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It is well established that chronic cognitive problems after traumatic brain injury relate to diffuse axonal injury and the consequent

widespread disruption of brain connectivity. However, the pattern of diffuse axonal injury varies between patients and they have a

correspondingly heterogeneous profile of cognitive deficits. This heterogeneity is poorly understood, presenting a non-trivial chal-

lenge for prognostication and treatment. Prominent amongst cognitive problems are deficits in working memory and reasoning.

Previous functional MRI in controls has associated these aspects of cognition with distinct, but partially overlapping, networks of

brain regions. Based on this, a logical prediction is that differences in the integrity of the white matter tracts that connect these net-

works should predict variability in the type and severity of cognitive deficits after traumatic brain injury. We use diffusion-weighted

imaging, cognitive testing and network analyses to test this prediction. We define functionally distinct subnetworks of the structural

connectome by intersecting previously published functional MRI maps of the brain regions that are activated during our working

memory and reasoning tasks, with a library of the white matter tracts that connect them. We examine how graph theoretic meas-

ures within these subnetworks relate to the performance of the same tasks in a cohort of 92 moderate-severe traumatic brain injury

patients. Finally, we use machine learning to determine whether cognitive performance in patients can be predicted using graph the-

oretic measures from each subnetwork. Principal component analysis of behavioural scores confirm that reasoning and working

memory form distinct components of cognitive ability, both of which are vulnerable to traumatic brain injury. Critically, impair-

ments in these abilities after traumatic brain injury correlate in a dissociable manner with the information-processing architecture

of the subnetworks that they are associated with. This dissociation is confirmed when examining degree centrality measures of the

subnetworks using a canonical correlation analysis. Notably, the dissociation is prevalent across a number of node-centric

measures and is asymmetrical: disruption to the working memory subnetwork relates to both working memory and reasoning per-

formance whereas disruption to the reasoning subnetwork relates to reasoning performance selectively. Machine learning analysis

further supports this finding by demonstrating that network measures predict cognitive performance in patients in the same asym-

metrical manner. These results accord with hierarchical models of working memory, where reasoning is dependent on the ability to

first hold task-relevant information in working memory. We propose that this finer grained information may be useful for future

applications that attempt to predict long-term outcomes or develop tailored therapies.
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Introduction
Traumatic brain injury (TBI) can lead to a variety of cog-

nitive problems that persist across the lifespan, impacting

on quality of life and contributing to poor functional out-

comes (McAllister et al., 2004; Ponsford et al., 2014). The

role of diffuse axonal injury in the development of cogni-

tive deficits is well established (Kinnunen et al., 2011;

Palacios et al., 2011, 2012; Zappala et al., 2012); how-

ever, our ability to accurately predict the type and severity

of deficits that each patient will suffer from in the chronic

phase is limited.

Brain imaging research has highlighted the importance of

the structural connectome in supporting higher-order cogni-

tion and has begun to characterize the mechanisms of im-

pairment after TBI. Studies that analyse the brain as an

information processing network have motivated a more hol-

istic perspective on cognition by illustrating that functionally

specialized regions of the brain dynamically form temporary

networks in order to support different cognitive processes

(Beckmann et al., 2005; Smith et al., 2009; Hampshire et al.,

2016; Soreq et al., 2019). The expression of these transient

networks is in turn facilitated by white matter structural

connectivity (van den Heuvel et al., 2009). In the context of

TBI, damage to structural networks produced by diffuse

axonal injury has been demonstrated to disrupt functional

connectivity, impairing information transfer across distal

brain regions (Sharp et al., 2014) and producing cognitive

deficits (Kim, 2009; Bonnelle, 2012; Palacios et al., 2011).

The recent application of graph theory to neuroimaging

data has extended this by demonstrating that TBI alters net-

work structure, moving it away from an optimal small-

world topology where all areas can communicate with each

other efficiently (Bassett and Bullmore, 2006; Braun et al.,

2015) to a more segregated architecture where coordinated

information processing across systems is hindered (Pandit

et al., 2013; Caeyenberghs et al., 2014; Fagerholm et al.,

2015). Changes to network efficiency have been proposed to

be due to the loss of long-range white matter connections

(Achard et al., 2006; Bullmore and Sporns, 2009), supported

by previous work investigating network structure and func-

tion following TBI (Pandit et al., 2013; Fagerholm et al.,

2015). These altered structural network properties have

been observed to correlate with cognitive impairments in

TBI patients and can be used to robustly classify those who

develop chronic cognitive problems (Fagerholm et al., 2015),

highlighting their potential for predicting cognitive

outcomes.

The move towards describing the impact of brain injury in

terms of changes to structural connectomes promises to

inform our understanding of the basis of variable cognitive

impairments after TBI. It also provides insights into the

neural mechanisms that underlie cognitive systems. For ex-

ample, deficits in working memory and reasoning are com-

mon after TBI (Kinnunen et al., 2011; Palacios et al., 2011,

2012; Zappala et al., 2012) yet the incidence and extent of

these impairments vary substantially across patients. One

potential reason for this variability is the considerable het-

erogeneity in the spatial distribution of damage to the struc-

tural connectome after TBI. This heterogeneity is likely

important when considering the impact of structural discon-

nection on distinct cognitive processes. Most relevantly,

when in our previous studies (Hampshire et al., 2012, 2019;

Daws and Hampshire, 2017) we applied principal compo-

nent analysis (PCA) to two large cohorts of healthy individu-

als (n = 44 600 and n = 18 455), the rotated factor solutions

supported the view that working memory and reasoning

form distinct cognitive components of cognitive ability. In a

smaller subset of controls, it was also shown that independ-

ent component analysis of functional MRI brain activity

during the performance of these tasks produces the same

working memory versus reasoning component structure that

relates to spatially different but partially overlapping net-

works in the brain (Hampshire et al., 2012). Based on this,

we proposed that individual differences in the functionality

of these networks may manifest as distinct axes of cognitive

ability; however, this interpretation was controversial (Haier

et al., 2014).

Here, we use a novel combination of cognitive testing, dif-

fusion-weighted imaging and graph theoretic analyses to test

a logical prediction of this hypothesis, that working memory

and reasoning abilities may be differentially affected by TBI

dependent on the post-injury integrity of these functionally

distinct networks. Critically, the impact of TBI on working

memory and reasoning has seldom been investigated in par-

allel, yet cognitive tasks typically involve some mixture of

both. Therefore, we applied PCA to data from a cohort of

92 TBI patients and 105 matched control subjects who per-

formed six of the tasks reported in Hampshire et al. (2012).

We sought to confirm the previously reported dissociation

of behavioural factors and to extract working memory and

reasoning scores in an unbiased data-driven manner. We

tested whether there are deficits in both orthogonal behav-

ioural components in the TBI population. Next, we investi-

gated how the component scores co-vary with the integrity

of the structural connectome in the TBI cohort. We took a

hypothesis-driven approach, defining working memory and

reasoning subnetworks of the structural connectome by

intersecting the whole brain functional MRI activation maps

from Hampshire et al. (2012) (Fig. 1) with an established
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atlas of the white matter tracts that connect the grey matter

regions of the brain. We tested whether working memory

and reasoning performance have dissociable relationships to

variability in information processing properties, as quantified

using graph theory measures of connectivity (degree central-

ity), integration (global efficiency) and modularity (local effi-

ciency, clustering coefficient), of their associated structural

subnetworks. We sought evidence of a dissociation in a

purely data-driven manner by using canonical correlation

analysis to identify modes that relate variability in working

memory and reasoning performance to white matter meas-

ures across the whole structural connectome. We then fur-

ther examined this dissociation using machine learning

models to predict working memory and reasoning perform-

ance from the functional subnetworks and graph theory

measures. We extended previous findings that disconnection

of network hubs (highly interconnected regions) have the

strongest association with cognitive performance (Fagerholm

et al., 2015), by demonstrating that this relationship is multi-

variate and dissociable for the functionally distinct subnet-

works of the structural connectome. Finally, we determined

the relationship that exists between white matter measures,

component scores from our computerized tests, and the

measures provided by neuropsychological tests that are

widely used to assess cognitive problems in the clinical

setting.

