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Abstract

Background: With the establishment of the heart-gut axis concept, accumulating studies suggest that the gut microbiome
plays an important role in the pathogenesis of cardiovascular diseases. Yet, little evidence has been reported in
characterizing the gut microbiota shift in atrial fibrillation. Methods: We include the result of the global alterations that
occur in the intestinal microbiota in a cohort of 50 patients with atrial fibrillation and 50 matched controls based on a
strategy of metagenomic and metabolomic analyses. Results: The alterations include a dramatic elevation in microbial
diversity and a specific perturbation of gut microbiota composition. Overgrowth of Ruminococcus, Streptococcus, and
Enterococcus, as well as reduction of Faecalibacterium, Alistipes, Oscillibacter, and Bilophila were detected in patients with atrial
fibrillation. A gut microbial function imbalance and correlated metabolic pattern changes were observed with atrial
fibrillation in both fecal and serum samples. The differential gut microbiome signatures could be used to identify patients
with atrial fibrillation. Conclusions: Our findings characterize the disordered gut microbiota and microbial metabolite
profiles in atrial fibrillation. Further research could determine whether intervention strategies targeting intestinal
microbiome composition might be useful to counteract the progression of atrial fibrillation.
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Background

Atrial fibrillation (AF), an abnormal heart rhythm characterized
by rapid and irregular beating of the atria, is the most common

arrhythmia, with heavy global burdens, intensifying disability,
and morbidity. In Europe and the USA, 1 in 4 middle-aged adults
will experience AF [1, 2]. AF is prevalent in ∼3% of adults at
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the age of 20 years or older [3], with greater prevalence in older
persons and in patients with conditions such as hypertension
(HTN), heart failure, obesity, or type 2 diabetes mellitus (T2DM)
[4]. AF is independently associated with a 2-fold increased risk
of all-cause mortality in women and a 1.5-fold increase in men
[5] and has become a significant contributor to cardiovascular
events leading to cardiac death worldwide. Currently, ideal pre-
ventive and therapeutic strategies to counteract the progression
of AF remain sparse. The heterogeneity of the underlying atrial
substrate, extent of atrial fibrosis, and the discrepancies among
inter-individual electrophysiological characteristics contribute
to unpredictable responses to drug or ablation therapy [6]. It is
essential to embrace AF prevention as a priority, focusing not
only on rate, rhythm control, or stroke prevention but also con-
sidering AF as a concomitant factor of adverse atrial remodeling
rather than a solitary disease. Therefore, efforts to identify the
pathological mechanisms of AF are warranted. Various genetic
mutations have been identified to be associated with AF [7], and
environmental or unhealthy lifestyle factors are also believed to
contribute to the development of AF [8]. It is worth noting that
AF risk factors or contributors, such as HTN, T2DM, and obesity,
have been linked to dietary intake that possibly contributes to
alterations in the composition of the gut microbiota [8–11].

Recently, more investigators have focused on the role of the
gut microbiome (GM), which has been identified as an essen-
tial factor affecting human health [9–14]. Dysbiotic GM has been
reported in multiple diseases, such as T2DM [10], obesity [11],
HTN [9], atherosclerotic cardiovascular disease (ACVD) [15], liver
cirrhosis [12], colorectal adenoma-carcinoma [13], rheumatoid
arthritis [14], irritable bowel syndrome [16], and anxiety and de-
pression [17], and shown to activate the immune system [18],
eliciting chronic diseases. As the understanding of the relation-
ship between the intestinal microbiome and diseases has deep-
ened, possible underlying mechanisms have been proposed. For
example, emerging evidence suggests that through immune sys-
tem and metabolic alterations, gut microbiota disequilibrium
could induce obesity, HTN, and T2DM, traditional cardiac risk
factors that play an essential role during atrial remodeling in
the development of AF [8, 19]. However, data demonstrating
a correlation between AF and the intestinal microbiome are
still lacking. To our knowledge, studies of gut microbiota and
AF have been few. Information regarding the impact of micro-
bial metabolites is also incomplete. A gut microbial−dependent
metabolite, trimethylamine N-oxide (TMAO), which is positively
correlated with cardiovascular disease (CVD) in humans, is
proatherogenic and could increase the instability of atrial elec-
trophysiology [20]. However, it remains unclear whether circu-
lating TMAO levels derived from the intrinsic microbiome can
reach the ganglionated plexi and create local concentrations suf-
ficient to result in comparable arrhythmogenic effects. In addi-
tion, recent studies have shown that gut-derived lipopolysac-
charide is predictive for major adverse cardiovascular events
in patients with AF [21]. Furthermore, microbiome-derived free
fatty acids, such as palmitic and adrenic acid, might have poten-
tial influences on arrhythmogenesis [22, 23].

These seminal studies provided the first clues indicating a
possible interaction between gut microbiota and AF. They en-
couraged us to identify direct evidence of gut bacteria alter-
ations in patients with AF and evaluate the possible contribution
of gut dysbiosis to aberrant metabolic patterns that accelerate
the progression of AF. We performed metagenomic sequencing
analyses of stool samples from patients with AF to outline the
potential compositional and functional alterations of the GM.
In addition, to expose the relationship between disordered GM

and altered metabolomic profiles in AF, we aimed to construct
a microbiota-dependent discrimination index for distinguishing
AF, thus providing a comprehensive understanding of gut mi-
crobiota dysbiosis in the progression of AF. This work is funda-
mental for further studies to reveal the causal relationship and
explore preventative measures for postponing AF progression.

Results
Baseline characteristics of the study cohort

We enrolled 100 Chinese participants comprising 50 patients
with nonvalvular AF and 50 individuals as matched controls. AF
was diagnosed using an electrocardiogram and defined as the
absence of P waves, replaced by disorganized electrical activity
and irregular R–R intervals due to irregular conduction of im-
pulses to the ventricles [24]. To adjust for the effect of HTN on
gut microbiota composition, we selected 50 samples from our
previous gut microbiota work matched for a history of HTN [9].
None of the participants had heart failure, coronary heart dis-
ease, structural heart disease, inflammatory bowel diseases, ir-
ritable bowel syndrome, autoimmune diseases, liver diseases,
renal diseases, or cancer. Patients who had used antibiotics or
probiotics in the past month were excluded. The clinical char-
acteristics of all participants are presented in Table 1. There
was no significant difference between patients with AF and con-
trols in terms of body mass index, creatinine, total bilirubin, or
glutamic-pyruvic transaminase level. Most of the patients were
elderly, with 70% >60 years old. For the control group, there were
more males than females, with males accounting for 82%. Al-
though the total cholesterol serum levels were much lower in
patients with AF, these clinical indices were all within the nor-
mal range.

