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Abstract
Neuroinflammation plays an important role in the onset and progression of neurodegenerative diseases. Microglia-mediated 
neuroinflammation have been proved to be the main reason for causing the neurodegenerative diseases. Ganoderic acid 
A (GAA), isolated from Ganoderma lucidum, showed anti-inflammatory effect in metabolism diseases. However, little 
research has been focused on the effect of GAA in neuroinflammation and the related mechanism. In the present study, 
lipopolysaccharide(LPS)-stimulated BV2 microglial cells were used to evaluate the anti-inflammatory capacity of GAA. Our 
data showed that GAA significantly suppressed LPS-induced BV2 microglial cells proliferation and activation in vitro. More 
strikingly, GAA promoted the conversion of BV2 microglial cells from M1 status induced by LPS to M2 status. Furthermore, 
GAA inhibited the pro-inflammatory cytokines release and promoted neurotrophic factor BDNF expression in LPS-induced 
BV2 microglial cells. Finally, we found that the expression of farnesoid-X-receptor (FXR) was prominently downregulated 
in LPS-stimulated BV2 microglial cells, antagonism of FXR with z-gugglesterone and FXR siRNA can reverse the effect 
of GAA in LPS-induced BV2 microglial cells. Taking together, our findings demonstrate that GAA can significantly inhibit 
LPS-induced neuroinflammation in BV2 microglial cells via activating FXR receptor.
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Introduction

Neuroinflammation, inflammation of the central nervous 
system (CNS), is an immune response often initiated against 
a variety of harmful stimuli, including pathogens, trauma 
and neural damage, etc. Accumulative evidence strongly 
suggested that neuroinflammation is a common feature of 
neurodegenerative diseases, such as Parkinson’s diseases 
(PD), multiple sclerosis (MS) and Alzheimer’s diseases 
(AD), and is associated with the progressive loss of neu-
ronal structure and function [1–3]. The inflammation reac-
tion is an automatic defense response of the body to external 
stimuli. In some cases, it is usually beneficial because it can 
promote the clearance of pathogenic factors and the heal-
ing of damaged tissue; but in other cases, it is detrimental 
because it can aggravate the damage of injured tissue or cells 
and worsen the condition [4]. The strategies to modulate the 
inflammatory processes are increasingly considered as the 
candidate options to therapy inflammation related disease.

Microglia are the resident macrophages of the CNS and 
plays an important role in immune surveillance, homeosta-
sis and neuroinflammation [5]. Under normal conditions, 
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microglia not only provide immune surveillance but also 
respond to harmful stimuli; under pathologic conditions, 
microglia can be activated in order to respond to the detri-
mental signals. Similar to macrophages, microglia was heter-
ogeneous [6]. Generally speaking, activated microglia can be 
categorized as the classic pro-inflammatory M1 type or the 
anti-inflammatory M2 type. M1 type microglia were char-
acterized by an overproduction of inflammatory cytokines 
and inflammatory mediators, including tumor necrosis 
factor(TNF)-α, interleukin(IL)-6, IL-1β, inducible nitric 
oxide synthase(iNOS) and prostaglandin G2(PG2), etc., [7]. 
On the contrary, M2 type microglia were characterized by 
the secretion of anti-inflammatory cytokines including IL-4, 
IL-10 and transforming growth factor(TGF)-β [8]. M1 type 
microglia play a detrimental effect while M2 type microglia 
exert a neuroprotective and regenerative effect. Therefore, 
it is of great importance to regulate the differentiation of 
microglia and reduce the inflammatory damage.

Taking these factors into consideration, researchers focus 
their interest on natural products with potential anti-inflam-
matory and neuroprotective effects. Previous studies have 
discovered many natural products, which can converse the 
polarization of microglia from M1 to M2 in vitro and in vivo 
[9–11]. Ganoderic acid A (GAA), isolated from Ganoderma 
lucidum, is proved to exert anti-tumor, anti-oxidant, anti-
inflammatory and hepatoprotective effects [12–14]. The pro-
tective role of Ganoderma lucidum extracts on neurons has 
also been well studied [15]. However, the specific effect of 
GAA on neuroinflammation remains unknown, even though 
GAA is a major pharmaceutically active compound of Gano-
derma lucidum. Based on these findings, we hypothesize that 
GAA has an inhibitory effect on neuroinflammation and can 
interfere with microglial polarization.