Materials and methods

Participants

Data from 92 patients [19 female, mean age 42.9, standard de-

viation (SD) 12.40 years] with a moderate-severe TBI as classi-

fied using the Mayo criteria (Malec et al., 2007) were included

in this study. Patients were recruited from neurology clinics in

London and were within the chronic phase (at least 6 months

post-injury). Mean time since injury was 130.4 months (SD

154, range 6–497 months). MRI findings, mechanism of injury

and current medications can be found in Supplementary

Table 1. Inclusion criteria were: age 18–80 years (range 20–80

years), no significant neurological or psychiatric history or pre-

vious TBI, no history of alcohol or substance abuse and able to

understand English. Exclusion criteria included: contraindication

to MRI or a positive urine drug screen. Written informed con-

sent was obtained from all patients in accordance with the

Declaration of Helsinki. The studies were approved by the West

London and GTAC Research Ethics Committee (14/LO/0067,

13/LO/1678, 14/LO/1998). All patients completed structural

MRI, a computerized cognitive battery and a standard neuro-

psychological test battery.

One-hundred and five healthy controls were included (35 fe-

male, mean age 44.98, SD 15.16 years). Controls had no history

of neurological or psychiatric illness, TBI or alcohol and sub-

stance abuse. All participants gave written informed consent. All

participants completed structural MRI. A subset (n = 35, eight

Figure 1 Illustration of extraction of structural connectomes from task-activation maps produced by Hampshire et al. (2012).

(A) Cognitive tasks used, and cognitive component structure created from PCA revealing a working memory versus reasoning component struc-

ture. (B) Working memory and reasoning activation maps derived from task-functional MRI relative to rest in healthy controls performing the

cognitive tasks. (C) Construction of structural connectomes in current study using activation maps from Hampshire et al. (2012) intersected

with Desikan-Killiany grey matter atlas to define nodes (regions of grey matter) and subsequent edges between nodes as white matter

connectivity.
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females, mean age 44, SD 13.05) also completed the computer-
ized cognitive battery and standard neuropsychological tests.

Structural MRI acquisition

Structural MRI was acquired using a 3 T Siemens Magnetom
Verio Syngo scanner with a 32-channel head coil. All participants
were scanned using the same acquisition parameters. Structural
MRI included a high-resolution T1-weighted MPRAGE (106
1-mm thick transverse slices, repetition time = 2300 ms, echo
time = 2.98 ms, flip angle = 9�, in-plane resolution = 1� 1 mm,
matrix size = 256�256, filed of view = 25.6�25.6 cm), diffu-
sion weighted imaging (64 directions, b = 1000 s/mm2 with four
interleaved b = 0 s/mm2, echo time/repetition time = 103/9500
ms, 64 contiguous slices, field of view 256 mm, voxel size 2
mm3) and FLAIR to identify focal lesions.

Neuropsychological assessment

Computerized cognitive assessment

A computerized battery was used to assess working memory
and reasoning in TBI patients and healthy controls (Fig. 2). This
battery consisted of six tasks, designed and programmed by
A.H.H. and based on classical assessment paradigms to measure
working memory and reasoning performance. These were iden-
tified as the minimal set required to reliably differentiate work-
ing memory and reasoning abilities based on subsampling data
from previous studies with two large cohorts of internet users
(Hampshire et al., 2012, 2019; Daws and Hampshire, 2017).
Tasks that loaded onto a third language factor were excluded
because of the diverse backgrounds of our cohort. The tasks
were deployed on iPads via a custom-programmed application.
They included: (i) Monkey Ladder test (MKL), a visuospatial
working memory task based on non-human primate research
(Inoue and Matsuzawa, 2007); (ii) Paired Associates Learning
(PAL), an object-spatial variant on the binding paradigm that
has previously been used in other clinical populations (Gould,
1981) and in TBI patients with post-traumatic amnesia (De
Simoni et al., 2016); (iii) Self-Ordered Search (SOS), a visuo-
spatial working memory task developed from behavioural meas-
ures of strategy in searching (Collins et al., 1998); (iv) Feature

Match Test (FTM) based on a classical feature search task used

to measure attentional processing (Treisman and Gelade, 1980);

(v) Odd One Out (OOO), a deductive reasoning task based on

a subset of problems from the Cattell Culture Fair Intelligence

Test (Cattell, 1949); and (vi) The Hampshire Tree Task (HTT),

a spatial planning task designed by A.H.H. and related to the

Tower of London Task (Shallice, 1982).

All tasks were adaptive to performance, e.g. increasing and

decreasing the speed of delivery or number of stimuli, or the

complexity of problems on completion of each trial. For tasks

that did not have time limits, three errors triggered the end of

the task. Detailed information about the task designs has been

reported previously (Hampshire et al., 2012) and can be found

in the Supplementary material.

Standard neuropsychological
assessment

In addition to computerized testing, all TBI patients and 35

healthy control subjects completed a standard pen and paper

neuropsychological assessment that is commonly used to assess

cognitive function after TBI (Kinnunen et al., 2011; De Simoni

et al., 2018; Jenkins et al., 2018). This provides comparative, clin-

ically validated measures enabling us to determine the relevance

of our computerized tasks to the clinical gold standard. The test

battery included: (i) the Wechsler test of Adult reading (WTAR)

and the matrix reasoning subtest from the Wechsler Adult

Intelligence Scale (WAIS-III) to assess intellectual function

(Wechsler, 1945); (ii) the Peoples Test from the Peoples And

Door Test (Wechsler, 1945) and logical memory subtest of the

Wechsler Memory Scale (Wechsler, 1945) to assess memory; and

(iii) the colour-word interference (Stroop) test from the Delis-

Kaplan executive function system (DKEFS; Delis et al., 2001) and

Trail-Making Task (A and B) to assess executive function.

Statistical analysis

Diffusion tensor imaging

Diffusion-weighted images were processed using FSL’s diffusion

toolkit in the following steps. First, eddy current correction was

Figure 2 Schematic of the six computerized cognitive tasks used to assess TBI patients and controls. From left to right: working

memory tasks MKL, PAL, SOS; and reasoning tasks FTM, OOO, and HTT. Encoding demonstrates the initial presentation of stimuli for each task

and response demonstrates the method in which to complete the task correctly.
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applied to diffusion weighted images to correct for distortions
and movement. BVECs were rotated using the output from
eddy correction and brain extraction (BET) was applied to the
eddy-corrected data. Tensor fitting was performed using
DTIFIT with a weighted least squares approach. Individual frac-
tional anisotropy maps constructed from DTIFit were registered
to standard MNI152 space using the FMRIB 1 mm fractional
anisotropy atlas and tract-based spatial statistics (TBSS) (Smith
et al., 2006). Concatenated standard space fractional anisotropy
maps of TBI patients and controls were skeletonized at 0.2
threshold to sample from the centre of the white matter in order
to avoid partial volume effects.

