized the

results using the ggplot2 package in R (version 4.2.0). We used

simple linear regression for quantitative traits (i.e., eleven brain

imaging traits in UKB) and logistic regression for binary traits

(i.e., seven diseases in WTCCC) under the additive effect

assumption. To avoid overfitting and chance finding, we

randomly selected 90% of samples from each data to build

prediction models and used the remaining for validation. We

repeated this process 20 times and reported the average Area

Under Curve (AUC) calculated based on the validation samples.

For the analysis of AD-related brain imaging traits, we first

conducted the GWAS, where plink 1.9 software with the default

settings (i.e., simple linear regression model with SNPs assumed

to have additive effects) was used. We used the UKB data to build

the models and the ADNI data for external validation. For UKB

data, we first estimated the heritability for each trait using the

Genome-wide complex trait analysis (GCTA) software, and then

conducted an association test to explore their genetic

architecture. For prediction modeling, we considered

prediction models with and without covariates. Specifically,

for the models without covariates, we used UKB data to build

the prediction models and reported the prediction accuracy that

includes Pearson correlation and mean square error (MSE) based

on 20-fold cross-validation, and further validated the model

using ADNI data. For the model with covariates, we included

well-known AD-related demographic risk factors (i.e., age,

gender and education). We used the same procedures as the

model without covariates and reported both the cross-validation

and external validation accuracies.

Results

The exploration of disease model and
accuracies of risk prediction models

Figure 1 summarizes the genome-wide association results for

the seven diseases in the WTCCC data. Based on the Manhattan

plots, we divided the seven diseases into two groups. The first

group included T1D and RA, where Manhattan plots suggested

dense, clustered and spiked signals for each disease (i.e., p < 5 ×

10–8). The Manhattan plots indicated that these diseases have

SNPs with larger than commonly assumed small-to-moderate

effects, and thus models that allow SNPs from different genetic

regions having different effect sizes have the potential to

outperform the models that only assume infinitesimal effects.

The second group included BD, CAD, CD, HT and T2D, where

their Manhattan plots showed only a few SNPs achieved

significance at a suggestive association threshold (i.e., p < 5 ×

10–6). From the Manhattan plots, it is quite unlikely that the

sparsity regression model alone can capture all the predictive

effects for these diseases. While the genetic etiology is unknown

for most of common diseases, making it hard to choose

appropriate prediction models, the simple Manhattan plots

can provide valuable insights on which model assumptions

are more appropriate for the genomic risk score calculation.

The prediction performance for these seven diseases based on

four methods is shown in Figure 2. Consistent with our

exploration, for both T1D and RA where the Manhattan plots

TABLE 1 The prior distributions of random effects under different methods.

Methods Effect size distribution

gBLUP γj ~ N(0, σ2g),∀j
MultiBLUP γrj ~ N(0, σ2r ), r ∈ {1, 2,/, R}
DPR

γj ~ ∑
+∞

k�1
πkN(0, σ2k), πk � vk ∏

k−1

l�1
(1 − vl), vk ~ Beta(1, λ)

BayesR
γj ~ π1N(0, 0σ2g) + π2N(0, 10−4σ2g) + π3N(0, 10−3σ2g) + π4N(0, 10−2σ2g) with∑

4

i
πi � 1
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FIGURE 1
Manhattan and Quantile-Quantile plots for seven diseases in WTCCC based on additive model for Genome-wide association analysis. CD:
Crohn’s disease; RA: Rheumatoid arthritis; T1D: Type 1 diabetes; BD: Bipolar disease; CAD: Coronary artery disease; HT: Hypertension; T2D: Type
2 diabetes. The λ closer to 1 indicates appropriate control of population structure (A) This group included T1D and RA, where Manhattan plots
suggested dense and spiked signals at the genome-wide significance level (i.e., p < 5 × 10–8) (B) This group included BD, CAD, CD, HT and T2D,
where their Manhattan plots indicated only few SNPs achieved significance at a suggestive genome-wide significance level (i.e., p < 5 × 10–6).
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showed significant SNPs, the gBLUP model assuming all SNPs

have the same effect size distribution performed the worst,

whereas AMB and DPR achieved the highest AUC. BayesR

had similar AUC as that of AMB and DPR for T1D, but it

performed much worse than AMB and DPR for the prediction of

RA. This suggested that although significant SNPs contributed

substantially to the prediction of both RA and T1D, some SNPs

with small to moderate predictive effects also contribute to risk of

RA. Since BayesR sets the small effect size to 0, it loses the

capacity in capturing their contributions. On contrary, both DPR

and AMB do not force the effect size to be zero, and thus are

likely to capture their contributions.

