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Background:Molecular subtyping of cancer aimed to predict patient overall survival (OS) and nominate drug tar-
gets for patient treatments is central to precision oncology. Owing to the rapid development of
phosphoproteomics, we can now measure thousands of phosphoproteins in human cancer tissues. However,
limited studies report how to analyse the complex phosphoproteomic data for cancer subtyping and to nominate
druggable kinase candidates.
Findings: In this work, we reanalysed the phosphoproteomic data of high-grade serous ovarian cancer (HGSOC)
from the Clinical Proteomic Tumour Analysis Consortium (CPTAC). Our analysis classified HGSOC into 5 major
subtypes that were associated with different OS and appeared to be more accurate than that achieved with pro-
tein profiling. We provided a workflow to identify 29 kinases whose increased activities in tumours are associ-
ated with poor survival. The altered kinase signalling landscape of HGSOC included the PI3K/AKT/mTOR, cell
cycle and MAP kinase signalling pathways. We also developed a “patient-specific” hierarchy of clinically action-
able kinases and selected kinase inhibitors by considering kinase activation and kinase inhibitor selectivity.
Interpretation: Our study offered a global phosphoproteomics data analysis workflow to aid in cancer molecular
subtyping, determining phosphorylation-based cancer hallmarks and facilitating nomination of kinase inhibition
in cancer.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Phosphoproteomics focuses on the identification and quantification
of phosphorylated residues on proteins in biological specimens [1].
Owing to the recent technological advances, liquid chromatography-
mass spectrometry (LC-MS)-based quantitative phosphoproteomics
can measure thousands of phosphorylation events, from which kinase
activities can be inferred and kinase-targeted therapies can be devel-
oped [2–4]. It has been successfully used to rationalize responses to ki-
nase inhibitors, to identify drug targets, and for the development of new
therapies against several diseases including cancer, diabetes, andneuro-
degenerative diseases [5]. In recent years, great efforts have been made
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towards the identification of biomarkers that can predict the clinical ef-
ficacy of kinase inhibitors and other drugs [4]. However, mostwere per-
formed using cell lines or xenograft models that may not completely
reflect the signalling events of human tissues.

Currently, several studies have used the LC-MS-based
phosphoproteomics to focus on the measurement of signalling mole-
cules and phosphoproteins in human tissues, including breast cancer
[6], ovarian cancer [7], prostate cancer [8], acute myeloid leukaemia
[9], hepatocellular carcinoma [10], lung cancer [11] and bladder cancer
[12]. The main discoveries based on the phosphoproteomics are sum-
marized in Supplementary Table 1. These studies mainly focus on the
identification of alterations of signalling pathways and did not pay
much attention to potential clinical application of phosphoproteomics.
For example, the Clinical Proteomic Tumour Analysis Consortium
(CPTAC) acquired extensive phosphoproteomics data and identified
several altered signalling pathways including RhoA, PDGFRB, and the
integrin-like pathways [7]. However, identifying and using phospho-
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

We searched the PubMed database according to the terms
[(“phosphoproteomics” OR “phosphorylation”) AND (“cancer” OR
“tumour”) among English-language articles before September 2,
2018. We found ten studies using quantitative
phosphoproteomics to measure the human cancer clinical sam-
ples. These studies did not pay much attention to the potential
clinical application of phosphoproteomics. Few studies report
how to use these data to nominate kinase candidates for clinical
intervention.Application of phosphoproteomics in translational re-
search remains an urgent need.

Added value of this study

We took the high-grade serous ovarian cancer (HGSOC) datasets
from the CPTAC as a case study to present a workflow to analyse
large-scale phosphoproteomics data for cancer subtyping and to
nominate druggable kinase candidates. A “patient-specific” hierar-
chy of clinically actionable kinases was developed by considering
kinase activation and kinase inhibitor selectivity.

Implications of all the available evidence

We proposed a bioinformatics analysis workflow to distil informa-
tion and knowledge from large-scale phosphoproteomics data.
This work detailed the processes of how to subtype cancer with
phosphorylation data to be associated with clinical outcome and
nominate actionable kinase targets for clinical intervention. Our
current study might provide a strategy and workflow to investi-
gate kinase activation and then select the corresponding kinase
targets for treatment for the particular patient.
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proteins as cancer biomarkers is still in the early stage, andmost studies
did not associate phosphorylationwith clinical outcomes such as overall
survival (OS) and progression-free interval time (PFI). Few studies fo-
cused on how to use the phosphoproteomics to nominate kinase candi-
dates for clinical intervention. Application of phosphoproteomics in
translational research remains a challenge.