Voxelwise non-parametric permutation analysis was under-
taken using ‘randomise’ in FSL to examine patterns of white
matter damage (as quantified using fractional anisotropy) in
the TBI cohort relative to controls. Specifically, fractional an-
isotropy skeleton maps were compared between patients and
controls in a voxelwise manner with 10 000 permutations
forming the null distribution. Age was included as a covariate
and results were threshold-free cluster corrected to account for
multiple comparisons.

Behavioural data

Cognitive data for TBI patients and controls were preprocessed
in the following steps. Multiple linear regression was applied to
regress out age, age-squared and age-cubed from the data,
accounting for non-linear relationships between age and cognitive
performance. A rank based inverse transform was then applied
to the extracted residuals to ensure assumptions of normality
were met. All preprocessing and analyses were performed in
MATLAB (R2017b). For computerized cognitive data, perform-
ances across the six tasks were compared between TBI patients
and controls using a repeated measures ANOVA. Performance
across the 16 paper neuropsychological test measures were also
compared using a repeated measures ANOVA. To confirm in an
unbiased data-driven manner that the six computerized tasks
mapped onto working memory and reasoning components as per
previous research (Hampshire et al., 2012), a PCA with varimax
rotation was applied to patients’ task scores. A PCA with vari-
max rotation was also applied to patient and control data com-
bined to determine whether a similar factor structure was
observed. The Kaiser convention was used to threshold out com-
ponents that had eigenvalues 5 1 prior to rotation.

Bivariate correlations were performed to determine the degree
to which the computerized tasks captured the same variance in
patients as standard neuropsychological assessment. For dimen-
sionality reduction, age-regressed and rank inverse normalized
data from patients using the standard neuropsychological bat-
tery were included in a PCA with varimax rotation.
Components that had eigenvalues 5 1 prior to rotation were
removed. The components that remained were then correlated
to the components derived from the computerized tasks and
false discovery rate (FDR) corrected for multiple comparisons.
A PCA with varimax rotation was also applied to patient and
control neuropsychological data combined to determine whether
a similar factor structure was observed.

Graph theory analysis

A summary of the analysis methodology applied to our graph
theory analysis can be found in Fig. 3. To investigate structural

network topology and efficiency, a graph theoretical approach
was applied to the skeletonized fractional anisotropy maps of
patients and controls. As tractography is susceptible to issues
when fractional anisotropy values are low (Squarcina et al.,
2012), we used a large set of predefined white matter tractogra-
phy masks from healthy controls to define region-to-region con-
nectivity for the creation of connectivity matrices. This was
achieved using the track density images (TDIs) created for the
construction of the Illinois Institute of Technology (IIT) human
brain atlas of white matter (Zhang and Arfanakis, 2018) devel-
oped by the Magnetic Resonance Imaging Laboratory (MRIIT).
In summary, track density images (standardized to MNI152
space) of 72 healthy controls were created by MRIIIT by first
parcellating structural T1 images into 90 cortical and subcortical
grey matter regions using the Desikan-Killiany grey matter par-
cellation scheme (Desikan et al., 2006). Individual grey matter
parcellations of the 72 healthy controls were registered to stand-
ard MNI152 space and probabilistic tractography between all
90 regions was performed creating TDIs for each region to re-
gion connection where they existed. TDI, region labels, number
of streamlines and the IIT white matter atlas were obtained
from an online archive (https://www.nitrc.org/projects/iit/). Refer
to Zhang and Arfanakis (2018) for more details.

Each region-to-region connection (TDI) from the IIT atlas
was first thresholded and binarized to create a region of interest
mask. Masks were intersected with each participant’s skeleton-
ized fractional anisotropy map to extract the mean fractional
anisotropy for that connection (Fig. 3A). This resulted in a 90 �
90 undirected connectivity matrix, weighted by fractional an-
isotropy, for each participant (Fig. 3B). When no connection
was present between regions in the connectivity matrix, a value
of zero was included.

Connectivity matrix preprocessing

We applied the same approach as reported by Fagerholm
et al. (2015) when preprocessing our structural connectivity
matrices. The aim was to ensure results were robust against
different choices of thresholding whilst controlling for weak
connections (i.e. small tracts with low fractional anisotropy),
which can increase noise and impact upon graph theoretical
analysis (Li et al., 2013). The following steps were applied:
first, each connection in a participant’s connectivity matrix
was multiplied by the number of streamlines used to create
the connection during probabilistic tractography to ensure
greater weight was applied to large white matter tracts.
Second, the overall mean and standard deviation of each con-
nection in the 90� 90 connectivity matrices of all 105 healthy
controls was calculated. This produced two 90� 90 connect-
ivity matrices representing the average fractional anisotropy
and standard deviation of each connection in our healthy
population. Next, a total of 10 thresholding limits were calcu-
lated using the same scheme as Fagerholm et al. (2015) rang-
ing from 0.5 to 5 SD units in increments of 0.5. This was
achieved by multiplying the control SD connectivity matrix by
the threshold value (e.g. 0.5 or 5) and subtracting this from
the control mean connectivity matrix. The resulting threshold
values derived from this calculation were then applied to each
patient and control’s individual connectivity matrix such that
any value less than the threshold value calculated for a con-
nection was replaced with a zero. Finally, this process was
repeated for each of the 10 possible thresholds. For ease of
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presentation, all findings are presented using the moderate

threshold (2.5 SD units) with all other thresholding results

reported within the Supplementary material.

Extraction of reasoning and working

memory networks for graph theory

analysis

To test the hypothesis that impairments of working memory

and reasoning performance relate to disruption of different sys-

tems in the brain, we focused our graph theory analysis on the

networks that had previously been associated with these two

aspects of cognition when using the same tasks (Hampshire

et al., 2012). Specifically, we extracted the whole brain working
memory and reasoning activation maps from a study that meas-
ured changes in functional MRI activation for the same tasks
relative to rest (Hampshire et al., 2012). This rendered two dis-
tinct networks associated with reasoning and working memory
(Fig. 3C). The DTI connectivity matrices were intersected with
each of these maps, so that two subnetworks were produced
comprising nodes that overlapped with the activation maps and
their connections (edges).