For the other five diseases (BD, CAD, CD, HT and T2D), the

model assuming only the sparsity effects (i.e., BayesR) performed

the worst. For the comparison of the remaining methods

(i.e., gBLUP, AMB and DPR), we noticed that they performed

very similarly for BD, CAD, HT and T2D. For CD, the DPR

appeared to be better than both gBLUP and AMB. As shown in

Manhattan plots (Figure 1), for BD, CAD, HT and T2D, it is

likely the infinitesimal effect model assumption is appropriate,

and thus models that are designed to capture them have better

performance as compared to the sparsity regression model. For

CD that had a few isolated SNPs achieved the suggestive

genome-wide significant level, the model (i.e., DPR) that can

capture both the infinitesimal effects and spiked isolate predictive

effects tended to higher AUC. gBLUP only assumes the

infinitesimal effect model, and thus is not capture of capturing

the predictive effects from these isolated markers for CD.

Similarly, while AMB can capture predictive effects from

SNPs with different distributions, it requires these SNPs

located nearby. Since the Manhattan plot for CD in Figure 1

clearly showed that these SNPs are located far away, AMB cannot

effectively model them.

The computational resources needed for each of the four

prediction models were summarized in Supplementary Table S3.

The average computational time for gBLUP, AMB, DPR and

BayesR was 0.32, 0.89, 18.24 and 5.60 h, respectively. This was

2.81, 57.23 and 17.57 times of the computational time required by

gBLUP. The memory consumption for gBLUP, AMB, DPR and

BayesR was 0.38.0.33, 4.89 and 0.32 GB on average, respectively.

FIGURE 2
The area under the curve (AUC) for seven diseases in WTCCC. CD: Crohn’s disease; RA: Rheumatoid arthritis; T1D: Type 1 diabetes; BD: Bipolar
disease; CAD: Coronary artery disease; HT: Hypertension; T2D: Type 2 diabetes. Methods include genomic best linear unbiased prediction (gBLUP),
adaptive MultiBLUP (AMB), the latent Dirichlet process regression (DPR) and BayesR (A) This group included T1D and RA, where Manhattan plots
suggested dense and spiked signals at the genome-wide significance level (i.e., p < 5 × 10–8) (B) This group included BD, CAD, CD, HT and T2D,
where their Manhattan plots indicated only few SNPs achieved significance at a suggestive genome-wide significance level (i.e., p < 5 × 10–6).
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This was 0.86, 12.87 and 0.84 times of that required by gBLUP.

Apparently, gBLUP was the most computationally efficient

model, whereas DPR required the most resources. The

exploration of the relationship between genetic architecture

(approximated by the Manhattan plot) and accuracy of the

commonly used prediction models suggests that the models

(i.e., DPR and AMB) that can model both sparse effects as

well as infinitesimal effects perform better for diseases with

highly significant SNPs. The gBLUP model would not be

recommended under such conditions. However, for diseases

that have no apparent associated markers, the simplest gBLUP

model can achieve similar levels of performance with much more

computational efficiency.

The prediction of brain imaging traits

The distributions for brain imaging traits in UKB and ADNI

as well as their estimated heritability based on UKB were shown

in Table 2 and the demographic information was summarized in

Supplementary Table S4. The Manhattan and Quantile-Quantile

plots for these eleven brain imaging traits for UKB were shown in

Figure 3. The trends in Manhattan plots for all AD-related brain

imaging traits were similar to BD, CAD, HT and T2D in the

WTCCC data, suggesting the infinitesimal effect model

assumption was more appropriate for their analysis. As a

result, we expected the simplest gBLUP model was sufficient

in their modeling.