Elevated microbiota richness and altered community
types in the gut of patients with AF

Whole-metagenome shotgun sequencing of the 100 stool sam-
ples from our study cohort was performed. A total of 612.84
Gb high-quality sequencing reads were generated (6.13 ± 0.96
million reads per sample on average) (Additional files 1: Ta-
ble S1). Rarefaction analyses, performed as we previously de-
scribed [9], showed that the curves approached saturation in
each group and with a significantly increased gene number in
the microbiomes of patients with AF (Fig. 1A). We also compared
the gene count, within-sample diversity (Shannon index), and
3 other ecological parameters, including Chao richness, Pielou
evenness, and Firmicutes/Bacteroidetes ratio between controls
and patients with AF. Consistently, gut microbial richness (gene
count) and diversity in the AF group were much higher (P = 0.007
for gene count, Fig. 1B; P = 3.53e−05 for Shannon index, Fig. 1C;
P = 7.162e−05 for Firmicutes/Bacteroidetes ratio, Additional files
2: Fig. S1a; P = 0.007633 for Chao richness, Fig. S1b; P = 4.262e−06
for Pielou evenness, Fig. S1c). The elevated richness of genes or
genera observed in our cohort may suggest the overgrowth of a
variety of harmful bacteria in patients with AF.

To investigate the shift of gut microbiota community struc-
ture during the AF state, microbial enterotype features were
examined using the partitioning around medoids clustering
method. The 100 samples were divided into 2 clusters by prin-
cipal coordinate analysis based on the Jensen-Shannon diver-
gence (Fig. 1D). Enterotype 1 was dominated by Bacteroides as the
most enriched genus, and Prevotella was the core in enterotype
2 (P = 1.731 e−09 and P = 4.376 e−14, respectively; Wilcoxon
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Table 1: Baseline clinical characteristics of the study cohort

Characteristic AF Control P-value

Number 50 50
Age, years 66 (57.00, 71.25) 55 (50.50, 57.50) <0.001
Male/female sex 32/18 41/9 0.043
Body mass index 26.46 (23.79, 28.64) 24.77 (22.79, 27.62) 0.112
HTN 27 27
T2DM 12 0
Total cholesterol 4.13 ± 1.05 4.82 ± 0.96 0.001
Triglyceride 1.29 (1.02, 1.88) 1.06 (0.77, 1.80) 0.084
LDL cholesterol 2.45 (1.58, 2.93) 2.3 (1.96, 2.86) 0.872
Fasting blood glucose 4.95 (4.50, 5.83) 5.12 (4.56, 5.55) 0.883
Creatinine 68.5 (60.48, 79.35) 70 (60, 89.5) 0.533
Uric acid 321.5 (278, 389.75) 333 (264.5, 384) 0.927
Total bilirubin 14 (10.08, 19.5) 14.7 (11.59, 19.75) 0.431
Glutamic-pyruvic
transaminase

19 (13.75, 28.5) 19 (12, 25) 0.185

Drug use

Angiotensin-converting
enzyme inhibitors

7 0

Angiotensin receptor
blockers

4 0

β receptor blockers 8 0
Statins 4 0
Aspirin 2 0
Amiodarone 10 0
Dimethyl biguanide 6 0
Oral anticoagulation

therapy
13 0 0

Data are presented as mean ± standard deviation or median (interquartile range), as appropriate.

rank sum test, Fig. 1E and F). Both enterotypes have been pre-
viously reported in HTN, T2DM, colorectal cancer, and irritable
bowel syndrome [9, 10, 13, 16]. There were 12 other significantly
increased genera in enterotype 1, including Blautia, Coprobacillus,
Dorea, Enterococcus, Streptococcus, and Veillonella (Additional files
3: Fig. S2). Interestingly, there was a dysbiosis of enterotype dis-
tribution by AF conditions. For the control group, the percentage
of samples in both enterotypes was the same (50% in enterotype
1, 50% in enterotype 2), whereas a higher percentage of patients
with AF were found to be distributed in enterotype 1 (82%), and
less in enterotype 2 (P = 0.001, AF vs control; Fisher’s exact test;
Fig. 1G). Furthermore, a similar difference in enterotype distribu-
tion at the species level was also found, although no significantly
different species were found between enterotypes (Additional
files 4: Fig. S3). Therefore, a morbid state of AF is associated
with imbalanced gut microbial communities, with a tendency
towards the enterotype dominated by Bacteroides and away from
the Prevotella-prominent enterotype.

Taxonomic profile of AF-associated gut microbiota

To compare the taxonomic profile of gut microbiota in patients
with AF with those in healthy individuals, we accessed the
GM abundances and phylogenetic profiles at the genus level.
Genes were aligned to the nonredundant (nr) database using DI-
AMOND61 (Version 0.7.9.58) and annotated to taxonomic groups
(Additional files 5: Fig. S4). The relative abundance of gut mi-
crobes was calculated by summing the abundance of genes as
listed in Additional files 6 and 7: Tables S2 and S3. The state
of disease significantly separated the participants with AF from
those without AF in principal component analysis (PCA) or in

non-metric dimensional scaling (NMDS) analysis at the genus
level (Additional files 5: Fig. S4a and b). The 35 most abundant
genera in patients with AF and healthy controls are shown in
Additional files 5: Fig. S4c.

Overall, 574 genera were dramatically different in control
and AF participants (P < 0.05, P values were tested using the
Wilcoxon rank sum test and corrected for multiple testing with
the Benjamini and Hochberg method [12]; Additional files 8: Ta-
ble S4). Consistent results were also obtained when the PCA
analysis was performed on the basis of the genera or species
differentially enriched across groups (P < 0.05, analysis of simi-
larities, genus: Fig. 2A, species: Additional files 9: Fig. S5a). The
top 10 different gut bacteria that dominated in AF participants
or controls at the genus level are shown in Fig. 2C and D. In
patients with AF, the proportions of Streptococcus, Enterococcus,
Blautia, Dorea, Veillonella, and Coprobacillus were much higher
than in controls (Fig. 2C), in agreement with our previous ob-
servations that they were more abundant in the AF-correlated
enterotype (enterotype 1). In addition to Eubacterium, Bifidobac-
terium, and Roseburia, Ruminococcus were also overexpressed in
individuals with AF (Fig. 2C). Ruminococcus is known to possess
a pro-inflammatory property, which has been implicated in the
development of inflammatory bowel disease [25–27]. Transplan-
tation of Ruminococcus into germ-free mice has been reported
to enhance the levels of interferon-γ , interleukin 17, and inter-
leukin 22 [26]. Streptococcus, recognized as a morbific oral bacte-
rial genus, has also been demonstrated to be elevated in HTN [9],
congestive heart failure (CHF) [28], and ACVD [15, 29]. Further-
more, Veillonella, a gram-negative anaerobic coccus, was sug-
gested to be inversely correlated with cardiovascular protective
metabolites such as niacin, cinnamic acid, and orotic acid [30].
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Figure 1 Elevated microbiota richness and altered community types in patients with AF. A, Rarefaction curves for gene number, which were calculated after 50 iterations
of random sampling with replacement in control (CTR; n=50) and AF (n=50). X-axis is the number of samples and Y-axis means number of genes. The rarefaction
curve is near smooth when the sequencing data are great enough with few new genes undetected and the present sample size has met the need of this study. B

and C, Gene count (B) and α-diversity (Shannon index) (C) based on the genera profile in the AF and control cohorts. Boxes represent the interquartile ranges, and
lines inside the boxes denote medians. Gut microbial richness (gene count) and diversity in the AF group were much higher (P=0.007, control vs AF, for gene count;
P=3.53e−05, control vs AF, for α-diversity; Kruskal-Wallis test). D, 100 samples are clustered into enterotype 1 (green) and enterotype 2 (orange) by principal component
analysis (PCA) of Jensen-Shannon divergence values at the genus level. The major contributor in the 2 enterotypes is Bacteroides and Prevotella, respectively. E and F,

Relative abundances of the top genera in each enterotype, Bacteroides in enterotype 1 (E), Prevotella in enterotype 2 (F). Boxes represent the interquartile ranges, lines
inside the boxes denote medians, and circles are outliers. P=1.731e−09 and P=4.376e−14, respectively; Wilcoxon rank sum test. G, The percentage of control and AF
samples distributed in enterotype 1 and enterotype 2. A dysbiosis of enterotype distribution by AF conditions was revealed. There were 50% controls in enterotype
1, 50% controls in enterotype 2; 82% AF participants in enterotype 1, 18% AF participants in enterotype 2. P=0.001, control vs AF; Fisher’s exact test, PCoA: principal

coordinate analysis.