Graph theory measures

Graph theoretic measures were extracted from the structural
connectivity matrices of reasoning and working memory

Fig 3 Overview of graph theory analysis methods. (A) Skeletonized fractional anisotropy (FA) maps for the 92 TBI patients and 106

healthy controls were intersected with region-to-region, thresholded and binarized track density images (TDIs) created using probabilistic trac-

tography for the IIT white matter atlas. Mean fractional anisotropy for each region of interest (ROI) was therefore extracted for all patients and

controls. (B) Mean fractional anisotropy for each region of interest derived from the 90 region-to-region connections were then used to create a

90� 90 connectivity matrix for all 198 subjects and weighted by number of streamlines to account for weak connections. A thresholding ap-

proach using the mean and standard deviation of healthy controls for each connection was then applied to all controls and patients to remove

weak connections. (C) Using task-functional MRI activation maps from Hampshire et al. (2012), working memory and reasoning structural net-

works were derived from the 90� 90 connectivity matrices by selecting nodes that overlapped with activation maps and their respective connec-

tions. (D) Graph theoretical measures were subsequently derived from these two structural networks including global/local efficiency, degree

centrality and clustering coefficient. (E) Graph theory metrics for each network were then correlated to performance on cognitive tasks associ-

ated with working memory and reasoning in patients.
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networks using functions from the brain connectivity toolbox
(BCT) (Rubinov and Sporns, 2010) (Fig. 3D). Hubs within each
network were identified by determining the top 20% of nodes
with the highest average degree within healthy controls (van den
Heuvel et al., 2009) to determine whether dysconnectivity of
network hubs had a strong relationship to cognitive impairment
as per previous research (Fagerholm et al., 2015). Global and
local properties of each network for patients and controls were
examined. For global measures, the metrics extracted were: glo-
bal efficiency, average local efficiency, and average degree cen-
trality. For local measures, the metrics extracted were: local
efficiency, degree centrality, and local clustering coefficient.
Measures were selected based on previous literature examining
TBI (Pandit et al., 2013; Fagerholm et al., 2015) as well as for
the quantification of network integration (global efficiency,
average degree centrality), modularity (local efficiency, clustering
coefficient) and disconnection (degree centrality). For example,
TBI is known to disrupt small-world topology via diffuse axonal
injury (Sharp et al., 2014), therefore degree centrality (a measure
of dysconnectivity) was used to examine the loss of long-range
white matter connections. Higher-order cognition is supported
by small-world topology (Bullmore and Sporns, 2009; Braun
et al., 2015; Cohen and D’esposito, 2016), which refers to an
optimal balance between network segregation (quantified using
local efficiency and clustering coefficient) and integration (quan-
tified using global efficiency). These measures have previously
been shown to be sensitive to TBI (Pandit et al., 2013;
Fagerholm et al., 2015) and provide a focused summary of net-
work topology in the brain. Further information about these
metrics can be found in the Supplementary material.

Multivariate correlational analysis of
reasoning/working memory
performance and structural
networks

Canonical correlational analysis (CCA) was applied as a
preliminary statistical analysis to confirm that multiple statistic-
ally significant latent variables relate network dysconnectivity
(as quantified using degree centrality) to working memory and
reasoning impairment. This method allows the dimensionality
of multivariate relationships between two sets of variables to be
statistically tested in a data-driven manner (see Supplementary
material for a detailed description of CCA). For our analysis,
we explored the relationships between behavioural data and de-
gree centrality of all 90 nodes that were defined within our
whole-brain structural connectome. To overcome the problem
of overfit due to the large number of nodes, a PCA was applied
prior to CCA reducing node measures to a set of components
that captured 90% of the variance. The resultant component
scores were input to the CCA along with the patient’s cognitive
component scores. The relationships between these two sets of
variables (behavioural and graph theoretic) are referred to as ca-
nonical modes and the strength of their relationships are repre-
sented as canonical correlation coefficients. If more than one
canonical correlation coefficient (or mode) is significant as cal-
culated using robust permutational testing, evidence of multiple,
differential relationships between behaviour and structural data
can be inferred. To determine the relative contribution of the
two sets of variables to each mode, back projection of canonical

variates to raw task and node degree data using Pearson’s r cor-
relation was applied. A custom subsampling routine with separ-
ate train and test data was applied to robustly determine the
generalizability of canonical model and degree of overfit (see
Supplementary material for details). In summary, the CCA anal-
yses were repeated in an iterative loop, whereby the data were
randomly subsampled, the model trained, then applied to the
held out data to which it was naı̈ve. This process was repeated
with systematic variation in the trained (number of samples)
and held out (remaining samples) ratio, with r-values averaged
over 1000 iterations at each point. The process was then
repeated using permuted data to assess overfit.

Cross-sectional and correlational
analysis of graph theory measures

Global network measures were compared between patients and
controls using t-tests to determine whether there were significant
differences in the overall information processing properties of
the structural connectome. Data were checked for assumptions
of normality and results FDR corrected across the 12 compari-
sons. Next, to determine whether there was any relationship be-
tween network properties and corresponding cognitive
performance in patients, the global graph theoretic measures of
reasoning and working memory networks were correlated to
reasoning and working memory cognitive components derived
from patient-only PCA (Fig. 3E). These comparisons were
repeated across non-corresponding network-behavioural compo-
nent pairs, e.g. global properties of the working memory net-
work were correlated to the reasoning cognitive component and
global properties of the reasoning network were correlated to
the working memory cognitive component. Results were cor-
rected for multiple comparisons across the 12 correlations using
FDR correction.

Local network measures were also compared between patients
and controls using t-tests to determine if there were any signifi-
cant differences in the properties of individual nodes within the
structural connectome. Cross-sectional local network measures
were corrected for multiple comparisons across network nodes
using FDR correction. Local measures of the nodes in the work-
ing memory and reasoning networks were then correlated to
reasoning and working memory cognitive component scores
derived from patient-only PCA to quantify the relationship be-
tween node properties and cognitive performance in patients.
Similar to global network analysis, correlations were repeated
across non-corresponding network-behavioural component
pairs. For each network, correlational results were corrected for
multiple comparisons across network nodes using FDR
correction.

Prediction of reasoning and working
memory performance using local/
nodal graph theory measures

Although CCA is suitable for identifying how many latent varia-
bles interrelate two multivariate datasets, a limitation is that the
models tend to be overfitted. Consequently, machine learning re-
gression was used to investigate the predictive value of local/
nodal graph theory measures derived from each network for
working memory and reasoning performance in patients. Using
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the Pattern Recognition for Neuroimaging toolbox (PRoNTo;

Schrouff et al., 2013), local/nodal graph theory measures from a

given network were used as independent variables and the com-

ponent score for either working memory or reasoning was used

as the dependent variable in a kernel ridge regression (KRR)

model with automated hyperparameter optimization using

nested 5-fold cross validation. For example, local/nodal meas-

ures of degree centrality from the working memory network

were used in a model to predict working memory performance

and in another model to predict reasoning performance. This

process was repeated for all graph theory measures in each

network.

Model validation was achieved by running 5-fold cross valid-

ation on the data after hyperparameter optimization to deter-

mine accuracy and generalizability. This was followed by

permutation testing with 1000 randomizations to derive a null

distribution and P-value for each model. Model accuracy was

assessed using Pearson correlation coefficients between network

local/nodal graph theory measures and cognitive component

scores. The proportion of variance explained (R2) and mean

standard error (MSE) between predicted and actual component

score was also examined. As an additional step, computation of

weights for each model was calculated to examine which nodes

within a network contributed the greatest to the prediction

model.

Data availability

Raw data were generated at Imperial College London. Derived

data supporting the findings of this study are available from the

corresponding author on request.

Results

TBI patients perform significantly

less well on all six cognitive tasks

Repeated measures ANOVA across the six cognitive tasks

revealed a significant main effect of group [F(1,126) =

10.554, P = 0.001] such that TBI patients performed signifi-

cantly less well than healthy controls. There was no signifi-

cant group � task interaction indicating that all tasks could

be affected by TBI to similar degrees, although numerically

the PAL showed the greatest sensitivity (Fig. 4A).

TBI patients have widespread

diffuse axonal injury

Voxelwise TBSS indicated that patients on average had sig-

nificantly lower fractional anisotropy compared to controls,

threshold-free cluster enhancement (TFCE) corrected

(P5 0.05). White matter damage was distributed widely

throughout the brain (Fig. 4B). No significant increases in

fractional anisotropy were observed in patients.