Without covariates considered, the Pearson correlation and

MSE based on the 20-fold cross validation were shown in

Figure 4 and Supplementary Figure S1, respectively. The

prediction accuracy for external validation (i.e., ADNI data)

was shown in Table 3 (Pearson correlation) and

Supplementary Table S5 (MSE). Not surprisingly, all

prediction models failed to capture most of the estimated

heritability. Consistent with the trends seen from the

Manhattan plots (Figure 3), the most computationally efficient

gBLUPmodel performed the best or similar to the best model for

all of the brain imaging traits based on both internal

cross-validation and external data validation. We had noticed

that both the cross-validation and external validation results were

similar for most of the traits, except for the Gray matter and

Brainstem+4th ventricle. In addition, we found that the

performance of AMB can vary substantially for each cross-

validation, indicating AMB was much less robust than the

other methods. As shown in Figure 3, there were no regions

that were significantly different from the others for all these brain

imaging traits. Therefore, the identification of significant regions

adopted by AMB can introduce additional variability, leading to a

relatively unstable prediction model. The computational

resources needed for each prediction model were shown in

Supplementary Table S6. Since there was no apparent gain in

prediction accuracy for more complicated models, the simple and

computationally efficient gBLUP model was more appropriate

for the analyses of these brain imaging traits.

With covariates (i.e., age, sex and education) considered,

the prediction accuracy based on both 20-fold cross validation

and external validation were shown in Figure 5 and Table 4. As

expected, the known AD risk factors substantially improved

the risk prediction models. For Pearson correlation, similar to

those observed from models without covariates, gBLUP,

BayesR and DPR performed similarly, whereas AMB had

much larger variability. For MSE (Supplementary Figure S2

and Supplementary Table S7), we had noticed that DPR had

larger MSE than the other methods, and this may be due to the

two-step procedures, where the parameters in DPR were not

TABLE 2 The distributions of eleven brain imaging traits in UKB and ADNI as well as their heritability based on UKB.

Phenotype Mean ± SD (mm3) Heritabilityb

UKB ADNI

Hippocampus 7,722.46 ± 867.13 7,001.53 ± 1,091.68 0.1412

Accumbens 909.58 ± 207.32 951.48 ± 172.96 0.2618

Amygdala 2,535.28 ± 435.41 2,694.41 ± 468.08 0.1486

Caudate 6,964.53 ± 844.13 6,914.15 ± 1,030.63 0.3936

Pallidum 3,571.99 ± 452.18 3,025.72 ± 395.92 0.1516

Putamen 9,678 ± 1,143.54 9,399.75 ± 1,183.19 0.2324

Thalamus 15,395.64 ± 1,455.59 12,351.39 ± 1,357.41 0.2036

Gray matter 617,733.3 ± 55,268.39 584,396 ± 55,343.19 0.2059

White matter 553,167 ± 62,263.83 476,159.4 ± 60,155.71 0.1967

White matter hyperintensitya 4,187.09 ± 5,679.05 6,838.04 ± 10,275.04 0.1343

Brainstem+4th ventricle 22,933.21 ± 2,705.64 20,797.34 ± 2,323.53 0.2823

aWhite matter hyperintensity, logarithm to base 10 was performed to make it to be approximately normal distribution.
bThe heritability was estimated based on UKB.
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FIGURE 3
Manhattan and Quantile-Quantile plots for eleven brain imaging traits in UKB based on additive model for Genome-wide association analysis.
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FIGURE 4
Pearson correlation for eleven brain imaging traits that are predicted using genetic variants from the UKB data. Methods include genomic best
linear unbiased prediction (gBLUP), adaptive MultiBLUP (AMB), the latent Dirichlet process regression (DPR) and BayesR.

TABLE 3 The Pearson correlation for cross-validation and external validation for eleven brain imaging traits that are predicted using genetic variants
only.