The farnesoid-X-receptor (FXR, NR1H4), also known as 
a bile acid receptor, was a ligand-activated transcriptional 
factor and belongs to the nuclear hormone receptor super-
family. FXR has been extensively studied in human meta-
bolic disease [16, 17]. Recently, the researcher found that 
FXR plays a neuroprotective role in multiple sclerosis [18]. 
Growing evidence indicated that GAA can activate FXR 
[19]. However, whether GAA can inhibit inflammation via 
activation FXR, it remains unclear. Therefore, this study 
aimed to investigate the effects of GAA on LPS-induced 
inflammation of microglial cells and to explore the involved 
mechanisms.

Materials and Methods

Materials

GAA (Cat: B20742) was purchased from Shanghai Yuanye 
Biology Co. (Shanghai, China), the molecular structure of 

GAA was shown as Fig. 1. LPS (Cat: L2630) and Z-gugg-
lesterone (GS) (Cat: 370690) were purchased from sigma. 
CCK-8 Kit (Cat:BS350B) was purchased from biosharp Life 
Sciences. Mouse IL-1β (Cat: ab197742) and TNF-α (Cat: 
ab208348) ELISA kits were purchased from Abcam. Mouse 
IL-6 (Cat: VAL604) and BDNF (Cat: VAL136) ELISA kits 
were purchased from NOVUS. The primary antibodies, 
including anti-ionized calcium-binding adapter molecule 
1(Iba1) (Cat: ab5076), anti-iNOS (Cat: ab15323), anti-
arginase(Arg)-1 (Cat: ab91279), anti-FXR (Cat: ab85606), 
anti-IL-6 (Cat: ab208113), anti-brain derived neurotrophic 
factor(BDNF) (Cat: ab108319) and anti-GAPDH (Cat: 
ab8245) were purchased from Abcam, anti-IL-1β (Cat: 
AF-401-NA) and anti-TNF-α (Cat: AF-410-NA) were pur-
chased from R&D, anti-beta Tubulin (Cat:MA5-11732) was 
purchased from Thermo Scientific. The second antibodies, 
including Alexa Fluor488 labeled Bovine Anti-Goat (Cat: 
805–545-180) and Alexa Fluor 594 (Cat: 711-585-152) 
labeled Donkey anti-Rabbit were purchased from Jackson 
Labs. Donkey anti-Goat IgG (H + L) HRP (Cat: A15999) 
was purchased from Invitrogen. Goat anti-Rabbit IgG 
(H + L) HRP (Cat: S0001) and Goat anti-Mouse IgG (H + L) 
HRP (Cat: S0002) were purchased from Affinity. DAPI (Cat: 
36308ES11) was purchased from Yeasen Biotech Co., Ltd.

Cell Culture

Murine BV2 microglial cell line was provided by Dr. Qi 
Yan, Yunnan University of Traditional Chinese Medicine. 
The cells were cultured in DMEM high glucose complete 
medium (Cat: 10-013-CVRC), supplemented with 10% fetal 
bovine serum (FBS) (Cat: 04-0011-1ACS) and 1% penicil-
lin streptomycin solution at 37 °C in a humidified incubator 
under 5% CO2 in T25 flasks. When reached over 80% conflu-
ence, cells were seeded onto 96-well, 24-well or 6-well plate 
for further experiments.