Cognitive tasks load onto two
distinct cognitive components

Applying the Kaiser convention, a PCA of the patient cogni-

tive data indicated two significant components

(Supplementary Fig. 1). Orthogonal (varimax) rotation repli-

cated the previously reported pattern of task-component

loadings, where psychometric analyses were applied to data

from 44 600 members of the general public (Hampshire

et al., 2012) (Fig. 5). The rotated components explained

54.27% of the variance with component one explaining

27.17% and component two explaining 27.10%. Higher

loadings of the FTM, OOO and HTT tasks onto component

one accord with a distinct reasoning ability. Higher loadings

of the MKL, PAL and SOS onto component two accord

with a distinct working memory ability. PCA with varimax

rotation was also applied to all patient and control cognitive

data combined. A similar structure was observed with two

components explaining 42.33% of the variance in the data.

Component one explained 21.17% and component two

explained 21.16%. Component one again had highest load-

ings for the reasoning tasks (FTM, OOO, HTT) while com-

ponent two had the highest loadings for the working

memory tasks (MKL, PAL, SOS).

TBI patients perform significantly
less well on a number of standard
neuropsychological tests

Repeated measures ANOVA did not reveal a significant

main effect of group [F(1,15) = 3.652, P = 0.056]. However,

a significant group � task interaction was observed

[F(15,1856) = 12.920, P5 0.001] (Supplementary Fig. 2A)

with post hoc t-tests revealing that this interaction was

driven by lower performance on 12 of 16 test scores. This

included the WTAR, Trail Making Test scores, the four

subtests of the colour-word (Stroop) interference task,

Peoples Test total score, Peoples Test delayed score, logical

memory total score for subtests one and two and logical

memory retention scores (Supplementary Table 2).

Reasoning and working memory
tasks correlate to standard clinical
neuropsychological tests

We examined the relationship between the two cognitive

components derived from our computerized tasks and the

standard paper neuropsychological tests in patients. A

PCA of standard neuropsychological tests revealed four

significant components that explained 69.93% of the total

variance (Supplementary Fig. 2B). A PCA with both

patients and controls revealed the same factor structure.

Bivariate correlations between computerized and neuro-

psychological cognitive components revealed a significant

relationship between reasoning and neuropsychological
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component one (r = –0.32, P = 0.016, FDR corrected) and

a significant relationship between working memory per-

formance and neuropsychological component three

(r = 0.37, P5 0.01, FDR corrected) (Supplementary Fig.

2C). Task loadings revealed that component one was pri-

marily associated with executive function measures such

as the colour-word interference task subscales (Stroop)

and trail making tasks whilst component three was

associated with memory measures such as the Peoples

Test and to a lesser extent, logical memory subscores

(Supplementary Fig. 2D).

Abnormal graph theory measures
of white matter and reasoning
networks after TBI

Extraction of working memory and reasoning networks by

intersection of the Desikan-Killiany grey matter atlas with

task-based activation maps from Hampshire et al. (2012)

generated a working memory network consisting of 31

nodes and a reasoning network consisting of 26 nodes

(Supplementary Fig. 3). In network science, nodes can be

members of multiple networks. Here, there were nine nodes

that had shared membership across the two networks

(Supplementary Table 3). These included: left lateral

orbitofrontal, left precentral gyrus, left rostral middle front-

al, left superior frontal, right caudate middle frontal, right

precentral, right rostral middle frontal, right superior frontal

and right superior parietal lobe. Six hubs were identified in

the working memory network based on average degree in

healthy controls and included: left caudate, right pallidum,

insula bilaterally, right precuneus and the right superior par-

ietal cortex. In the reasoning network, five hubs were identi-

fied and included: the left rostral middle frontal cortex, left

superior frontal cortex, superior parietal cortices and right

inferior parietal cortex. Three of the hubs within the reason-

ing network formed nodes within the working memory net-

work. Hub classification was consistent across all analysed

thresholds.

Cross-sectional analysis of global network measures using

graph theory demonstrated that TBI patients had significant

alterations in both working memory and reasoning networks

compared to controls. TBI patients had significantly lower

global efficiency in working memory [t(196) = 6.04,

P5 0.001, FDR corrected] and reasoning networks [t(196)

= 5.29, P50.001, FDR corrected], significantly lower aver-

age degree centrality in working memory [t(196) = 8.82,

P5 0.001] and reasoning networks [t(196) = 8.81,

P5 0.001, FDR corrected] and significantly higher average

local efficiency in working memory [t(196) = –6.59,

Figure 4 Cross-sectional analysis of TBI patients and controls for cognitive performance and whole-brain fractional anisot-

ropy. (A) Performance across the six cognitive tasks in TBI patients and healthy controls. Y-axis is in SD units. (B) Voxelwise analysis using TBSS,

TFCE corrected with age as a covariate. Yellow indicates voxels with significantly higher fractional anisotropy in controls than patients (P5 0.05).

Green indicates the group averaged mean fractional anisotropy skeleton mask.
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P50.001, FDR corrected] and reasoning networks [t(196)

= –3.35, P5 0.001, FDR corrected] compared to controls.

This was consistent across 80% of threshold iterations

(Supplementary Fig. 4) excluding the most extreme thresh-

olds only.

Patients demonstrate alterations in

local/nodal network properties

Individual node metrics in both the working memory and rea-

soning networks were compared between patients and con-

trols (Fig. 6). Patients demonstrated significant reductions in

degree for all nodes within the working memory and reason-

ing networks compared to controls (P50.001, FDR

corrected). In the working memory network, local efficiency

was significantly higher in 81% of nodes (P50.01, FDR cor-

rected) and significantly lower in 6% of nodes (P50.01,

FDR corrected) compared to controls. Greater clustering coef-

ficients were also observed in 68% of nodes (P50.05, FDR

corrected) in patients compared to controls (Supplementary

Table 4).

In the reasoning network, local efficiency was significantly

greater in 62% of nodes (P50.05, FDR corrected) and sig-

nificantly lower in 23% of nodes (P5 0.05, FDR corrected)

in patients compared to controls. Clustering coefficient was

significantly greater in 50% of nodes (P5 0.01, FDR cor-

rected) and significantly lower in 19% of nodes (P50.01,

FDR corrected) in patients compared to controls

(Supplementary Table 5).

Figure 5 Principal component analysis of patient cognitive data. Component loadings for each task demonstrate higher loadings onto

component 1 for reasoning-based tasks such as the HTT, OOO and FTM. Greater loadings to component two were observed in working mem-

ory-based tasks including MKL, PAL and SOS.
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CCA confirms dissociable
relationships between working
memory/reasoning and structural
networks

A CCA was conducted to test in a data-driven manner

whether multiple latent variables captured shared variance

between node degree centrality (a graph theoretic measure of

white matter dysconnectivity) and cognitive measures. Data

reduction using an unrotated PCA was applied to the 90

nodes included in the whole brain structural connectome. A

total of nine components capturing 90% of the variance were

identified. Scores for the two cognitive components formed

the first matrix whilst scores for the nine node components

formed the second matrix input to the CCA. To determine

the significance of canonical correlation coefficients, a permu-

tational test was conducted, where the subject labels were

shuffled and the CCA repeated 10 000 times, producing null

distributions for each canonical mode (Supplementary Fig. 5).