Phenotype gBLUP AMB BayesR DPR

UKBa ADNIb UKBa ADNIb UKBa ADNIb UKBa ADNIb

Hippocampus 0.0561 0.0705 0.0456 0.0710 0.0519 0.0731 0.0596 0.0719

Accumbens 0.0843 0.0708 0.0652 0.0025 0.0627 0.0540 0.0790 0.0683

Amygdala 0.0740 0.0462 0.0364 0.0480 0.0711 0.0091 0.0736 −0.0199

Caudate 0.1407 0.1597 0.1098 −0.0182 0.1408 0.1844 0.1414 0.1561

Pallidum 0.0840 0.0959 0.0706 0.0473 0.0755 0.0933 0.0807 0.0897

Putamen 0.0836 0.0678 0.0400 0.0730 0.0796 0.1274 0.0835 0.0623

Thalamus 0.0849 0.0890 0.0625 −0.0621 0.0816 0.0612 0.0857 0.0888

Gray matter 0.0808 −0.0380 0.0363 −0.0703 0.0794 −0.0157 0.0812 0.0002

White matter 0.0664 0.1329 0.0380 −0.0987 0.0514 0.0933 0.0658 0.0407

White matter hyperintensity 0.0820 0.0766 0.0452 0.1238 0.1031 0.0800 0.0819 −0.0661

Brainstem+4th ventricle 0.1178 0.0499 0.0682 0.0847 0.0964 0.0408 0.1148 0.0528

aThe average Pearson correlation calculated based on the 20-fold cross-validation using UKB data.
bThe Pearson correlation calculated based on ADNI, data using the models built with UKB data.
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FIGURE 5
Pearson correlation for eleven brain imaging traits that are predicted using genetic variants and demographic variables (age, sex and education)
in the UKB data. Methods include genomic best linear unbiased prediction (gBLUP), adaptive MultiBLUP (AMB), the latent Dirichlet process regression
(DPR) and BayesR.

TABLE 4 The Pearson correlation for cross-validation and external validation for eleven brain imaging traits that are predicted using genetic variants
and demographic variables (age, sex and education).

Phenotype gBLUP AMB BayesR DPR

UKBa ADNIb UKBa ADNIb UKBa ADNIb UKBa ADNIb

Hippocampus 0.3534 0.3654 0.3455 0.3674 0.3505 0.3661 0.3533 0.3654

Accumbens 0.4348 0.4108 0.4181 0.0773 0.4372 0.4103 0.4345 0.4127

Amygdala 0.3293 0.3189 0.2720 0.2386 0.3292 0.3144 0.3300 0.3195

Caudate 0.3836 0.2457 0.3519 0.1790 0.3876 0.2576 0.3735 0.2262

Pallidum 0.3706 0.4264 0.3504 0.2860 0.3671 0.4258 0.3692 0.4252

Putamen 0.5532 0.4337 0.5357 0.3499 0.5480 0.4464 0.5524 0.4310

Thalamus 0.5597 0.4593 0.3993 0.3247 0.5595 0.4644 0.5558 0.4593

Gray matter 0.5942 0.5161 0.5693 0.5011 0.5930 0.5191 0.5908 0.5080

White matter 0.6075 0.5568 0.5788 0.5582 0.6124 0.5583 0.6074 0.5511

White matter hyperintensity 0.4843 0.4418 0.4491 0.4444 0.4879 0.4478 0.4805 0.4417

Brainstem+4th ventricle 0.4578 0.5191 0.3650 0.1610 0.4571 0.5183 0.4570 0.5230

aThe average Pearson correlation calculated based on the 20-fold cross-validation using UKB data.
bThe Pearson correlation calculated based on ADNI, data using the models built with UKB data.
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jointly inferred. We also noticed that the prediction models

had different ability in predicting these AD-related traits. For

example, for both grey and white matter, the Pearson

correlation between predicted and observed values from

cross-validation was all around 0.6, whereas it was less

than 0.4 for amygdala and hippocampus. Regarding the

external validation (Table 4 and Supplementary Table S7),

the prediction accuracy generally tended to be similar or

worse than that from the cross-validation. Nevertheless, for

all these brain imaging traits, the simplest gBLUP models

achieved fairly good prediction performance with minimum

requirement of computational resources, which were shown in

Supplementary Table S8.