Ovarian cancer is among one of themost life-threatening malignan-
cies for woman. High-grade serous ovarian cancer (HGSOC) accounts
for 70–80% of ovarian cancer deaths, and overall survival has not
changed significantly for several decades [13,14]. The standard clinical
management for advanced-stage ovarian cancer includes surgery
followed by adjuvant chemotherapy [13]. However, after initial re-
sponse, tumour recurrence is encountered in approximately 70% of pa-
tients whowill eventually die of a progressively chemo-resistant cancer
[13]. Further studies for better understanding HGSOC-specific molecu-
lar carcinogenesis mechanisms and druggable targets are in urgent de-
mand. The targeted therapy of ovarian cancer mainly focuses on anti-
angiogenesis poly(ADP-ribose) polymerase inhibitors (PARPi), inhibi-
tion of DNA repair and cell cycle, inhibition of the PI3K/AKT/mTORpath-
way and immunotherapeutic strategies [15,16]. Many of these
innovative approaches already demonstrate promising activity in ovar-
ian cancer. One of the most important issues is the selection of patients
who could benefit from the therapies. The most successful example is
that patients who carry germline mutations in either BRCA1 or BRCA2
are sensitive to PARPi [17]. However, except for TP53 (N90%) and
BRCA1/BRCA2 (~15%), the mutation frequencies of other genes are
quite rare (b5%) [18]. More drug targets and predictive markers are
needed. In this work, we take the CPTAC HGSOC phosphoproteomics
dataset as a case study to present a workflow to illustrate how
phosphoproteomics profiling could be used to aid in the prediction of
prognosis, determine phosphorylation-based cancer hallmarks and
nominate kinase targets for clinical intervention.

2. Materials and methods

2.1. Dada acquisition and processing

The phosphoproteomic and proteomic data of HGSOC, which were
carried out by the CPTAC program, were downloaded from the website
[7]. The clinical information including the overall survival (OS) and pro-
gression-free interval time (PFI)were obtained from the TCGA Pan-Can-
cer Clinical Data Resource after mapping the barcodes [19]
(Supplementary Table 2). Phosphorylation sites were retained when
phosphopeptides showed an Ascore N19; otherwise, the precisemodifi-
cation sitewas deemed ambiguous [20].We found that most phosphor-
ylation siteswhosemaximum intensity in all experimentswas less than
the first quartile value were detected in fewer than 10 samples, as
shown in Fig. S1a. We only used the phosphorylation sites with higher
abundance, whose maximum intensity in all experiments ranked in
the top 75% (Fig. S1b). The missing data were imputed with the mini-
mum non-zero values of global phosphorylation sites. For the proteo-
mics data, the same filter criteria were used. After these steps, the
remaining phosphorylation sites and proteinswere used for subsequent
analysis.

2.2. Statistical analysis

Consensus clustering was performed using the R package
ConsensusClusterPlus [21]. The phosphorylation sites were quantile
normalized before clustering. The Kaplan-Meier method was used to
perform the survival analysis, and the difference was tested using the
log-rank test. Cox proportional hazards regression analysis which
takes age, stage and grade into account were performed, and p-values
were adjusted using the Benjamini and Hochberg method [22]. All sta-
tistical analyses were performed using R 3.31 and Python 3.6.2 (with
Anaconda 5.1.0).

2.3. Construction of the kinase–substrate interaction dataset

The comprehensive kinase–substrate interaction dataset was con-
structed through integration of the data from the four public databases:
PhosphoSitePlus (10,266 interactions) [23], Phospho.ELM (1479 inter-
actions) [24], PhosphoNetworks (4402 interactions) [25] and
UniprotKB (3092 interactions) [26]. To extract the sequences surround-
ing the phosphorylation sites in these interactions, wemapped the sub-
strate sites to the human proteins in the Swiss-Prot database, and
unmapped sites were removed. Finally, 15,384 non-redundant kinase
substrate interactions remained. We then expanded the kinase-sub-
strate relationships for other sites based on the position weight matrix
(PWM) score and protein-protein interactions collected fromdatabases.

PWMs were constructed for those kinases with N30 substrates and
used to predict more kinase-substrate interactions. The PWM score of
amino acid residue i at site j was defined as:

PWMij ¼ log2
pij
bi

ð1Þ

Here, pij represents the observed frequency of amino acid i at site j, and
bi represented the background frequency of amino acid i in human
phosphoproteomics. When counting the observed frequency, one
pseudo count of every 20 amino acids was added, to make pi positive.
An example of the calculation of the PWM score is displayed in the
Fig. S2a.
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Then if a phosphorylation site meets both of the following criteria, it
will be predicted as the substrate site of a specific kinase: 1) similar se-
quence pattern with known substrate sites of the kinase; and 2) sub-
strate protein interacted with the kinase. Here, the similar sequence
pattern was evaluated based on the PWM scores. The PWM score of a
phosphorylation site was defined as the sum of the PWM scores of res-
idues from position −7 to +7, with the exception of the phosphosites.
For each kinase, we took the 3rd quartile of PWM scores of its known
substrates as the cut-off. Those sequences with PWM scores higher
than the cut-off were defined as the potential substrates of the kinase.
Those candidate substrates were further filtered by the known pro-
tein-protein interactions downloaded from eight public protein data-
bases: BioGrid [27], PioPlex [28], CCSB [29], DIP [30], HPRD [31], IntAct
[32], MINT [33], and PINA [34]. The types of interactions between pro-
teins collected from databases included physical interaction, transcrip-
tional regulation and sequential catalysis. Only those kinase-substrate
relations with known protein-protein interaction support remained. In
addition, the correlations of the PWM scores with different sequence
lengths (from ±4 to ±6 positions) are shown in Fig. S2b. These results
indicated that the PWMscores generated by different lengths correlated
well and the kinase-substrate dataset generated by different sequence
lengths should be similar.

2.4. An unbiased bioinformatics approach to nominate kinases as potential
therapeutic targets

2.4.1. Predicting kinase activities for each patient
Based on the assumption that the activation of a kinase is reflected

by the phosphorylation state of its substrates, the mean values method
was used to estimate the kinase activity after normalization of phospho-
peptide abundance by protein abundance [35]. TheMean value method
calculated the average fold change difference for all detected substrate
sites from the same kinase as a measurement of the kinase activation/
inhibition. Three additional methods, including the multiple linear re-
gression (MLR) model [36], KSEA algorithm and Z-test [37], were also
applied to estimate the kinase activity.