In addition, Enterococcus is known to produce cytolysin, a toxin
that causes rupture of a variety of target membranes, including
bacterial cells, erythrocytes, and other mammalian cells [31].

Of the top 10 different species in the AF group shown in Fig.
S5c, Escherichia coli, a potentially pathogenic bacterial species,
was the most abundant and may be correlated with the progres-
sion of AF. Eubacterium rectale is a main representative of Firmi-
cutes and a kind of conditioned pathogen, which can ferment
the metabolic products of glucose (such as formic acid, acetic

acid, and butyric acid) as well as proteins, thereby inhibiting the
proliferation of other beneficial bacteria in the intestines and de-
creasing the production of catabolic enzymes of glycan [32]. Fur-
thermore, species enriched in the AF group, including Bifidobac-
terium longum and Collinsella aerofaciens, were more abundant in
patients with metastatic melanoma [33]. Meanwhile, Faecalibac-
terium prausnitzii [34], the butyrate-producing bacterial species,
was found decreased in the AF group. These results showed
the imbalanced structure of the intestinal flora, reduced probi-
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Figure 2: Genera strikingly different across groups. A, PCA based on abundances of the microbes showed that the structures of gut microbiota in AF were significantly
different from controls (CTR) at the genus level. B, Relative abundance of the top 35 most different genera across groups at the criteria of q value <0.05 (comparisons

presented in the square brackets); Wilcoxon rank sum test. The abundance profiles are transformed into z scores by subtracting the average abundance and dividing
the standard deviation of all samples. z score is negative (shown in blue) when the row abundance is lower than the mean and red when the row abundance is higher
than the mean. C, The box plot shows the relative abundance of the top 10 genera enriched in controls and AF participants. Boxes represent the interquartile ranges,
lines inside the boxes denote medians, circles are outliers, and q (adjusted P) value is shown at the top of the box; Wilcoxon rank sum test.

otic species, and increased quantity of harmful bacteria in pa-
tients with AF. It is speculated that these clusters of conditioned
pathogens accumulated in the gut might influence AF suscepti-
bility.

Moreover, Faecalibacterium, Prevotella, Alistipes, Oscillibacter
(genus level), and Sutterella were dramatically decreased in the
patients with AF compared with controls, and a similar shift was
found for Butyricicoccus, Flavonifractor, and Bilophila (Fig. 2C). In
addition, we also identified a dramatic decline of species such
as F. prausnitzii, Oscillibacter sp. (species level), and also Firmi-
cutes bacterium (species level) in the patients with AF (Fig. S5c).
F. prausnitzii is a butyrate-producing commensal bacterium with
anti-inflammatory properties, and its deficiency may aggravate
chronic inflammation, leading to ulcerative colitis, Crohn’s dis-
ease, obesity, asthma, and major depressive disorder [35–38]. Al-
istipes is a common member of the human intestinal microbiota,
capable of producing short-chain fatty acids from amino acids,
such as succinic and acetic acids [39]. The enrichment of Oscil-
libacter sp. and Alistipes was previously reported to be essential
for maintaining balanced gut microbes to protect against HTN
[9], CHF [28], and ACVD [15]. In addition, Bilophila is found in nor-

mal flora in human feces [40] and Flavonifractor was enriched in
the feces of non-obese participants [41].

Considering the difference of baseline characteristics, in-
cluding sex, age, T2DM diagnosis, and total cholesterol levels
between the 2 groups, we questioned whether the alterations of
GM observed in patients with AF were mediated by these clinical
factors [10, 42, 43]. A PCA plot was performed to assess the con-
tribution of these factors, and the results showed that it failed
to distinguish patients with AF into a separate group based on
these factors, indicating the negligible impact of sex, age, T2DM,
or total cholesterol on our results (P > 0.05, analysis of similari-
ties, Additional files 10: Fig. S6).

Additionally, medication is a key factor that can alter the GM
as shown in previous studies [43, 44]. Therefore, the effects of
statin and dimethyl biguanide use were further analyzed by PCA
plots to assess the possible influence of drug consumption on
GM in patients with AF. As indicated above, there were 4 pa-
tients with AF taking statins and 6 taking dimethyl biguanide.
The PCA at the genus level failed to separate the patients with
AF into different clusters based on the use of statins or dimethyl
biguanide (P > 0.05, analysis of similarities; Additional files 10:
Fig. S6e). These findings based on the taxonomic profile of gut
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microbiota supported our hypothesis that there is serious dys-
biosis of the gut bacteria under the AF state, which may play a
crucial role in the pathology of atrial remodeling and the forma-
tion of an arrhythmogenic substrate.

AF state is identifiable by the gut co-abundance group

At the gene level, there were 121,145 genes differentially en-
riched in patients with AF versus the controls (Additional files
11: Table S5). These genes were further clustered into co-
abundance gene groups (CAGs) as we described previously [9],
which generated 15,289 distinct CAGs (Additional files 12–15:
Tables S6–S9). The confidence of taxonomic annotation, confi-
dence of individual CAG assignment, and distribution of CAG
size (number of genes) is shown in Fig. S7 (Additional files 16). A
total of 477 CAGs were assigned to known bacterial genera based
on the tracer genes, with ≥80% of the genes mapped to the ref-
erence genome at an identity >85%. The CAGs were then com-
pared with those of the controls, yielding 240 CAGs specifically
enriched in AF (Additional files 13: Table S7). A cluster of CAGs
containing Prevotella, along with anti-inflammatory CAGs such
as Faecalibacterium, were more abundant in the healthy controls
(Additional files 17: Fig. S8). In contrast, the AF-enriched CAGs
formed a cluster originating from proinflammatory Ruminococ-
cus, Dorea, Eubacterium, and Bacteroides, some microbes enriched
in CVD [9, 15, 28].