The results indicated two significant modes (P5 0.001 and

P50.02) with canonical coefficient values (r) of 0.470 and

0.334, respectively. The means of canonical modes in the cor-

responding null distributions were (r) of 0.36 and 0.24, re-

spectively. Back projection of canonical modes to raw task

and node degree data revealed a greater contribution of rea-

soning tasks to mode one and greatest contribution of work-

ing memory tasks to canonical mode two (Fig. 7A). Of the 90

nodes included within the analysis, back projection revealed

nodes associated with the reasoning subnetwork contributed

the greatest to canonical mode one whereas nodes associated

with the working memory subnetwork were found to contrib-

ute the greatest to canonical mode two (Fig. 7B).

Correlation of global network
properties with cognitive
performance in patients

CCAs are useful insofar as they test how many latent varia-

bles relate two matrices of data in a data-driven and multi-

variate manner. A limitation is that they are overfitted by

definition and provide limited mechanistic insight.

Therefore, calculation of the scale of relationships and inter-

pretation require further analysis. First, global graph theoret-

ic measures from the two subnetworks were compared to

behavioural scores. The results showed significant but dis-

tinct relationships to cognitive performance. Specifically, glo-

bal efficiency of the working memory network correlated

significantly and at the same approximate strength with

both working memory (r = 0.22, P = 0.042, FDR corrected)

and reasoning (r = 0.25, P = 0.025, FDR corrected) perform-

ance. Conversely, global efficiency of the reasoning network

correlated significantly with reasoning (r = 0.32, P = 0.024,

FDR corrected) performance, but was subthreshold for

working memory (r = 0.20, P = 0.06, FDR corrected).

Similarly, the mean local efficiency of the working memory

network correlated significantly with both working memory

(r = –0.25, P = 0.025, FDR corrected), and reasoning (r =

–0.26, P = 0.024, FDR corrected) performance; whereas the

average local efficiency of the reasoning network correlated

significantly with reasoning (r = –0.28, P50.02, FDR cor-

rected) but not working memory (r = –0.12, P = 0.239,

FDR corrected) performance. Finally, mean degree centrality

of the working memory network correlated at the same ap-

proximate strength with working memory (r = 0.28,

P5 0.02, FDR corrected) and reasoning (r = 0.30, P50.02,

FDR corrected); whereas average degree centrality in the rea-

soning network correlated more robustly with reasoning

(r = 0.33, P5 0.02, FDR corrected) than working memory

performance (r = 0.24, P = 0.025, FDR corrected).

Local/nodal level network

properties correlate to cognitive

performance in patients

differentially

Next, local/individual node level graph properties were cor-

related to cognitive performance in patients (Fig. 8). In the

working memory network, significant positive correlations

were observed between working memory performance and

degree centrality in 32% of nodes. Significant negative corre-

lations were observed between working memory perform-

ance and local efficiency in 20% of nodes, whilst significant

negative correlations were demonstrated between clustering

coefficient and working memory performance in 3% of

nodes (P5 0.05, FDR corrected). Correlation of reasoning

performance to working memory network properties

showed significant positive correlations with degree central-

ity in 70% of nodes and negative correlations to local effi-

ciency and clustering coefficient in 42% and 35% of nodes,

respectively (P5 0.05, FDR corrected). Local efficiency and

degree centrality of network hubs including the left caudate,

right pallidum and insula bilaterally were shown to be con-

sistently related to working memory and reasoning perform-

ance. Nodes with significant correlations to reasoning and

working memory performance were all shown to have ab-

normal network properties compared to controls.

In the reasoning network, significant positive correlations

were observed between degree centrality and reasoning per-

formance in 81% of nodes. A mixture of positive (62%)

and negative (8%) correlations was observed between rea-

soning performance and local efficiency of nodes. Significant

negative correlations were also observed between reasoning

performance and clustering coefficient in 31% of nodes

(P5 0.05, FDR corrected). In contrast, no significant corre-

lations were observed between working memory perform-

ance and node properties in the reasoning network. Four of

the five network hubs consistently related to reasoning in

both degree centrality and local efficiency. All local/nodal

correlations to cognitive components are provided in

Supplementary Tables 6–25.
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Figure 6 Cross-sectional analysis of local/nodal properties in TBI patients and controls. Blue nodes indicate non-significance, purple

nodes indicate significantly lower values in patients compared to controls and red nodes indicate significantly greater values in patients compared

to controls, FDR corrected. Node size = difference between patient and control local/nodal properties for each metric examined. Edge width =

weighted by fractional anisotropy and no. streamlines. Significant nodes are labelled for reference.
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Local/nodal network properties
predict cognitive performance in
patients

A machine learning approach was used to determine how

accurately local/nodal graph theory measures could predict

working memory and reasoning performance in patients.

When using measures of degree centrality from the working

memory network, a significant model predicting working

memory performance was observed (r = 0.22, P = 0.045; R2

= 0.19, P50.01; MSE = 1.09, norm MSE = 1.09).

Computation of weights indicated that the right pallidum,

left superior frontal, right paracentral, right supramarginal

and right insula nodes contributed most prominently to the

model (Supplementary Fig. 6A). A significant model was

also observed when predicting reasoning performance

(r = 0.22, P = 0.044; R2 = 0.13, P = 0.038; MSE = 1.02,

norm MSE = 1.08). Regional weights indicated that degree

Figure 7 Back projection of canonical variates to task and node data from canonical correlation analysis. Canonical correlation

analysis produced two significant modes demonstrating two distinct relationships between cognitive variables and degree centrality of the 90

nodes defined in the whole brain connectome. (A) Back projection of cognitive canonical variates to cognitive tasks demonstrated greater contri-

bution of reasoning tasks (HTT, OOO and FTM) to canonical mode 1 and greater contribution of working memory tasks (MKL, PAL, SOS) to ca-

nonical mode 2. (B) Back projection of node canonical variates to individual nodes and their measures of degree centrality revealed that

dissociable patterns of nodes were associated with each canonical mode. Specifically, reasoning nodes (red bars) contributed the most to canon-

ical mode 1 and working memory nodes (blue bars) contributed the most to canonical mode 2. Grey bars denote where nodes are present with-

in both structural networks.
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Figure 8 Local graph theory network measures and correlation to cognitive performance. Node size represents correlation coeffi-

cient (r, positive or negative). Red nodes demonstrate a significant correlation to cognitive components (P5 0.05, FDR corrected), blue nodes

demonstrate non-significant correlations. For measures of degree centrality, red nodes denote significant positive correlations, FDR corrected.

For measures of local efficiency and clustering coefficient, red nodes denote significant negative correlations, FDR corrected. Edge thickness

demonstrates weight of a given connection (fractional anisotropy and number of streamlines). Boxes at the bottom demonstrate which cognitive

component is correlated to each of the networks and properties demonstrated. Bottom panel illustrates the dissociable relationship between cog-

nitive components and working memory and reasoning structural network properties.
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centrality measures from the left caudal anterior cingulate,

right paracentral, right precentral, right rostral anterior cin-

gulate and right supramarginal nodes contributed most

prominently to the model (Supplementary Fig. 6B). Network

measures of local efficiency did not provide a significant cor-

relation for the prediction of working memory (r = 0.16,

P = 0.14; R2 = 0.15, P = 0.026; MSE = 1.09, norm MSE =

1.09) but did for the prediction of reasoning (r = 0.34,

P50.01; R2 = 0.19, P5 0.01; MSE = 0.98, norm MSE =

0.99). Regional weights indicated the greatest contribution

to the model from the right precentral, right supramarginal

and right insula nodes. No significant predictive models

were observed when using clustering coefficient measures

(Supplementary Fig. 7).