The MLR model was constructed as follows:

yj ¼
Xn

i¼1

β̂ixij j ¼ 0;1;…;mð Þ ð2Þ

where β̂i is the coefficient of regression; xij=1 if phosphosite j is a sub-
strate of kinase i, otherwise 0. i ranges from 1 to n (n=192 for all 192
kinases), yj is the relative value of phosphosite j, and is computed as fol-
lows:

yj ¼ log2
T j þ 1
� �

= TP j þ 1
� �

Mj þ 1
� �

= MPj þ 1
� � ð3Þ

Tj andMj are quantitative values of phosphosite j in the tumour and
median of all the tumours; TPj andMPj are the quantitative values of the
protein corresponding to phosphosite j in the tumour and themedian of
all the tumours. Tj + 1 instead of Tj was used to calculate yj. Adding 1
was used to avoid obtaining fold changes that are too large considering
some phosphorylation sites/proteins with low expression levels. Ridge
regression, defined as below, was used to solve the regression problem.

β̂ ¼ argminβ y−Xβk k2 þ λ βk k2
� �

ð4Þ

Here, y is the vector of yj and X is the matrix of xij; β is the vector of
coefficients βi, taken as the estimation of kinase activity; λ‖β‖2 is ridge
penalty, and was applied to reduce the over-fitting of the MLR model
and multi-collinearity of the interactome. For each patient, λ was set
to 0.0001. Scikit-learn package (http://scikit-learn.org/stable/) was
used to compute the ridge regression.
The KSEA package from https://github.com/evocellnet/ksea uses a
modified weight Kolmogorov-Smirnov test to search for kinases with
significant enrichment of upregulated or downloaded substrates. The
relative values of phosphosites and related kinases-substrate interac-
tions were taken as the input. The significance was estimated with a
null distribution of 1000 permutations. The resulting P-values were
log10- transformed and signed based on the average sign of all sub-
strates, which was taken as the final kinase activity [37].

Z-test compares themean fold change of substrate sites of a kinase to
that of all substrate sites:

Z ¼ S−phos
σ=

ffiffiffiffiffi
m

p ð5Þ

where S is the mean fold change of substrate sites of a kinase in one pa-
tient, Phos is themean fold change of all substrate sites in the patient,m
is the number of substrate sites of the kinase, and σ is the standard de-
viation of fold changes of substrate sites.

2.4.2. Classification of patients based on kinase-patient matrix
We wanted to find out kinases whose high activities in tumours

were associated with overall poor survival compared with low activity.
Thus, we need to define the cut-off value that separate the high and low
activity group for each kinase. Firstly, patients were grouped into high
and low activity groups by an arbitrary cut-off value, then significance
of the clinical outcome difference between the two groups was tested
by the log-rank test and then a log-rank P value were calculated. Sec-
ondly, we iterated the arbitrary cutoff value until we obtained the low-
est log-rank P value to find the cut-off value that would be used to
define the high and low activity group.

2.5. Nomination of kinase inhibitors for each patient

The preferences of each kinase inhibitor in one patient were mea-
sured by the following preference score:

PScoreij ¼

X
k

βjkCik

Citotal
ð6Þ

where PScoreij is the preference score of drug i in patient j, βjk is the
activity of kinase k in patient j. Here the kinase activity was measured
by theMean valuemethod. Cikwas the concentration and target depen-
dent selectivity (CATDS) value of inhibitor i to kinase k. Citotal was the
sum of CATDS of inhibitor i to its all targeted kinases. CATDS could
measure the engagement of a specific protein target at a particular
drug concentration relative to all target protein engagements of that
drug at the same concentration.More details of the CATDS have been re-
ported in a previous study [38].

3. Results

3.1. Kinase activity pattern in HGSOC

The CPTAC HGSOC datasets contained both phosphoproteomic and
proteomic data for 69 patients with clinical outcomes [7] (Fig. 1a).
After data pre-processing (see Methods), 10,171 phosphorylation sites
and 6878 proteins were remained for subsequent analysis (Fig. S3a-b),
which included 8481 (83.38%) phosphoserine sites, 1444 (14.2%)
phosphothreonine sites and 246 (2.42%) phosphotyrosine sites
(Fig. S3a).

As the activation status of a kinase can be inferred by its substrates
[9,39], we built 17,833 kinase-substrate relationships from public data-
bases (see Methods, Supplementary Table 3). In the ovarian cancer
dataset, 1913 substrates and 170 kinases with at least two substrates
were mapped, of which 167 (98.23%) were annotated in the kinome