On the basis of the clusters of microbial CAG gene markers
specific to AF, we aimed to further delineate the features of AF-
associated GM and investigate the clinical value of the intesti-
nal microbiome for distinguishing AF. Therefore, we performed
a random forest disease classifier using the relative CAGs abun-
dances as variables. With 5, 10, 20, 50, 70, and 100 CAG marker
variables, the classification error remained low and relatively
stable (Additional files 18: Fig. S9, Fig. 3A). The box-and-whisker
plot for the probability of AF in the cross-validation training set
showed that either the control or AF group showed a high prob-
ability for predicting the true class in the training set (n = 82)
(Fig. 3B). As shown in Fig. 3C, the area under the receiver operat-
ing curve (AUC) was 97.74% (95% confidence interval [CI], 95.27–
100%) in the training set, suggesting that patients with AF could
be effectively distinguished from the controls. Consistently, the
AUC for distinguishing AF from the controls was 98.57% (95% CI,
94.61–100%) in the testing set (n = 18). The CAGs that originated
from Blautia, Dorea, Eubacterium, Prevotella, Bacteroides, Ruminococ-
cus, and Lachnospiraceae contributed the most to discriminating
AF from controls (Fig. 3D). These CAGs were significantly corre-
lated with each other. The abundances of bacteria enriched in
controls were inversely correlated with the AF group, and clus-
tered together into a complicated network (Additional files 17:
Fig. S8). So far, we have constructed a microbiota-dependent dis-
crimination model for AF detection, and thus the values of dys-
biotic GM under the AF condition should be further emphasized
and uncovered.

Aberrant microbial functions in AF populations

The KEGG and evolutionary genealogy of genes: Non-supervised
Orthologous Groups (EggNOG) databases were used in the
present study to access the gut microbial gene functions as de-
scribed previously [45, 46] (Additional files 19–21: Tables S10–
S12). The AF and control groups could be separated clearly
from each other by both PCA and NMDS, suggesting a signif-
icant difference of microbial functions between patients with
AF and controls (P < 0.001, analysis of similarities, Fig. 4A,

B, D, E). There were 35 KEGG modules differentially enriched
among the 2 groups (adjusted P < 0.05, Wilcoxon rank sum test,
Fig. 4C), of which, 24 modules that were decreased in the AF
group were implicated in the biosynthesis of fatty acids and
aminoacyl–transfer RNA (tRNA). Furthermore, genes for the iron
complex transport system, nucleotide sugar biosynthesis, cit-
rate cycle, and glycolysis were also reduced in patients with
AF. These metabolic functions produce metabolites necessary
for maintaining human health, and some have been indicated
to be deficient in patients with HTN [9], CHF [28], or liver cir-
rhosis [12]. Eleven KEGG modules such as histidine biosynthe-
sis, putative multiple sugar transport system, heme biosynthe-
sis (glutamate to protoheme/siroheme), and the pentose phos-
phate pathway were found to be significantly elevated in the
AF group. They were also increased in patients with colorectal
adenoma-carcinoma [13], rheumatoid arthritis, T2DM, obesity,
ACVD, and cirrhosis [15]. Moreover, some EggNOG orthologs en-
riched in the control group participate in maintaining normal
human cellular functions, such as DNA replication, recombina-
tion, and repair and cell wall/membrane/envelope biogenesis.
Other identified EggNOG orthologs that are enhanced in patients
with AF function in signal transduction mechanisms such as
carbohydrate transport and metabolism. Furthermore, we per-
formed correlation analysis between CAGs and KEGG modules
and eggNOGs (Additional files 22: Fig. S10). AF-deficient CAGs
were positively correlated with some basic functions necessary
for life-sustaining activities such as aminoacyl–tRNA biosynthe-
sis and the citrate cycle. Considering these findings, the abnor-
mal microbial functions that result from disordered GM com-
position in AF populations may directly lead to imbalances in
metabolic profiles, resulting in disease development.

Alterations in gut and serum metabolomics in AF

Mammalian metabolism is thought to be greatly influenced by
interaction with the intestinal microflora community. To explore
how the host metabolic pattern alterations were affected by the
gut microbiota dysbiosis in patients with AF, serum and fecal
samples were collected and analyzed by high-throughput liquid
chromatography–mass spectrometry (LC-MS) in both positive
ion mode (ES+) and negative ion mode (ES−). A subset of 65 par-
ticipants (36 controls and 29 patients with AF) from the present
study were enrolled in the serum metabolic study and 59 (17 con-
trols and 42 patients with AF) were enrolled in the feces study
(Additional files 23 and 24: Tables S13 and 14). For serum, 2,548
features at ESI+ ion mode and 1,733 features at ESI− ion mode
were detected. And for feces, 2,547 features at ESI+ ion mode
and 1,894 features at ESI− ion mode were tested in this experi-
ment. The partial least-squares discriminant analysis (PLS-DA)
and the orthogonal partial least-squares discriminant analysis
(OPLS-DA) were plotted to reveal the global metabolic changes
between patients with AF and controls. For the fecal samples, a
clear separation between patients with AF and healthy controls
was obtained under both ES+ and ES− modes (Fig. 5A and B). The
serum data recapitulated the distinction, successfully classify-
ing the AF and control groups with PLS-DA and OPLS-DA meth-
ods (Fig. 5C and D).

Significant differentially enriched metabolites were identi-
fied on the basis of the variable importance in the projection
threshold > 1 and the P < 0.05 and were further matched in the
Metlin database. Overall, 96 serum metabolites, 46 elevated and
50 decreased, were detected in patients with AF as compared to
controls (Additional files 25: Fig. S11). For the stool samples, 63
metabolites, 15 increased and 48 down-regulated, differentiated
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Figure 3: Gut CAGs distinguish AF from controls. A, The random forest disease classifier. The model was trained using the relative abundance of the CAGs in the

controls and AF samples as variables. In the training set (n = 82), the distribution of 5 trials of 10-fold cross-validation error in random forest classification of AF
is plotted vs the number of CAGs used in each trial. The vertical red line indicates the number of CAGs in the optimal set with the lowest cross-validation error. B,
Box-and-whisker plot for the probability of AF in the cross-validation training set according to the model in A. Either the control or AF group showed a high probability
for predicting the true class in the training set. C, Receiver-operating characteristic curve (ROC) for the training set. The area under the receiver operating curve (AUC)

is 97.74%, and the green area indicates the 95% CI, 95.27–100%. D. The top 30 different CAGs distinguish AF from control based on the random forest model using
explanatory variables of CAGs. E, ROC for the test set (n = 18). The AUC is 98.57%, and the green area indicates the 95% CI, 94.61–100%.

patients with AF from healthy controls (Additional files 26: Fig.
S12).