Discussion

Over the past decades, the prediction of complex traits/

diseases has gained tremendous popularities, and many

analytical methods have been developed for such purposes

(Yang et al., 2010; Visscher et al., 2013; Speed and Balding,

2014; Moser et al., 2015; Zeng and Zhou, 2017). While it is widely

accepted that the underlying genetic architectures are trait-

dependent and can substantially affect the performance of risk

prediction models, it is unclear what information can be

informative for choosing appropriate prediction models.

Although prediction models that are flexible in modeling

traits with various genetic architecture have the potential to

achieve better performance, they generally are more

computationally expensive and can have reduced prediction

performance when it is over parameterized. Indeed, the

simplest gBLUP model can achieve a similar level of

performance as those complex models for many traits, but

with a much-reduced request for computational resources.

Brain imaging traits are important for AD detection, and their

prediction based on both genetic and demographic risk factors

can facilitate the ongoing treatment and intervention for AD.

However, it is not clear how to best model them, which is not

only because their underlying genetic causes are unknown, but

also lack of the consensus on selecting the appropriate prediction

models. Therefore, in this research, we first explored the

relationship between genetic architecture and prediction

accuracy of LMM-based models via visualizing the Manhattan

plots using WTCCC data, and then constructed prediction

models for eleven brain imaging traits based on both the

ADNI and UKB data. Based on our exploration, we found

that the simple Manhattan plots obtained from GWAS can be

informative for prediction model selection, and the simple and

computationally efficient gBLUP model can achieve the best or

close to the best performance for most of the traits except those

that showed highly significant and clustered spiked signals on the

Manhattan plots. gBLUP achieves an appealing balance between

computational tractability and prediction accuracy for the

prediction of AD-related brain imaging traits that are likely to

be highly polygenic.

How to choose an appropriate prediction model for

diseases/traits? Existing prediction models normally differ

in the assumptions on effect size distributions, and their

performance is generally sensitively to the underlying

genetic architecture that is usually unknown in advance.

The most widely adopted assumptions are the sparse effect

models and the infinitesimal effect models, where the former

assumes that a few SNPs have large predictive effects and the

majority of the SNPs are noise. The latter assumes that all

SNPs have small to moderate effects for predictions.

Correspondingly, the risk prediction models that adopt the

sparsity assumption are more suitable for oligogenic diseases.

This is mainly because under the oligogenic disease model,

traits are expected to be predicted with a few SNPs with large

predictive effects. They force the small effect size to be zero to

improve the robustness of the model, and thus they naturally

lose the ability to capture their effects. On contrary, prediction

models that employ the infinitesimal effect assumption have

natural advantage in capturing SNPs with small to moderate

effect sizes, but they may lose power when the effect sizes for

SNPs are much larger than expected. In practice, the

underlying genetic mechanisms for most complex traits are

unknown in advance, and thus it can be challenging to choose

appropriate analytical methods. Although models that can

accommodate a wide range of disease model assumptions are

preferred in many applications, it is not guaranteed that

flexible models are always more accurate than a simple one,

let alone its heavy computation. Therefore, it is crucial to

establish simple rules to facilitate model selection. In this

research, we have found that the simple Manhattan plots

obtained based on GWAS can be informative for inferring

the appropriate model assumptions. For example, by

exploring the Manhattan plots for T1D and RA that have

spiked signals from some SNPs located nearby, it is highly

unlikely that T1D and RA just have only the infinitesimal

effects, and thus gBLUP model is not appropriate for these

diseases. Similarly, the Manhattan plots for prediction of BD,

CAD, HT and T2D barely show any genome-wide significant

SNPs, thus the sparsity regression models are unlikely to work

well, and the LMM-based models that allow SNPs having

different effect size distributions are unlikely to benefit from

introducing the additional flexibility. For CD that had a few

isolated associated SNPs, the model that can capture both the

infinitesimal effects and spiked isolated predictive effects is

appropriate.

While Manhattan plots can facilitate the identification of

traits with polygenic architecture that describes diseases were

influenced by many SNPs with small effects, they are not

capable of differentiating the oligogenic model and omnigenic

model that assumes the gene regulatory networks are

comprised of a small amount of core and highly significant
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disease-associated SNPs and a large amount of non-significant

but predictive SNPs (Badano and Katsanis, 2002; Boyle et al.,

2017). Therefore, we recommend for traits that do not exhibit

any significant signals from the Manhattan plots, a simple

gBLUP model is sufficient as allowing additional flexibility is

not only unlikely to benefit the prediction accuracy, but also

substantially increase the computational complexity

(Supplementary Table S3 and Supplementary Table S6).