http://scikit-learn.org/stable
https://github.com/evocellnet/ksea


Fig. 1. Themainworkflow in this study and kinase activity patterns in HGSOC. a. Application of phosphoproteomic data in ovarian cancer; b. Kinome tree annotated using Kinome Render
fromCell Signalling Technology, Inc. (www.cellsignal.com); Each kinase had at least two substrates. CMGC contains cyclin-dependent kinase,MAPK, glycogen synthase kinase 3 andCDC2-
like (cell division control 2, A-type cyclin-dependent kinase); STE consists of theMAPK cascade families; TKL (tyrosine kinase-like) consists of theMLK (mixed-lineage kinase), LISK (LIMK/
TESK), and IRAK; AGC contains protein kinases A, G and C; CAMK (calcium/calmodulin- dependent protein kinase); CK1 (casein kinase 1) contains the CK1, TTBK (tau tubulin kinase), and
VRK (vaccinia-related kinase) families; TK (tyrosine kinase) c. Kinase activity pattern in HGSOC.
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Fig. 2. Phosphoproteome subtypingofHGSOCwith different overall survival. The association ofmolecular subtypes based on a. phosphosites, b. kinases activity, and c. proteinswith overall
survival of patients. d. Kinase activity and other clinical parameters across 69 patients in Ph1–5. Kaplan-Meier analysis, P value from the log-rank test;
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tree [40] (Fig. 1b). The main kinase groups were CMGC, which contains
CDK kinases and MAPK families, and AGC, which consists of protein ki-
nases A, G and C. For each kinase, the average number of substrates was
11 and themediannumber of substrateswas 4 (Fig. S4a, Supplementary
Table 4). The enhanced phosphorylation of a substrate site can be
interpreted by the enhancement of both kinase activity and substrate
protein level. In this study, we are interested in those phosphorylation
changes caused by the kinase activity. We then calculated the normal-
ized value of p-site-intensityphosphorylation/protein-intensityprofiling to
correct for altered protein expression [35] and then computed a fold
change difference of the phosphorylation site in the tumour for each pa-
tient divided by themedian value of the 69 tumours.We used the aver-
age fold difference for all detected substrate sites for the same kinase as
a measurement of the kinase activation/inhibition (Supplementary
Table 5). Forty-two kinases with the top 1/4 ranked values of average
fold difference across the patients were shown in Fig. 1c. The kinase ac-
tivity pattern for each patient was diverse. The highly activated kinases
included MELK, MAP2K1/2, PTK2, STK4, and CDK9.
3.2. Phosphoproteomic subtyping of HGSOC and association with OS

We then explored whether the HGSOC patients could be further
classified into subtypes based on the phosphorylation sites or kinase ac-
tivities. Using the values of 10,172 phosphorylation sites in the tumours,
we employed consensus clustering [21] to identify HGSOC subtypes.
Five clusters (Ph1–5) were apparent (Fig. S5a) and associated with dif-
ferent OS (Log-rank test, P= .0082, Fig. 2a). When using the 48 kinase
activities as input for consensus clustering, we also obtained five sub-
types (Fig. S5b) with similar OS associations (Log-rank test, P= .0013,
Fig. 2b). Interestingly, proteome subtyping also generated 5 subtypes,
but the p-value for association of subtypes with OS was larger than
those obtained from phosphoproteomics data (Log-rank test, P= .058,
Fig. 2c, Fig. S5c). The kinase activity-based subtyping appeared to be
better than the other two methods to extract patients with the best
OS. These results suggest that phosphoproteome subtyping is better
correlated with OS than proteome subtyping. None of the subtypes cor-
relatedwith the progression-free interval time. Other clinical character-
istics, such as age, stage, grade, and chemo-response were also
annotated in Fig. 2d, and the frequencies of these characteristics within
the five subtypes are shown in Supplementary Table 6. Compared with
Ph1-Ph4, Ph5 responded to chemotherapy, and Ph2-Ph3 appeared to
display disease progress after chemotherapy (Fisher-test, P b .05).

Ninety kinases were identified as exhibiting differential activities
among the subtypes (ANOVA, FDR b 0.01). As shown in Fig. 2d, Ph1-
Ph3were characterized by few activated kinases. Themost activated ki-
nases in Ph1 included PDK3/4, which contributed to the regulation of
glucose metabolism. Ph2-Ph3 had STK4 activated, which promoted ap-
optosis. Ph4 and Ph5 carried the most activated kinases. PLK3, ULK3,
CDK9, CDC7, MAP3K8, IKBKE, and PDPK1 were activated most fre-
quently in Ph4. Ph5 had BRAF, AXL, CDK3, CSNK1A1, and NEK3 acti-
vated, which might account for the worse survival of Ph5. Among
these kinases, there were 8 kinases whose activities significantly corre-
lated with clinical outcome (P value b.05, Cox regression taking age,
stage, grade and chemo-response into account, Supplementary Table
6). These kinases were mainly the features of Ph4 and Ph5 subtypes
such as CDK9, CDC7, BRAF and AXL. Ph4 had the best survival and Ph5
had theworst survival, whichmight havemore apparent characteristics
than other subtypes.
Fig. 3.Nominating potential druggable kinases. a. The correlations between the kinase activities
sites; b. Theworkflow of the identification of druggable kinases; c. Kinases whose increased act
for the two kinase activity prediction methods; e-f. Kinases whose increased activities in tumo
curves of the kinases and f. boxplot of the kinases substrates in the phosphoproteome and p
than/above the cut-off. High risk/Low risk: patients with poor/better survival. HR: hazard ratio
3.3. Nomination of kinases as potential therapeutic targets