Notably, 27 metabolites were altered in both serum and
stool samples of patients with AF (Fig. 6A and B), 16 of which
showed the same variation trend and were the focus of fur-
ther investigation (Fig. 6B, Additional files 27: Table S15). These
compositional changes identified AF-enriched compounds, such
as chenodeoxycholic acid and lysophosphatidylcholine (lysoPC)
(15:0). There were 14 metabolites with significantly decreased
abundance in AF including cholic acid, oleic acid, linoleic acid
(LA), and α-linolenic acid (ALA) (Fig. 6B). Chenodeoxycholic acid
was able to activate the NLRP3 inflammasome in macrophages,
which could primarily induce interleukin 1β and aggravates the
inflammatory process and affects epithelial integrity by induc-
ing the production of pro-inflammatory cytokines [47]. Cholic
acid may influence cardiac electrophysiology, inhibiting the ac-
tivity of cardiac myocytes, causing calcium overload, and lead-
ing to sudden fetal death, and hence might influence cardiac

electrophysiology [48]. Furthermore, it has been reported that
cholic acid could strongly reduce endoplasmic reticulum stress
by inhibiting extracellular signal−regulated kinase signaling
and endoplasmic reticulum stress−related activating transcrip-
tion factor 4 [49]. A 20-year cohort study following >74,000 par-
ticipants revealed that oleic acid consumption significantly re-
lieved the risk for developing CVD [50]. Oleic acid prevents coro-
nary heart disease by suppressing oxidative stress, mitigating
cardiomyocyte cell damage [51]. Previous observational studies
have reported that LA, the predominant μ-6 polyunsaturated
fatty acid from vegetable oils and nuts, could reduce major risk
factors for ACVD [52]. Increased LA intake is believed to reduce
low-density lipoprotein (LDL) cholesterol, promote insulin sensi-
tivity, and attenuate the risk of HTN [53]. These metabolic varia-
tions might aggravate or even promote the arrhythmogenic sub-
strate aggravation in the left atrium during the pathological pro-
cesses of AF.
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Figure 4: Microbial gene function annotation in AF. A and B, PCA (A) and NMDS (B) based on the relative abundance of KEGG orthology groups in 100 samples showed
a significant difference between AF and control (CTR). C, The meanabundance of KEGG modules differentially enriched in the GM of controls and patients with AF.
The relative abundance profiles were transformed into z scores by subtracting the mean abundance and dividing the standard deviation of all samples. The z score is

negative (shown in blue) when the row abundance is lower than the mean, and red when the row abundance is higher than the mean. Overall, 24 modules enriched in
control and 11 modules overrepresented in AF are shown in green and pink, respectively. The physiological effect of KEGG modules and q value are demonstrated on
the right; Wilcoxon rank sum test. D and E, PCA (D) and NMDS (E) based on the relative abundance of eggNOG orthologs in 100 samples showed a significant difference

between AF and control. F, The mean abundance of eggNOG orthologs differentially enriched in control and AF group. The relative abundance profiles were transformed
into z scores by subtracting the mean abundance and dividing the standard deviation of all samples. The z score is negative (shown in blue) when the row abundance
is lower than the mean, and red when the row abundance is higher than the mean. Overall, 15 eggNOGs enriched in control and 20 eggNOGs overrepresented in AF
are shown in green and pink, respectively. The potential function of eggNOGs and q value are demonstrated on the right; Wilcoxon rank sum test.
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Figure 5: Distinguished metabolic patterns between AF and control (CTR). A. Partial least-squares discriminant analysis (PLS-DA) score plots based on the metabolic

profiles in feces samples from the control and AF groups in ES+ and ES−. A clear separation between patients with AF and healthy controls was obtained under both
ES+ and ES− modes. B. Score scatter plots of orthogonal PLS-DA (OPLS-SA) comparing the feces metabolic differences identify the separation between AF and control
in ES+ and ES−. C, PLS-DA score plots based on the metabolic profiles in serum samples from control and AF group in ES+ and ES−, which successfully classify the 2
groups. D. Score scatter plots of OPLS-DA comparing the serum metabolic differences identify the separation between AF and control in ES+ and ES−.
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Figure 6: Aberrant metabolic patterns related to AF. A, Venn diagram shows the number of altered metabolites shared between serum (purple) and feces (yellow).
The overlap shows that there were 27 endogenous compounds concurrently identified in both feces and serum. B, Heat map of fold change (AF/control [CTR]) of 27
compounds that were altered in both serum and stool samples of patients with AF. The fold change was transformed into t-scores, and the t-score is negative (shown

in blue) when the compound showed a decline tendency in the AF group. Compounds that increased or decreased simultaneously (n = 16) or were unsynchronized
(n = 11) in feces and serum are shown in green and pink, respectively. C and D, The relationship between 16 endogenous metabolites and the top 10 altered genera
(C) and species (D) in AF. The 16 metabolites that were increased or decreased simultaneously in feces and serum are shown in light red and light blue, respectively.
Considering the circulating metabolites that played a role during the process of GM-mediated responses, the serum data of metabonomic profiling were used in

Spearman’s correlation analysis. Red indicates a negative correlation, and blue, a positive correlation; single asterisk indicates P < 0.05, and double asterisk, P < 0.01.
The enriched type of each genera and metabolic patterns was colored according to its direction of enrichment: blue, enriched in controls, and red, enriched in patients
with AF.

Furthermore, some metabolites showed an increased ten-
dency in serum but decreased in feces. These pathogenic sub-
stances might originate from a pathway other than gut mi-
crobes. For example, higher levels of circulating palmitic acid
were associated with a higher risk of AF [22]. Circulating suc-
cinate, a metabolite produced by both microbiota and the host,
was increased in HTN, ischemic heart disease, and T2DM [54].
Adrenic acid is an inflammation enhancer in non-alcoholic fatty
liver disease [23].

To explore the association between aberrant metabolites and
disordered gut microflora, we carried out a correlation analy-
sis between the top 10 genera (Fig. 6C) and species (Fig. 6D)
enriched in the AF or control groups and the 16 representa-
tive metabolites in serum or feces with similar variation ten-
dencies. Consistently, LA and ALA, previously described as car-
diovascular protectors, were negatively associated with generas
such as Flavonifractor and Hungatella and species like Prevotella
copri. ALA and LA were reported to prevent as well as terminate

lysophosphatidylcholine- or acylcarnitine-induced arrhythmias
[55]. The close relationship between microbes and metabolites
indicates that the specific metabolites might be produced at
least indirectly by corresponding gut microbes, which awaits fur-
ther investigation.

Based on the significant correlation between the distinguish-
ing metabolic features in AF and the disordered gut flora, it
is possible that the gut microbiota dysbiosis induced disor-
dered microbial functions, causing the deficiency of multiple
cardiovascular-protective metabolites and thus increased sus-
ceptibility to AF.

Discussion

In the present study we obtained seminal evidence delineating
the features of AF-associated gut dysbiosis through the integra-
tion of metagenomic and metabolomic analyses. The individ-
uals with AF exhibited significantly elevated richness and in-
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creased diversity of gut microbiota, and thus the overgrowth of
bacteria may be key to the development and establishment of
AF. The GM shift from an enterotype represented by Prevotella
to Bacteroides further characterized an imbalanced intestinal mi-
crobial environment specific to AF. Gut bacteria such as Faecal-
ibacterium, Alistipes, Oscillibacter, Bilophila, and Flavonifractor were
substantially decreased in the intestinal tract in patients with
AF. Inversely, Ruminococcus, Streptococcus, and Enterococcus were
typically enriched in the AF-associated gut metagenomic com-
position. Metabolic profiles of both fecal and serum samples
analyzed from patients with AF demonstrated significant al-
terations, which were correlated with gut microbiota dysbiosis.
More importantly, a discriminant model based on bacterial sig-
nature profiles has been established and may have the potential
to be used as biomarkers for AF in the future. It is therefore hy-
pothesized that an increase of a specific group of gut flora may
induce disordered metabolic activity of the GM, triggering the
accumulation of bacterial metabolites in the circulation. This
accumulation could negatively affect human health, perturbing
the progression of AF, and may even play an important role in the
establishment of AF. If future research confirms this hypothesis,
intervention strategies targeting gut microbiota to improve the
progression of AF could be pursued.