Conversely, when examining the predictive value of local/

nodal measures in the reasoning network, only significant

models were observed for the prediction of reasoning per-

formance. A significant model was observed using degree

centrality to predict reasoning (r = 0.38, P5 0.01; R2 =

0.21, P5 0.01; MSE = 0.98, norm MSE = 1) with compu-

tation of weights indicating the greatest contribution to the

model by measures from the left lateral occipital, right

cuneus, right inferior temporal pole, right lingual, right peri-

calcarine and right superior parietal nodes (Supplementary

Fig. 8A). In contrast, no significant model was observed

when predicting working memory (r = 0.09, P = 0.32; R2 =

0.10, P = 0.33; MSE = 1.09, norm MSE = 1.10). A signifi-

cant model was observed when using local efficiency meas-

ures to predict reasoning (r = 0.30, P5 0.01; R2 = 0.13,

P = 0.033; MSE = 0.99, norm MSE = 0.99) but not for the

prediction of working memory performance (r = 0.09,

P = 0.28; R2 = 0.05, P = 0.51; MSE = 1.08, norm MSE =

1.09). Local efficiency of the left pars opercularis, left super-

ior frontal and right rostral middle frontal nodes contributed

the greatest to this model (Supplementary Fig. 8B). No sig-

nificant models were observed when using clustering coeffi-

cient measures.

Discussion
Our results provide evidence that working memory and rea-

soning deficits after TBI relate to dissociable patterns of

white matter damage, as demonstrated by their differential

relationships to functionally distinct structural networks. We

demonstrate, for the first time, that TBI impacts on both

working memory and reasoning using a large cohort of

patients. A notable strength of our data-driven approach, is

not only that it provides a further replication of the findings

of Hampshire et al. (2012), by illustrating that working

memory and reasoning form two distinct cognitive abilities;

it demonstrates that TBI can impact on either one of these

abilities when taking into account the other. This point is

important because cognitive tasks tend to tap multiple abil-

ities and the behavioural basis of deficits can therefore be

hard to interpret if individual tasks are analysed in isolation.

We also replicate the finding that disruption to network

hubs has a particularly significant impact on the cognitive

processes they support as per previous research (Fagerholm

et al., 2015). By intersecting an established atlas of white

matter connections with our reasoning and working memory

task-functional MRI activation maps, we confirmed that in-

dividual differences in the integrity of the information proc-

essing architecture within functionally-distinct subnetworks

of the structural connectome underpin different axes of cog-

nitive ability.

Broadly speaking, this accords with the prediction of

Hampshire et al. (2012), where it was observed that tasks

that activate the same functional networks also tend to load

on to similar behavioural abilities when factor analysing

intersubject variability in their behavioural scores. This inter-

pretation was controversial when first proposed (Haier et

al., 2014) and our hypothesis sought to extend this by sug-

gesting that damage to a functionally distinct subnetwork

would impact on the associated axes of cognitive ability.

Here our results confirm this hypothesis but also provide re-

finement in our understanding of the way in which function-

ally distinct structural subnetworks support reasoning and

working memory abilities. More specifically, whilst the

expected dissociation between reasoning and working mem-

ory structural networks was evident, the association to

working memory and reasoning performance unexpectedly

provided evidence of a hierarchal functional relationship be-

tween the two networks.

The analysis of behavioural data confirmed the hypothesis

that working memory and reasoning are distinct aspects of

human cognitive ability and that they can be differentially

affected by neurological damage. Previous studies investigat-

ing cognitive impairment after TBI have shown that tasks

that tap either of these aspects of cognition can be affected

by TBI (McAllister et al., 2004; Kinnunen et al., 2011;

Palacios et al., 2011; De Simoni et al., 2018). However,

working memory and reasoning have seldom been investi-

gated in parallel, limiting our understanding of the varied

prevalence of impairments after TBI and the mechanisms

contributing to them. In studies of healthy individuals, factor

analyses of 444 600 members of the general public have

demonstrated that working memory and reasoning form dis-

tinct axes of cognitive ability (Hampshire et al., 2012; Daws

and Hampshire, 2017). Here we observed relatively uniform

deficits in the performance of all six cognitive tasks when

comparing mean scores for TBI patients relative to controls.

This indicated that they were all similarly susceptible to neu-

rotrauma. Nonetheless, the PCA of the cognitive data repli-

cated the two cognitive components observed in previous

literature (Hampshire et al., 2012; Daws and Hampshire,

2017) in an unbiased data-driven manner; specifically, tasks

that involved maintaining information in working memory

(MKL, PAL, SOS) loaded onto one principal component

whereas tasks that involved transforming information

according to rules (FTM, OOO, HTT) loaded onto another.

This was the case when analysing all data together, or when

analysing patient data alone.
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Widespread diffuse axonal injury was also observed in

TBI patients compared to controls in our voxelwise analysis,

suggesting disruption to these networks may impact upon

cognition, as per previous research (Fagerholm et al., 2015).

The impact of diffuse axonal injury on cognition may be

best understood mechanistically from a graph theoretic per-

spective as the balance between network integration (global

efficiency) and segregation (clustering coefficient/local effi-

ciency) is described as key in the emergence of small-world

organization of networks that support cognition (Bullmore

and Sporns, 2009; Braun et al., 2015; Cohen and

D’esposito, 2016). Alterations to this balance reflect aberrant

information processing properties that may lead to impaired

cognition. Analysis of the global graph theoretic measures

revealed abnormalities in both the working memory and rea-

soning networks of TBI patients compared to controls,

remaining consistent across 80% of the alternative thresh-

olds examined. We replicated the observation of disruption

away from optimal small-world topology as illustrated by a

reduction in global efficiency and increase in local efficiency,

which has previously been shown in TBI (Pandit et al.,

2013). Evidence of reduced average degree in networks sug-

gest that this move away from small-worldness may in part

be due to loss of long-range white matter connections (Sharp

et al., 2014).

The results from our canonical correlation analysis further

statistically supported our prior hypothesis that multiple la-

tent variables or ‘modes’ relate working memory and rea-

soning abilities to measures of white matter tract integrity

throughout the brain. An advantage of this method is that it

identifies the number of latent variables that are common

across different matrices of data in an unbiased, data-driven

manner. Back-projection of the canonical variates onto the

behavioural matrix reproduced the working memory versus

reasoning dissociation. Back projection onto the node degree

centrality matrix partially dissociated the nodes of the work-

ing memory and reasoning networks. These results provide

further confirmation of the differential impact of diffuse

axonal injury on working memory and reasoning in white

matter previously associated to impairment after TBI

(McAllister et al., 2004; Kinnunen et al., 2011; Palacios

et al., 2011; De Simoni et al., 2018) and provide further sup-

port for our initial graph theory findings. However, the

main limitations of CCA are that the models are, by design,

overfitted. We directly tested this limitation using a custom

subsampling permutation test and illustrated that our two

modes differed from the null distribution of permuted data,

indicating real dissociable relationships were observed.