Fig. 1   Chemical structure of Ganoderic acid A
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Cell Counting Kit‑8 Assay

BV2 microglial cells were plated in 96-well plates at a den-
sity of 5 × 103 cells per well, all of the study was conducted 
24 h after the cells were seeded. Cells were then treated 
with LPS (0.1, 0.25, 0.5, 0.75, 1 and 2 μg/ml), GAA (1, 
25, 50, 75, 100 and 200 μg/ml) and GS (10, 20, 40, 60, 
80 and 100 μM) for 24 h. After treatment, the cells were 
rinsed with PBS for twice and the medium was changed to 
100 µl DMEM high glucose medium and 10 μl of CCK-8 
was added into the culture plate. Followed by incubation at 
37 °C for 2 h, the optical density value at the wavelength of 
450 nm was detected by using a microplate reader (Epoch, 
BioTek Instruments, Winooski, USA). After correction by 
subtracting the optical density value of wells that did not 
contain cells, experimental data were shown as relative cell 
viability normalized to the control group [13].

Drug Treatments

BV2 microglial cells were stimulated with 0.5 μg/ml LPS 
as an inflammation state in vitro. For the study of GAA on 
LPS induced neuroinflammation, GAA was administrated 
in simultaneously with LPS to the BV2 cells. After 24 h 
treatment, cytokines, FXR and microglial biomarker were 
detected by western blot and immunofluorescence methods.

For the study of GS (a selective FXR receptor antago-
nist) on GAA and LPS co-treated BV2 microglial cells, GS 
was administrated to BV2 microglial cells 2 h before LPS 
and GAA treatment. After 24 h treatment, cytokines were 
detected by western blot method.

Transient Transfection with siRNA

When BV2 microglial cells were confluent to 60–70%, they 
were transfected with FXR siRNA (1.5 μg) or negative 
control siRNA (1.5 μg) using the DNAfectin™ Plus Trans-
fection Reagent (Cat: G2500, Applied Biological Materi-
als Inc). The siRNA sequence targeting FXR 5′-GGC​GUA​
GCA​UUA​CCA​AGA​ATT-3′ was designed and supplied by 
GenePharma. After 36 h, the DNAfectin™ Plus Transfec-
tion Reagent were removed and the cells were treated with 
GAA and LPS. 24 h later, the inhibition of siRNA on FXR 
expression and the expression of TNF-α and BDNF in BV2 
microglial cells were detected by western blot.

ELISA for IL‑1β, IL‑6, TNF‑α and BDNF

After 24 h treatment, the levels of IL-1β, IL-6, TNF-α and 
BDNF in cell culture supernatant were measured accord-
ing to manufacturer’s instructions using ELISA kits. Results 
were expressed as pg/ml of supernatant.

Western Blot

After 24 h treatment, the cell culture medium was discarded 
and the cells were washed three times with ice-cold PBS. 
200 μl of RIPA cell lysis buffer mixed with protease and 
phosphatase inhibitors were added to each well, then cells 
were incubated on ice for 30 min, and the lysate was col-
lected by spinning at the speed of 12,000 rpm for 10 min at 
4 °C, the supernatants were used for following study. Protein 
concentrations were determined using a BCA protein assay 
kit (Pierce Biotechnology, Rockford, USA). Equal amounts 
of proteins were subjected to 10–12.5% SDS-PAGE gel 
electrophoresis and transferred to 0.22 µm polyvinylidene 
difluoride (PVDF) membranes (Cat: ISEQ00010, Merck 
Millipore Ltd). Antibodies against Iba1, iNOS, Arg-1, IL-1β, 
IL-6, TNF-α, BDNF and FXR were used as primary anti-
bodies. Secondary antibodies, including Donkey anti-Goat 
IgG (H + L) HRP, Goat anti-Rabbit IgG (H + L) HRP and 
Goat anti-Mouse IgG (H + L) HRP. The anti-GAPDH and 
anti-Tubulin antibodies were applied for loading calibration. 
Immunoreactive bands were visualized using the ECL detec-
tion system (Millipore, Billerica, USA). The images were 
acquired by the chemiluminescent imaging system (Amer-
sham Imager 600, GE) and quantified using Image Pro Plus 
version 6.0 software (Media Cybernetics, Rockville, USA).