To our knowledge, the richness and diversity of the GM has
been evaluated in multiple diseases, particularly in CVD, and
variable findings were reported recently. In atherosclerotic dis-
ease, it was suggested that GM diversity is inversely associated
with arterial stiffness in women [56], whereas a higher micro-
bial richness and diversity in the systemic microbiome of the
ST segment was correlated with elevated myocardial infarction
event frequency [57]. Increased diversity of the GM was also ob-
served in patients with stroke and transient ischemic attacks,
and this dysbiosis was correlated with the severity of the dis-
ease [58]. Thus, the evaluated richness and diversity of the GM
could reflect the imbalanced gut milieu, characterized by over-
growth of a variety of harmful bacteria and fewer commensal or
beneficial genera. This is consistent with the present study.

A cluster of bacteria were significantly aggregated in the gut
from patients with AF, including Ruminococcus, Streptococcus, and
Enterococcus. The accrual of these microorganisms in the intes-
tine may inhibit the growth of some bacteria that are enriched
in healthy populations. For example, the decline of Faecalibac-
terium, Alistipes, Oscillibacter, Bilophila, and Flavonifractor often oc-
curred in conjunction with changes inStreptococcus abundance
[9, 15, 28]. It is worth noting that patients with AF shared the
enrichment of numerous microbial flora, such as Streptococcus,
Dorea, Enterococcus, and Coprobacillus, demonstrated in HTN [9],
CHF [28], and ACVD [15]. Additionally, patients with CVDs often
have decreased levels of Faecalibacterium and Oscillibacter, which
are butyrate-producing species identified as important anti-
inflammatory commensal bacteria [36, 59]. Alistipes, Bilophila,
and Butyricicoccus also exhibited the same decreasing trend in AF
and other CVDs, like HTN [9], CHF [28], and ACVD [15]. This group
of bacterial strains is consistently altered in multiple CVDs and
is therefore considered a guild emerging during the progression
of disease. The aforementioned chronic CVDs might be a con-
sequence of the imbalanced gut microbial composition associ-
ated with the establishment of this guild. Although the under-
lying mechanism remains largely unknown, several CVDs share
some common pathophysiologic pathways, such as endothelial
dysfunction [60]. Reestablishing the functionally active ecolog-
ical populations as the primary ecosystem service providers is
crucial to a healthier gut microbiota. Restoring the deficient gut
microbes might alleviate or attenuate the disease phenotypes

or progression. Targeted promotion of the gut ecosystem by indi-
vidualized intervention may present a novel ecological approach
for manipulating the gut microbiota to manage CVD and poten-
tially other dysbiosis-related diseases [61].

Notably, GM of AF exhibited some unique features not dis-
played in other related diseases. For example, Prevotella, whose
function is to encode superoxide reductase, phosphoadenosine
phosphosulphate reductase, and favor the development of in-
flammation [62], showed a declined trend in AF, but overgrowth
in HTN [9]. In addition, some flora that are decreased in HTN [9]
exhibited a tendency to be increased in AF, CHF [28], and ACVD
[15], such as Ruminococcus, Enterococcus, Veillonella, and Coprococ-
cus. These contrasting phenomena may partly be explained by
the complex and various factors involved in the pathophysiolog-
ical process. To a certain extent, the generality and specificity of
CVDs could be analyzed from the point of view of gut flora.

Metabolites derived by the gut microbiota, such as TMAO,
have been confirmed to act on downstream cellular targets
to improve or contribute to the pathogenesis of structural,
metabolic, and functional cardiovascular remodeling [63]. Here,
the present study revealed decreased levels of LA and ALA
in patients with AF, which was consistent with the decreased
function of GM in fatty acid biosynthesis. Notably, ALA/LA ex-
erted protective effects through inhibition of reactive oxygen
species generation, down-regulation of the activation of the p38
mitogen-activated protein kinase (MAPK) pathway, and the ex-
pression of transforming growth factor β1, which played a reg-
ulatory role in atrial fibrosis and contributed to the progression
of AF [53]. Taken together, these findings highlight the potential
and diverse physiological effects of GM-related metabolites dur-
ing the progression of AF. Further studies are required to make
clear the biological mechanism underlying these differential ef-
fects.

Promisingly, the microbiota-dependent discrimination
model we built could distinguish AF from controls nicely based
on the GM feature. Traditionally, AF can be further distinguished
as paroxysmal and persistent AF on the basis of the presenta-
tion, duration, and spontaneous termination of AF episodes.
The episodic pattern of paroxysmal AF is self-terminating,
in most cases within 48 hours, while persistent AF is char-
acterized as lasting longer than 7 days, including episodes
that are terminated by cardioversion, with drugs, or by direct
current cardioversion after ≥7 days [64]. Among our present
AF cohort, there were 30 patients with paroxysmal AF and 20
patients with persistent AF. The types of AF may be partially
determined by the varying extent of personalized electrical and
structural remodeling in the atrial arrhythmogenic substrate.
Additionally, they have different prognoses and responses
to rhythm-controlling therapy and distinction between the
types helps the physician and patient to make individualized
therapeutic decisions [65]. Therefore, the classification of AF
type based on the characteristics of gut microbiota might have
clinical value, which will be explored in our future work.

Consideration of possible confounders and limitations is rel-
evant to our study and can help to inform the design of future
studies. Some of the patients with AF recruited in our cohort also
had a diagnosis of HTN or T2DM. Isolated AF, driven by genetic
factors, represents a minority of AF cases and the pathogene-
sis of AF may be an end stage of multiple metabolic and car-
diovascular diseases [7, 8]. To reflect the real signature of clini-
cal practice we did not exclude patients with comorbidities even
though HTN and T2DM have been widely known to be connected
with GM dysfunction. To evaluate the disordered patterns of GM
resulting solely from AF, the HTN history in each group was
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matched individually to remove the HTN contribution. Sepa-
rately, there were 12 patients with AF with T2DM, which was not
adjusted between groups. We performed a PCA plot to assess the
contribution of different baseline characteristics and found that
PCA failed to distinguish patients with AF into separate groups
based on these factors, indicating the negligible impact of sex,
age, total cholesterol, or T2DM on our data. Therefore, the major-
ity of the association of GM dysbiosis observed in the AF cohort
was not mediated by HTN or T2DM. Second, although we ex-
cluded participants who used antibiotics or probiotics and con-
firmed the possible influences of drug use (dimethyl biguanide
and statins) on gut microbiota, exercise and dietary informa-
tion were not collected and corrected for in this study. Third,
the conclusions drawn from our data were associations rather
than causal relationships. Further studies such as gut micro-
biota transplantation and electrophysiological modulation test-
ing AF inducibility are still needed. The present results provide
preliminary clues and evidence for future investigations regard-
ing the potential mechanisms between gut microbes and AF.