We then postulated that activated kinases might be therapeutic tar-
gets if their activities are negatively correlatedwith poor survival. In ad-
dition to Mean value method, we also adapted the Z-test, the KSEA [37]
and the multiple linear regression (MLR) model to measure the kinase
activity based on the kinase-substrate relationships. With each of
these four methods, we could compute the “kinase activity” for every
patient and generate a kinase-patient matrix. Then four kinase activity
matriceswere obtained; each row represents the activity of a specific ki-
nase across different patients, and each column represents the activities
of different kinases for a patient. It is known that one of the most com-
mon methods for regulating kinase activity is the phosphorylation of
the activation loop. The activation loop is a site of protein-protein inter-
actions that can be critical in controlling the localization and regulation
of a kinase and its binding partners [41]. To evaluate the accuracy of the
four kinase activity prediction methods, we collected 618 activation
loop phosphorylation sites from the PhosphoSitePlus database, and 17
sites were detected in the dataset (Supplementary Table 7). The corre-
lations of the predicted kinases activities with the intensity of the acti-
vation loop phosphorylation sites were performed by the linear
regression. We found that the kinase activities predicted by the four
methods were positively correlated with the intensity of the activation
loop phosphorylation sites (Fig. 3a, Fig. S6, Supplementary Table 7).
The Mean value and KSEA methods performed significantly better
than the other two methods (Wilcox test P b .05, Fig. 3a) and were
retained for subsequent analysis.

The above two kinase activitymatrices allowedus to stratify patients
into two groups according to high and low kinase activity. The cut-off
value was individually determined to find the lowest P value of survival
time according to a log-rank test (Fig. 3b, panel 3). To reduce the false
positive rate, we only retained the kinases with a log-rank P value
b.05 in at least 3 continuous cut-off values. In addition, based on the ki-
nase activities predicted by the Mean value method, we performed Cox
regression and multiple testing p-value correction, taking age, stage,
grade and chemo-response into account (Fig. 3b, panel 4). Fourteen
and twenty-two kinases were identified, whose activities were signifi-
cantly associated with poor PFI or OS, respectively (Fig. 3c, Figs. S7–8,
Supplementary Tables 8–9). The two methods (Mean value and KSEA)
had 3 kinases that overlapped for PFI association and 5 kinases that
overlapped for OS, both of which account for around 50% of KSEA re-
sults. (Fig. 3d). Finally, to expand the list of kinase targets, we nomi-
nated the union of the two methods, including 29 non-overlap kinases
that were associated with PFI or OS as potential therapeutic targets
(Table 1, Fig. S3b).

Seven kinases (CAMK2A, CDK4, CDK5, MAPK3, PKN1, RPS6KA3 and
RPS6KB1) were found to be associated with both PFI and OS (Fig. 3c).
As shown in Fig. 3e, higher kinase activities of CAMK2A, CDK4, MAPK3
and RPS6KB1 were significantly correlated with OS and PFI (Log-rank
test, P b .05). In contrast, the abundance of substrates measured from
protein profiling showed a smaller difference between the high- -risk
(shorter OS) and the low-risk group (longer OS) (Fig. 3f). Other kinases
showed similar results (Fig. S9–15). Interestingly, we only identified 6
kinases (TNIK, PRKCE, PRKD3, STK36, STK4 and PIK3CB)whose increase
in protein abundance correlated with poor PFI or OS (Supplemental
Table 8, Fig. S7b). There was no overlap between the kinase list based
on activity and abundance. Therefore, it is necessary to take the activity
of kinases into consideration when identifying kinase targets.
predicted by the four methods with the intensities of the activation loop phosphorylation
ivities in tumours are both associatedwith poor clinical outcome; d. Overlaps of the results
urs are both associated with the progression-free interval and overall survival. e. Survival
roteome data. Low(Kinase = 0)/high(Kinase = 1): patients with kinase activity lower
.



Table 1
Kinases associated with survival of HGSOC patients.

Kinases Method Survival time HR Logrank P value Summary

PI3K/AkT/mTOR pathway
AKT1 KSEA OS 4.23 9.70E-03 Cell grow and proliferation
PRKAA2 Mean values; KSEA OS 3.19;2.65 6.20E-03; 0.010 Cellular energy metabolism
PRKACA KSEA OS 4.68 5.30E-03 Differentiation, proliferation, and apoptosis.
PRKCA KSEA OS 2.06 4.80E-02 Cell adhesion, cell transformation, cell cycle checkpoint
PRKCZ Mean values OS 3.12 2.60E-03 Tight junction
RPS6KA1 KSEA PFI 5.20 3.00E-03 Cell growth and differentiation
RPS6KA3 KSEA PFI/OS 2.07;2.90 0.030; 9.26E-04 Cell grow and proliferation
RPS6KB1 Mean values PFI/OS 3.81;2.94 8.38E-05; 2.27E-03 Cell grow and proliferation
PKN1 Mean values; KSEA PFI;PFI/OS 3.50;2.35; 2.19 4.80E-03; 1.11E-03; 0.025 Cell migration, tumour cell invasion

Cell cycle
CDK2 KSEA PFI 4.38 1.05E-05 G1 to S phase transition
CDK4 Mean values; KSEA OS;PFI/OS 2.11;2.65; 2.06 1.60E-02; 8.87E-03; 9.40E-03 G(1)/S transition
CDK5 Mean values PFI/OS 2.19;3.40 4.0E-03; 6.3E-03 Cell cycle, cell proliferation

DNA damage
CDK6 Mean values OS 2.02 1.20E-02 G1 phase progression and G1/S transition
CDKL5 Mean values PFI 2.79 4.00E-04 Cell proliferation
DYRK2 Mean values OS 2.62 1.30E-03 Cellular growth and/or development