However, for traits that have highly significant SNPs from

the Manhattan plots, we recommend using DPR that is flexible

in capturing both polygenic and oligogenic effects (i.e., the

omnigenic effects). Under these circumstances, we do not

recommend using the simple gBLUP model due to the

presence of highly significant SNPs, nor do we recommend

the sparsity regression models as they can have substantially

worse performance for traits with omnigenic architecture.

While the Manhattan plots can be influenced by both effect

sizes of the SNPs and the sample size of the study, it can be

informative and provide practical guidelines in choosing the

appropriate prediction models for the given dataset. We

noticed that as the sample size grows, more significant

SNPs can be detected and the Manhattan plots can look

differently from study to study. Therefore, we recommend

to choose the appropriate prediction models based on the

Manhattan plots of the training data at hand. In addition,

different GWAS models could also have an impact on the

appearance of the Manhattan plots (GWAS results under

dominant and recessive models are shown in

Supplementary Figure S3 and Supplementary Figure S4).

Therefore, it is important to align the model assumption

(e.g., additive, dominant or recessive) used in GWAS with

the prediction models.

For the prediction analysis of AD-related brain imaging

traits, the Manhattan plots from these eleven traits highly

suggest the polygenic model. As expected, gBLUP model has

the best or close to the best prediction performance for all

these traits (Table 3 and Figure 4). With covariates (i.e., age,

gender and education) incorporated, the prediction accuracy

has increased substantially for all models, which is consistent

with previous study (Ferreira et al., 2017). We have found that

the prediction accuracy for these eleven diseases differs a lot,

with Pearson correlation ranging from 0.27 to 0.61. We

estimated the heritability for all these traits based on UKB

data and found that there was a linear relationship between

the estimated heritability and prediction accuracy

(supplementary Table S9), which is in line with Yang et al.

(Yang and Zhou, 2020).

Brain structures are believed to be moderate to high

heritable (Carmelli D et al., 1998; Braskie et al., 2011;

Satizabal et al., 2019). However, even with covariates

incorporated, their prediction models do not have high

accuracy. This is consistent with existing studies, which

showed that common variants can only explain a small

proportion of heritability for brain-related traits (Hibar

et al., 2015). It is worth investigating the contributions of

rare variants for prediction, as they can play important roles in

brain-related traits (Korte and Farlow, 2013) (Manolio et al.,

2009). While rare variants were measured by the ADNI study,

they are not measured by UKB and future studies are needed

to account for their effects. Gene-environmental interaction

(G×E) exists in many common diseases and traits (Frost et al.,

2016; Wang et al., 2017). SNPs×age (Bellou et al., 2020),

SNPs×sex (Cacciottolo et al., 2016) and SNPs×education

(Wang et al., 2017) have all been reported for AD.

Therefore, it would be a future direction of our research to

consider G×E interaction for the prediction of brain traits.

Brain imaging traits tend to be correlated (Carmelli D et al.,

1998; Glahn et al., 2007; Bogdan et al., 2017; Satizabal et al.,

2019; Matoba et al., 2022), and thus joint modeling is another

direction of our future research.

In summary, the performance of the LMM-based models is

influenced by the underlying unknown genetic architecture.

However, the simple Manhattan plots can be quite

informative to facilitate model selection. For a given dataset,

DPR that can capture both polygenic and oligogenic effects is

recommended for traits with highly significant SNPs. For traits

without obvious significant signals, a simple gBLUP model is

sufficient, as it can get a good balance between accuracy and

computation. We do not recommend the sparsity regression

model even for traits that showed clustered spiked signals, and

this is primarily due to the omnigenic architecture of many traits.

For AD-related brain imaging traits that are likely to be polygenic

as shown in Manhattan plots, we believe gBLUP is sufficient in

modeling them and incorporating well-known demographic risk

factors can further improve their prediction substantially.
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