Conclusions

The present study provides the first comprehensive descrip-
tion of the disordered patterns of gut microbiota and aberrant
microbial-related metabolites in a cohort of patients with AF.
These novel findings are fundamental for further studies explor-
ing the causal relationship between AF and GM, but they are just
the beginning. Extensive research is still needed to explore the
clinical value of intervention strategies based on gut microbiota
to improve AF conditions.

Methods
Study cohort

Fifty patients with nonvalvular AF were consecutively enrolled
from Beijing Chaoyang Hospital and 50 individuals as matched
controls were enrolled from Kailuan cohort who received bien-
nial medical examination in Kailuan General Hospital [66]. In-
dividuals with a history of heart failure, coronary heart disease,
structural heart disease, comorbidities (inflammatory bowel dis-
eases, irritable bowel syndrome, autoimmune diseases, liver dis-
eases, renal diseases, or cancer), or use of antibiotics or pro-
biotics in the past 1 month were excluded. Demographic and
clinical characteristics were obtained by completing face-to-face
surveys and checking hospital or medical examination records.
Fifty samples from our previous work [9] regarding gut micro-
biota were selected by matching for the history of HTN, and the
metagenomic sequencing data of 50 control stool samples from
our previous study were used as controls in the present study.
Among the 50 patients with AF included, fecal samples were
available from each participant and used for metagenomic anal-
yses. Metabolomic analyses were performed using serum sam-
ples from 8 patients with AF and 12 controls and stool samples
from 8 patients with AF and 8 controls. The study conformed to
the principles of the Declaration of Helsinki. The research proto-
col was approved by the ethics committee of Beijing Chaoyang
Hospital and Kailuan General Hospital. All of the participants
signed informed consent.

Stool sample collection and DNA extraction

Fresh stool samples were collected from each participant, imme-
diately frozen at −20◦C, transported on ice to the laboratory, and

then stored at −80◦C. Bacterial DNA was extracted using TIAN-
GEN kit (DP328, TIANGEN BIOTECH CO., Ltd, Beijing, China) at
Novogene Bioinformatics Technology Co., Ltd (Beijing, China).

Metagenomic sequencing, gene catalogue construction

Paired-end metagenomic sequencing was performed on the Il-
lumina platform (insert size 300 bp, read length 150 bp) at the
Novogene Bioinformatics Technology Co., Ltd. After quality con-
trol, the reads aligned to the human genome (alignment with
Short Oligonucleotide Analysis Package 2 [SOAP2], Version 2.21,
parameters: −s 135, −l 30, −v 7, −m 200, −x 400, RRID:SCR 005
503) were removed and the remaining high-quality reads were
used for further analysis. The assembly of reads was executed
using SOAP denovo (Version 2.04, parameters: −d 1 −M 3 −R −u
−F, RRID:SCR 010752). For each sample, we used a series of k-mer
values (from 49 to 87) and chose the optimal one with the longest
N50 value for the remaining scaffolds [12]. The clean data were
mapped against scaffolds using SOAP2 (Version 2.21, parame-
ters: −m 200 −x 400 −s 119, RRID:SCR 005503). Unused reads
from each sample were assembled using the same parameters.

Gene prediction from the assembled contigs was performed
using Meta GeneMark (prokaryotic GeneMark, hidden Markov
model Version 2.10). A non-redundant gene catalogue was con-
structed with Cluster Database at High Identity with Tolerance
(CD-HIT, Version 4.5.8, parameters: −G 0 −aS 0.9 −g 1 −d 0
−c 0.95.,RRID:SCR 007105) using a sequence identity cut-off of
0.95, with a minimum coverage cut-off of 0.9 for the shorter se-
quences. Reads were realigned to the gene catalogue with SOAP2
using parameters to determine the abundance of genes: −m 200
−x 400 −s 119. Only genes with ≥2 mapped reads were included.
The gene abundance was calculated by counting the number of
reads and normalizing by gene length.

Analyses of genera richness and enterotypes

Rarefaction analysis was carried out to evaluate gene richness.
Using R (Version 2.15.3, vegan package), the cohort was ran-
domly sampled 100 times with replacement and the total num-
ber of identified genes from these samples was assessed.

Based on the genera profiles, we calculated the within-
sample (α) diversity using the Shannon index to estimate the
genera richness of the sample. A high α diversity denotes a high
richness of genera within the sample.

By using the partitioning around medoids method based on
relative abundance of genera, we analyzed the community types
of each sample. As previously described [67], we estimated the
optimal number of clusters using the CH index. Genera with
a mean relative abundance ≥10−4 and present in ≥6 samples
would be used in the analysis. The genera in enterotype 1 were
clustered according to the Spearman’s correlation between gen-
era abundances, and their co-occurrence network was visual-
ized using Cytoscape (Version 3.2.1, RRID:SCR 003032).

Taxonomic assignment, annotation, and abundance
profiling

Genes were aligned to the integrated nr database to assess the
taxonomic assignment by using DIAMOND (Version 0.7.9.58, de-
fault parameters except that −k 50 −sensitive −e 0.00001, RRID:
SCR 016071). To distinguish taxonomic groups, the significant
matches for each gene, defined by e-values ≤10 × e-value of
the top hit, were determined and the retained matches were
used as previously described [68]. The taxonomical level of each

https://scicrunch.org/resolver/RRID:SCR_005503
https://scicrunch.org/resolver/RRID:SCR_010752
https://scicrunch.org/resolver/RRID:SCR_005503
https://scicrunch.org/resolver/RRID:SCR_007105
https://scicrunch.org/resolver/RRID:SCR_003032
https://scicrunch.org/resolver/RRID:SCR_016071
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gene was determined using the lowest common ancestor−based
algorithm implemented with MEGAN (MEtaGenome ANalyzer,
RRID:SCR 011942). The abundance of a taxonomic group was cal-
culated by summing the abundance of genes annotated to a fea-
ture.

CAGs and co-occurrence network

As previously described [69, 70], we compared the abundance of
each gene across groups to identify the marker genes associated
with AF. On the basis of their abundance variation across groups,
these marker genes were clustered into groups [34]. CAGs were
defined as clusters with >50 genes [9, 12, 70]. CAG abundance
profiles were calculated on the basis of the average gene depth
signal and weighted by gene length. Taxonomic assignment of
the CAGs was performed on the basis of the taxonomy of tracer
genes, as previously described [9, 10]. All genes from 1 CAG were
aligned to the reference microbial genomes at the nucleotide
level (by BLASTN) and the NCBI-nr database at the protein level
(by BLASTP). The alignment hits were filtered by both the e-value
(<1 × 10–5 at the nucleotide level and <1 × 10–5 at the protein
level) and the alignment coverage (>70% of a query sequence).
From the alignments with the reference microbial genomes, we
obtained a list of well-mapped bacterial genomes for each CAG
and ordered these bacterial genomes according to the propor-
tion of genes that could be mapped onto the bacterial genome,
as well as the average identity of the alignments. The species
assignment required 90% of the genes in a CAG to match the
species’ genome with 95% identity and 70% overlap of query. The
CAG assignment to a genus required 80% of its genes to align
to the genome with 85% identity in both DNA and protein se-
quences.