MAPK pathway
MAPK1 Mean values; KSEA OS 3.20;2.76 0.020;0.012 Cell growth, adhesion, survival and differentiation
MAPK3 Mean values PFI/OS 2.23;2.76 6.2E-03; 3.4E-03 Cell growth, adhesion, survival and differentiation
MAPK9 Mean values OS 2.65 1.10E-02
MAPKAPK5 Mean values OS 2.40 1.40E-03 Stress and inflammatory responses, nuclear export, and cell proliferation
RAF1 Mean values OS 2.80 2.10E-03 Activate the dual specificity protein kinases MEK1 and MEK2

Wnt signalling pathway
CSNK1A1 Mean values PFI 2.67 1.90E-03 DNA repair, cell division, nuclear localization and membrane transport
CSNK1E Mean values PFI 2.02 7.60E-03 DNA replication and repair
GSK3A Mean values; KSEA PFI 3.03;2.40 9.54E-05; 9.70E-04 Cell cycle progression, differentiation, and apoptosis
CAMK2A Mean values; KSEA PFI/OS;OS 2.80;2.76; 3.48 2.70E-03; 1.60E-03; 3.00E-04 Ca(2+)/calmodulin-dependent protein kinases

Immune associated targets
JAK2 Mean values PFI 2.03 5.50E-03 Cytokine receptor signalling pathway; responses to gamma interferons
HCK Mean values; KSEA OS 4.20;3.73 2.13E-05; 2.41E-05 A member of the Src family of tyrosine kinases
LYN KSEA OS 3.10 1.50E-03 A member of the Src family of tyrosine kinases

Others
STK17A Mean values OS 2.70 4.20E-04 Apoptosis
PRKD2 Mean values OS 2.31 5.40E-03 Cell migration and differentiation

312 M. Tong et al. / EBioMedicine 40 (2019) 305–317
3.4. Major dysregulated kinase pathways in HGSOC

The 29 potential therapeutic targets could be classified into 5 path-
ways within the conceptual framework of hallmark cancer signalling:
(1) the PI3K/AKT/mTOR network, (2) Wnt signalling, (3) MAPK net-
work, (4) cell cycle and (5) other pathways, such as cell migration and
PDGFRB pathways (Fig. 4, Table 1). In addition, in order to make the
pathways more intact, 6 kinases (PDK1, CDK1, PRKAA1, RPS6KB2,
MAP2K1 and MAP2K2), whose maximum activity across the patients
ranked in the top 1/4, were also mapped in Fig. 4. The PI3K/AKT/
mTOR signalling pathway contained themost potential therapeutic tar-
gets such as AKT1, PRKAA2, PRKACA, PRKCA, PRKCZ, RPS6KA1,
RPS6KA3, RPS6KB1 and PKN1 (Fig. 4). Higher AKT1 expression has
been reported to correlate with poor prognosis in ovarian cancer and
could be a biomarker of treatment response in ovarian cancer [42–44].
Clinical trials of several AKT inhibitors in ovarian cancer have been con-
ducted [45]. Elevated of RPS6KA1 abundance could promote themetas-
tasis of ovarian cancer cells [46]. The cell cycle had 6 potential
therapeutic targets (Fig. 4). In the cell cycle pathways, all of the cyclin-
dependent kinases identified as potential therapeutic targets were vali-
dated in cellmodels of ovarian cancer. Targeting CDK2was a novel ther-
apeutic strategy in CCNE1-amplified ovarian cancer [47]. CDK4/6
inhibitors have shown significant activity against several solid tumours
such as breast cancer, non-small cell lung cancer and melanoma [48].
These inhibitors also have shown promising preclinical activity in ovar-
ian cancer [49]. CDK5 is important for neuronal development [50]; in-
creased expression of CDK5 in human ovarian cancers correlates with
poor overall survival, and inhibition of CDK5 could increase paclitaxel
sensitivity [51]. In theMAPK signalling pathway,MAPK1was associated
with frequent somatic copy number amplification in HGSOC [18]. Over-
expression of MAP2K1 correlated to progression free survival of ovarian
cancer [52].MAPK9 represents an attractive targets in cancer [53]. In ad-
dition, three kinases (JAK2, HCK and LYN) have been reported as thera-
peutic targets in immune and cancer cells [54–56]. Summaries of other
kinases are provided in Table 1 and Supplemental Table 10. In theCPTAC
paper, proteins and phosphoproteins abundance of the RhoA-regula-
tory, PDGFRB, and integrinlike kinase pathways were found to be asso-
ciated with survival. Three kinases (JAK2, RAF1 and PRKCA) in these
pathways were also found in our study. In addition, four kinases
(RAF1, MAPK1, MAPK3 and AKT1) showed statistically significantly in-
creased phosphorylation by a reverse-phase protein array (RPPA) in
short-surviving patients compared with long-surviving patients [7].
These four kinases have also been identified in our study. The compari-
sons between the CPTAC study and our work are shown in Table 2.