Nevertheless, CCA analyses do not provide mechanistic

insights, for example, regarding the impact of observed indi-

vidual differences on network information processing prop-

erties; therefore, they require other complementary forms of

analysis to gauge the scale of relationship and interpret them

mechanistically.

Critically, when cross-correlating behavioural components

and graph theoretic measures for these subnetworks, we

found similar scaled correlations between reasoning

performance and global graph theoretic measures in the rea-

soning and working memory subnetworks, but significant

correlations between working memory performance and the

working memory subnetwork only. This one-way dissoci-

ation was even more pronounced in the analysis of node-

centric graph theoretic measures. Patients had abnormalities

in degree centrality, local efficiency and clustering coefficient

for a large proportion of nodes within the working memory

and reasoning networks, and this was robustly replicated

across 80% of the alternative thresholds. When correlated

to cognitive components, similar significant correlations to

degree centrality, local efficiency and clustering coefficient

were observed with consistently strong relationships in net-

work hubs, supporting previous literature demonstrating the

impact of hub disconnection on cognitive impairment

(Fagerholm et al., 2015). Importantly, cross-correlation

revealed a distinct and strong relationship of reasoning per-

formance to these metrics in both the working memory and

reasoning subnetworks, but for working memory perform-

ance there were significant relationships to nodes within the

working memory network only. This one-way dissociation

was robust, being evident in 70% of the threshold iterations

(i.e. excluding the most liberal and strict thresholds).

Although we had not predicted this hierarchy when plan-

ning the study, this dissociation is precisely what is predicted

in the classic literature regarding hierarchal models of work-

ing memory (Petrides, 1989, 1994; D’Esposito et al., 1999).

More specifically, those models proposed that information

must first be maintained in working memory before it can

be processed according to task rules. In accordance with

this, disruption to the working memory network correlates

with impairments in both working memory and reasoning,

whereas disruption of the reasoning network has a more se-

lective correlation with reasoning score. From this perspec-

tive, it is interesting to note the relationship of reasoning and

working memory abilities to distinct but partially overlap-

ping combinations of brain regions. This overlap is unsur-

prising from a network science perspective, as the same

nodes typically contribute to multiple networks, but in dif-

ferent combinations; indeed, this has been shown to be the

case for the tasks applied here (Lorenz et al., 2018; Soreq

et al., 2019). Here, three of the five reasoning hubs were

also present as nodes within the working memory network,

which provides clues regarding how these networks may op-

erate cooperatively to support the processing of actively

maintained information.

From a clinical perspective, the dissociation of working

memory and reasoning impairments provides new insights

into the systems-level basis for heterogeneity in the chronic

cognitive problems that TBI patients suffer from. These

impairments have a major impact on a patient’s quality of

life and warrant the need for improved therapies to be devel-

oped. An exciting avenue of research has begun to attempt

to treat these impairments via pharmacological interven-

tions, neurostimulation [e.g. transcranial direct/alternating

current stimulation (tDCS/tACS)] and cognitive rehabilita-

tion; however, there remains much debate about the efficacy
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of these treatments in TBI with little to no standard frame-

work that can be translated into real-world clinical practice.

This is likely due to the need to tailor treatments dependent

on the exact nature of impairments that the patients have. A

connectomic description is likely to have value when predict-

ing chronic cognitive problems or developing individually

tailored therapies. A sensible way to achieve this is to con-

sider concurrently the behavioural profile of impairment and

the networks on the brain that are affected in the individual.

This neurocognitive profiling could also be used to sub-

classify the patients when validating pharmacotherapies,

cognitive interventions, and experimental therapeutics such

as neurostimulation (Violante et al., 2017; Li et al., 2019).

For example, individuals who have deficits due to damage

to functionally distinct parts of the structural connectome

are likely to respond best to different treatments. Indeed, we

have recently reported that the efficacy of dopaminergic

therapy can be predicted based on the degree of damage to

fronto-striatal circuits (Jenkins et al., 2018). Furthermore,

we have illustrated that the efficacy of modulating functional

networks using tDCS is associated with the structural con-

nectivity underlying the stimulation target (Li et al., 2019).

Here we provide a complementary way to subdivide the

patients further according to the cortico-cortical networks

that are affected and begin to test the clinical utility of this

approach using machine learning regression. We demon-

strate that local/nodal graph theoretic measures of our func-

tional subnetworks can accurately predict working memory

and reasoning. Furthermore, we demonstrate that prediction

of working memory and reasoning within these networks

demonstrates the same asymmetrical dissociation as our cor-

relational analysis. Importantly, we begin to provide finer

grained information regarding the relative contribution of

nodes in the prediction of reasoning and working memory

performance in our models that may help to inform future

research regarding therapeutic targets and prognostic

markers.

Nevertheless, there are several potential limitations that

should be considered for future research. First, although our

network measures could significantly predict cognitive per-

formance in patients, future research would benefit from re-

finement of these measures for use as a clinical diagnostic

measure. Specifically, we demonstrate the predictive value of

our measures in a chronic TBI population; longitudinal

changes in graph theoretical measures of the structural con-

nectome have been shown to be associated with improved

recovery (Kuceyeski et al., 2019) and future research would

therefore benefit from utilizing and refining our subnetwork

graph theory measures to predict the evolution of reasoning

and working memory impairments in an acute TBI popula-

tion. Second, working memory and reasoning are themselves

complex constructs (Hampshire et al., 2012; Christophel

et al., 2017; Soreq et al., 2019) that subdivide the networks

examined here at a finer grain. In fact, we have recently

developed a paradigm that could be used for this diagnostic

purpose because it strongly differentiates multiple aspects of

working memory based on network connectomics with high

reliability (Soreq et al., 2019). Third, a broader characteriza-

tion of the types of deficits that are relevant to TBI is

required. Indeed the comparison of standard neuropsycho-

logical tests to our computerized measures has some rele-

vance to this issue. Although substantial variance was

shared between the two assessment approaches, the internal

structure of that variance clearly differed. Specifically, stand-

ard neuropsychological assessments provided further factors

that were affected by TBI that our tasks did not measure.

This calls for a broader characterization of the distinct be-

havioural abilities that are most commonly affected in TBI

and how they map to different patterns of damage within

the structural connectome. Achieving this is a focus of our

current research. Finally, in our current work we have not

taken into account the presence of focal lesions that may

also impact upon network functionality and network prop-

erties, which would be advantageous to explore further.

Nevertheless, nodes within our networks do not overlap

with lesion overlap maps constructed for this patient cohort

which fits with a broader view that impairments primarily

relate to dysconnectivity as opposed to damage localized

within the grey matter (Gaffan, 2005).

In summary, TBI has dissociable effects on working mem-

ory and reasoning due to the differential degradation of in-

formation processing properties of the structural networks

that subserve these functions. Our work provides new mech-

anistic insights by illustrating that the nature of this dissoci-

ation is one-sided, which accords with multifactorial

accounts of human cognitive ability (Hampshire et al.,

2012) and provides clear evidence in support of hierarchical

accounts of reasoning systems (D’Espoito and Postle, 2015).

Our work provides potential markers for the identification

of patients likely to develop working memory and reasoning

impairments by demonstrating their predictive power using

machine learning in a chronic TBI population. Further inves-

tigation using these measures in the prediction of long-term

outcomes of acute patients may prove beneficial. Identifying

the properties of aberrant networks and their relationship to

working memory and reasoning impairments provides

opportunities for individually targeted therapeutic interven-

tions to be explored.
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