The enriched CAGs were identified and clustered according
to Spearman’s correlation, and the co-occurrence network was
visualized by Cytoscape (Version 3.2.1; RRID:SCR 003032). Based
on the abundance in the set of compared samples, an odds ra-
tio score [69] was calculated for each CAG and for the compara-
tive analysis between control and AF samples; the AF-associated
CAGs were identified as AF-enriched (odds ratio > 2) or AF-
depleted (odds ratio < 0.5).

Functional annotation

Using DIAMOND (Version 0.7.9.58, default parameters except
for –k 50 –sensitive –e 0.00001), all genes in the catalogue were
aligned to the KEGG database (Release 73.1, with animal and
plant genes removed) and to the eggNOG database (v4.5 via
eggNOG-mapper with hidden Markov model search mode). Each
protein was assigned to the KEGG and eggNOG orthologs using
the highest scoring annotated hits containing ≥1 high-scoring
segment pair scoring >60 hits. By summing the abundance of
genes annotated to the same feature, the abundance of KEGG
ortholog/module was calculated.

Metabolomic analysis based on LC-MS

In preparation for extraction, 50-mg fecal samples were pipet-
ted into centrifuge tubes (1.5 mL). The protein was precipi-
tated with 800 μL of methanol and 10 μL of internal standard
(2.9 mg/mL, DL-o-chlorophenylalanine) was added. The samples
were ground at 65 kHz for 90 s and centrifuged at 12,000 rpm for
15 min at 4◦C. Then 200 μL of the supernatant was transferred
into a vial for further analysis. The serum samples were thawed
at room temperature and 100 μL was pipetted into centrifuge

tubes (1.5 mL) in preparation for extraction. The protein was pre-
cipitated with 300 μL of methanol, and 10 μL of internal standard
(2.9 mg/mL, DL-o-chlorophenylalanine) was added. The samples
were vortexed for 30 s and centrifuged at 12,000 rpm for 15 min
at 4◦C. Then 200 μL of the supernatant was transferred to a vial
for further analysis. The fecal and serum metabolic profiles were
performed on an LC-MS platform (Thermo Fisher Scientific, Ul-
timate 3000LC, Orbitrap Elite) using a Hypergod C18 (100 × 4.6
mm × 3 μm) column. The chromatographic separation condi-
tions were as follows: column temperature, 40◦C; flow rate, 0.3
mL/min; mobile phase A, water +0.1% formic acid; mobile phase
B, acetonitrile +0.1% formic acid; injection volume, 4 mL; auto-
matic injector temperature, 4◦C.

For both fecal and serum samples the following conditions
were used for the positive ion mode (ES+): heater temperature,
300◦C; sheath gas flow rate, 45 arb (arbitrary units); auxiliary gas
flow rate, 15 arb; sweep gas flow rate, 1 arb; spray voltage, 3.0 kV;
capillary temperature, 350◦C; S-lens RF level, 30%. The following
conditions were used for negative ion mode (ES−): heater tem-
perature, 300◦C; sheath gas flow rate, 45 arb; auxiliary gas flow
rate, 15 arb; sweep gas flow rate, 1 arb; spray voltage, 3.2 kV; cap-
illary temperature, 350◦C; S-lens RF level, 60%.

All metabolomic data were prepared for feature extrac-
tion and preprocessed with Compound Discoverer 2.0 software
(Thermo Fisher Scientific). Data were normalized at the start.
Considering that remarkable differences existed among various
metabolites, some signals of metabolites with too high or low
concentration might be covered up and failed to be identified
as biomarkers. So, normalization, aiming to adjust the weight
of different variables to decrease the gap of different signals,
should be performed to bring the dimensions (e.g., mean and
standard deviation) of all variables to a similar level and make
the data more comparable. The calculation process was to nor-
malize the peak area of each sample to 1,000,000 and divide the
peak area of each ion by the total peak area of the sample and
multiplied by 1,000,000. Data were then edited into a 2D data ma-
trix by Excel 2010 software, using retention time (RT), compound
molecular weight (compMW), observations (samples), and peak
areas. Using SIMCA-P software (Umetrics AB, Umea, Sweden), a
multivariate analysis was performed. Compounds were signif-
icantly distinguished between groups, identified by a variable
influence on projection > 1 and P < 0.05 based on the peak ar-
eas. The exact molecular mass, ppm (<25), and tandem mass
spectrometry value of these compounds was used to identify the
metabolites related to the featured peak in the Metlin database
[71]. Furthermore, we compared the mass spectrum. The score
value that indicated the matching rate was calculated by Com-
pound Discoverer 2.0 software (Thermo Fisher Scientific) with
a maximum of 100. For metabolites detected in both ES+ and
ES−, the data in the mode with the lower P-value was retained
for further analysis.

Statistical analysis

Quantitative demographic and clinical characteristic data with
normal distributions were presented as mean and standard de-
viation, and the t-test was used for between-group compar-
isons. Quantitative data with non-normal distributions were
presented as median (first quartile, third quartile), and the
Wilcoxon rank sum test was performed for between-group com-
parisons. Qualitative data were presented as a percentage, and
the χ2 test was used for between-group comparisons. All statis-
tical tests were 2 sided, and P < 0.05 was regarded as significant.

https://scicrunch.org/resolver/RRID:SCR_011942
https://scicrunch.org/resolver/RRID:SCR_003032
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Statistical analyses were performed with SPSS, Version 22.0 (IBM
Corp., Armonk, New York)

The Shannon index at the genus level was calculated with QI-
IME (Quantitative Insights Into Microbial Ecology, Version 1.7.0,
RRID:SCR 008249). PCA was performed using the Facto MineR
package in R software (Version 2.15.3), while principal coordi-
nate analysis was performed by using the ade4 package, cluster
packages, fpc packages, and cluster Sim package in R software
(Version 2.15.3). Partial least-squares−based structural equation
modeling analysis was conducted using the Smart-PLS 3 soft-
ware. PLS-DA was carried out using the SIMCA-P software to
cluster sample plots across groups.

Differential abundance of genes, genera, and KEGG orthology
modules was tested on the basis of the Wilcoxon rank sum test,
and P values were corrected for multiple testing with the Ben-
jamini and Hochberg method. Genera with an average relative
abundance ≥10−4 and presence in ≥6 participants were included
in the analyses.

Based on the profiles of CAGs, the samples were randomly di-
vided into training and test sets. A random forest classifier was
trained on 80% of the data and tested on the remaining 20% of
our data using the random forest package in R. We performed a
10-fold cross-validation within the training set to evaluate the
performance of the predictive model and obtain more precise
curves. The cross-validation error curves (average of 10 test sets
each) from 5 trials of the 10-fold cross-validation were averaged.
Variable importance was calculated for the random forest mod-
els using the full set of features determined by mean decrease
in accuracy. At the lowest cross-validation error, the number of
variables was 1,000. Therefore, the predictive model was con-
structed using the 1,000 most important variables, and the per-
formance was assessed using ROC analysis. The 95% confidence
interals for the ROC curves were calculated using the pROC R
package. The performance of the smaller models was measured
as the AUC when applied to the test set.
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