3.5. A “patient-specific” hierarchy of clinically actionable kinases and
inhibitors

We sought to nominate kinase targets for each individual patient
and drew the top three potential therapeutic target activity patterns
for every patient based on kinase activity derived from themean values
of all measured corresponding substrates (Fig. 5a). It was evident that
each patient had a unique top three potential therapeutic target activa-
tion pattern. For the PFI-associated kinases, the top five frequently



Fig. 4.Major pathwaysmapped by the kinases activated in HGSOC. Here, if a kinasemeets one of the following criteria, it would be defined as activated: (1) whose activity was associated
with poor overall survival; and (2) maximum activity across the patients ranked in the top 1/4. If a kinase mapped in Fig.4 did not meet one of the above criteria, it was denoted as “not
activated”. If a protein was not detected in the dataset, we also denoted it as “not activated”.
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activated potential therapeutic targets included CSNK1A1, GSK3A,
CSNK1E, JAK2 and CAMK2A (Fig. 5a-left panel). Themost frequently ac-
tivated CSNK1A1 was identified in 46/69 (67%) of the patients. For OS-
associated kinases, the top five frequently activated potential therapeu-
tic targets included PRKAA2, HCK, RPS6KA3, PRKD2 and CAMK2A (Fig.
5a-right panel). The most frequently activated PRKAA2 was identified
in 25/69 (36%) of the patients, while the frequency for CDK activation
was low. A “patient-specific” hierarchy of the top three most activated
kinases and the corresponding inhibitors is displayed in Fig. 5a, which
provides an entry point for selecting truly individualized kinase inhibi-
tion therapy.

It is now commonly accepted now that most kinase inhibitors target
the intended kinase aswell as other kinases as off-target effects [38]. Re-
cently, Bernhard Kuster et al. measured the on-target and “off-target”
spectra of 243 clinically evaluated kinase inhibitors [38], in which quan-
titative inhibition values for on-target and off-target kinases were mea-
sured and presented as concentration and target dependent selectivity
(CATDS) scores. Taking advantage of this resource, we tried to select



Table 2
The comparisons between CPTAC study and our work.

CPTAC study Our study

Subtyping with
phosphoproteome
data

No Yes, the subtypes were
significantly associated with
different overall survival
based on kinase activity(P =
.0013).

Subtyping with
proteome data

Yes, but the subtypes were
not associated with clinical
outcome(P N .5).

Yes, the subtypes were tend
to be associated with
different overall survival(P
= .058).

Method for
determing kinase
activity

They did not predict kinase
activity.

Two methods: Mean values
and Kinase substrate
enrichment analysis (KSEA).

Nomination
potential
druggable kinases

No Yes, we identified 35
potential druggable kinases.

Identifying
aberrantly
activated

signalling pathways

Yes, they used proteins and
phosphoproteins whose
abundance were associated
with survival (a two-sided
t-test) to identify pathways:
The RhoA-regulatory,
PDGFRB, and integrinlike
kinase pathways.

Yes, we used kinases whose
increased activities in
tumours are associated with
poor survival (log-rank test)
to paint the altered
signalling, which were
centered on the
PI3K/AkT/mTOR pathway,
cell cycle and MAP kinase
signalling pathways.

Development of
patient-specific
kinase inhibitors

No Yes, we developed a
patient-specific hierarchy of
clinically actionable kinases
and selected kinase
inhibitors by considering
kinase activation and kinase
inhibitor selectivity.

Integrating
proteomic data
with the

genomic data

Yes No

The main
significance of the
study

Layering proteomic and
genomic data from ovarian
tumours provides insights
into how signalling
pathways correspond to
specific genome
rearrangements.

This work detailed the
processes of how to subtype
cancer with
phosphorylation data to be
associated with clinical
outcome, and nominate
actionable kinase targets for
clinical intervention.
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the most appropriated kinase inhibitors for each patient by summariz-
ing CATDSweighted inhibition effects of each inhibitor to the 35 kinases
in hallmark cancer signalling pathways in Fig. 4 (seeMethods). Surpris-
ingly, we found that the top three inhibitors, TAK-733, trametinib and
cobimetinib, all targeting MAP2K1/2, may be applied to 52%–68% of
the patients (Fig. 5b). TAK-733 is a potent and selective MEK allosteric
site inhibitor for MEK. It has demonstrated suppression of tumour
growth in a wide range of tumour types, includingmelanoma and colo-
rectal, lung, pancreatic and breast cancer [57,58]. Trametinib has been
approved for the unresectable or metastatic melanoma with BRAF
V600E or V600K mutation [59]. While the frequency of BRAF mutation
is rare in ovarian cancer[18], its downstream effector MAP2K1/2 kinase
activity is elevated in the CPTAC cohort, rendering them amenable to
trametinib treatment. In fact, it has been reported that the high MAPK
activity, as measured by phospho-MAPK intensity, could independently
predict poor survival for HGSOC [60]. A “patient-specific” hierarchy of
the top kinase inhibitors is displayed in Fig. 5b. It seemed that
Uprosertib, R-547 and ruboxistaurin were the top three inhibitors that
may be applied to the entire HGSOC cohort.
4. Discussion

Phosphoproteomics is playing a significant role in aiding our under-
standing of themolecularmechanisms governing human cancers [2,61].
Most of the studies applied this technique to generate data covering
thousands of phosphorylation sites, yet use selected data most of the
time to reveal activation of oncogenic pathways. Our case study of
reanalysing the CPTAC HGSOC phosphoproteomics dataset demon-
strated that phosphoproteomics data could be used to subtype HGSOC
into 5 major classes (Ph1–5) associated with clinical outcomes. These
subtypes were associated with patient OS and chemo-sensitivity, and
they may be used after validation in clinics to assist clinicians in deter-
mining treatment plans. It is interesting to note that owing to its ability
to regulate biological activities, protein phosphorylation-basedmolecu-
lar subtyping appears to be able to achieve more accurate result than
subtyping with protein abundance. We compared the classifications
by us and by the CPTAC group as well as the transcriptome-based clas-
sification and the subtyping comparisons were added to Fig. S16a. The
subtype that overlapped best among the three kinds of classifications
was the Ph4/Immunoreactive subtype, which had the best survival.
The stromal subtype in the CPTAC proteome-based classification tended
to be enriched in Ph5, which had the worst survival. The other three
subtypes (Ph1-Ph3) had little overlaps. One major reason might be
that the small sample size andmultiple subtypesmight limit the consis-
tent comparison. A larger cohort is needed to further compare the
multi-omics subtypes.

In this study, we also provided a workflow to nominate suitable ki-
nases for further clinical evaluation. We found 29 kinases, functioning
in the PI3K/AKT/ mTOR pathway, cell cycle and MAP kinase signalling
pathways,whose elevated kinase activitieswere significantly associated
with poor survival of the HGSOC patients. In our study, we applied the
Mean value method, MLR, KSEA and Z-test, to infer kinase activities
[36]. We found that the kinase activities predicted by the four methods
were positively correlatedwith the phosphorylation intensity of the ac-
tivation loop sites. Especially, the Mean value and KSEA methods per-
formed significantly better than the other two methods. The KSEA
uses a rank-based permutation and measures the activity of one kinase
by calculating its significance relative to other kinases in the same sam-
ple. The Mean value method calculates the kinase activities by directly
sum of downstream phosphosites. As displayed in Table 1, there were
15 kinases that only the Mean value method could identify compared
with KSEA, fourteen of these kinases have been validated as potential
targets in cancer(Supplementary Table 10). This suggests that the
Mean value method could identify additional reasonable kinases. KSEA
is complementary to the Mean value method, and was able to identify
seven kinases that the Mean value method failed to capture (Table 1),
all of these kinases have been validated as potential targets in cancer
(Supplementary Table 10). Therefore, we suggest the use of the union
of the two methods.

It is noteworthy that the HGSOC patients exhibited quite diverse
and individualized kinase activation spectra. We thus developed a pa-
tient-specific hierarchy of clinically actionable kinases and inhibitors
for precision oncology in kinase inhibition of HGSOC. While individu-
alized precision oncology is elegant and conceptually appealing, it
may be cost-prohibitive in a real world situation. To circumvent this
problem, we propose to take advantage of the fact that most kinase
inhibitors are not truly specific and have on-target kinase and the
off-target kinase effects. Thus, the inhibitors have inherent drug selec-
tivities and can thus be used as “pan-inhibitors” for certain combina-
tions of activated kinases. Using this concept, we found that
trametinib was designed as the MAP2K1/2 inhibitor and may be ap-
plied in half of the patients, making this inhibitor a likely actionable
kinase inhibitor in fighting HGSOC. Logically, trametinib was approved
for treating melanoma patients with BRAF mutations that lead to
hyper-activation of MAP2K1/2. HGSOC patients without BRAF activa-
tion, but whose MAP2K1/2 was found to be activated in
phosphoproteomics analysis, they might benefit from trametinib
treatment, which warrants further investigation. It will be interesting
to carry out a clinical trial for HGSOC to test the idea generated from
this data reanalysis.
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Fig. 5. “Patient-specific” kinase inhibitors. a. “Patient-specific” kinase inhibitors. The kinases were ranked based on the mean values of the corresponding substrates; b. Selectivity of
inhibitors targeting at candidate kinases shown in Fig. 4. The inhibitors were ranked based on the preference score. Preference score: the sum of inhibition of its target kinase activities
weighted by CATDS. CATDS: the concentration and target dependent selectivity.
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Some limitations of the study should be noted. Firstly, only 69 pa-
tients had both the phosphoproteomic and proteomic data. Considering
the heterogenous nature of HGSOC, a larger cohort should be utilized to
validate the subtypes and the corresponding specific features. Second,
the kinase activity predicted in this study is based on the current data-
bases of kinase substrate relationships, which could limit the analytical
depth. We repeated the Mean value method with well-annotated ki-
nase-substrate relations and found that the predicted kinase-substrate
relationships could help identify additional reasonable kinases (Fig.
S16b). The rapid accumulation of MS-based experiments could be
used in the future to extend the databases of kinase-substrate
relationships. Finally, the nomination of kinases for drug intervention
is group based and the “patient-specific” hierarchy of clinically action-
able kinases and inhibitors reported here was a proof of concept and
needs further investigations such as performing a phosphoproteomic
analysis of an independent panel of patient-derived tumour xenograft
(PDX) models to validate the therapeutic effects. Specific phosphoryla-
tion sites should be selected tomeasure which patients have the higher
kinase activity. The adjacent tissue from the patient could be used as the
reference to predict kinase activity for precision therapy.

In summary, our results indicate an association between the molec-
ular subtypes based on phosphoproteomics and clinical outcomes,
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suggesting that molecular characteristics of HGSOC reflected in
phosphoproteomic patterns might dictate clinical outcomes. Currently,
it is still difficult to select patients who are the most likely to respond
to a given kinase inhibition treatment. Our current studymight provide
a strategy andworkflow to investigate kinase activation and then select
the corresponding kinase targets for treatment of a the particular pa-
tient. Future work is needed to translate our current finding and the
use of phosphoproteomics as a vital technique to assist in the prediction
of prognosis and the treatment of cancer for kinase inhibition therapy.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.12.039.
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