Immunofluorescent Staining

After LPS and GAA treatments, cultured BV2 microglial 
cells were washed thrice with cold 1 × PBS and fixed in 4% 
paraformaldehyde in PBS for 20 min at room temperature. 
The cells were then incubated with blocking buffer (1% BSA 
and 0.2% Triton X-100 in PBS) for 1 h at room temperature. 
Next, cells were incubated with primary anti-Iba1, anti-
iNOS, anti-Arg1 and anti-FXR antibodies at 4 °C overnight. 
Cells were then washed with PBST for three times, appropri-
ate secondary antibodies labeled with Alexa Fluor 488 or 
Alexa Fluor 594 was prepared in PBST containing 5% BSA. 
After washing, cells were incubated with second antibody 
solution for 1 h at room temperature and rinsed with PBST 
thrice. After washing, the cells were mounted onto slides 
with anti-fade mounting media containing DAPI solution.

Image Analysis

All slides were photographed and digitized using a video 
camera mounted on a Leica microscope (Leica DM2500, 
Germany). All images were taken under exactly the same 
conditions, including laser output strength, exposure time, 
gain, offset, etc. BV2 microglial cells were randomly 
photographed, with 5 or more images obtained for each 
coverslip to ensure that conditions for each coverslip in 
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each treatment group were the same. Pictures were further 
processed using Adobe Photoshop CS5 (Adobe Systems 
Software, Ireland).

Statistical Analysis

All data were analyzed with one-way ANOVA followed by 
Turkey post hoc test. All data were analyzed using Graph 
Pad Prism Ver. 5.0 (Graph Pad Software, Inc., San Diego, 
CA) and expressed as the mean ± SEM. P values less than 
0.05 were considered statistically significant. Figures were 
generated by GraphPad Prism version 5 software.

Results

GAA Inhibits LPS‑Induced BV2 Microglial Cells 
Proliferation and Activation In Vitro

To evaluate the potential cytotoxicity of GAA in BV2 micro-
glial cells, the BV2 microglial cells were treated with dif-
ferent dosages of GAA (1, 25, 50, 75, 100, 200 μg/ml) for 
24 h. Cell viability was measured using the CCK-8 kit. The 
results showed that GAA treatment had no cytotoxicity to 
BV2 microglial cells at the dosage from 1 to 100 μg/ml, it 
began to exert cytotoxic effect at the dosage of 200 μg/ml 
(Fig. 2a). Furthermore, as we used LPS to induce microglia 
inflammation, it was necessary to ascertain the dosage of 
LPS that had no cytotoxicity. We found that low dose of 
LPS had no cytotoxic effect to BV2 cells, but high dosage of 
LPS (2 μg/ml) began to exert cytotoxic effect. What is more 
important, we found that LPS can promote BV2 cell prolif-
eration in vitro at concentration of 0.5 μg/ml and 0.75 μg/
ml (Fig. 2b). Following, we evaluated whether GAA can 
inhibit LPS-induced microglial proliferation, BV2 microglial 
cells were cultured with different concentrations of GAA 
and with LPS (0.5 μg/ml) for 24 h. The results showed that 
GAA (50 μg/ml) inhibited LPS-induced BV2 microglial 
proliferation (Fig. 2c). Thus, we selected the effective dose 
of 50 μg/ml GAA and 0.5 μg/ml LPS for further study. Cel-
lular immunofluorescence showed that the BV2 microglial 
cells were activated in response to LPS stimulation, the 
cell bodies became larger and rounder. Iba1 is a microglia/
macrophage-specific calcium-binding protein and is often 
used to evaluating microglia activation [20]. As compared 
to the control group, the expression of Iba1 was upregulated 
obviously. As compared to LPS group, GAA treatment can 
significantly suppress the expression of Iba1 (Fig. 2d). The 
results were also confirmed by western blotting method. 
GAA can significantly decrease the expression of Iba1 after 
LPS stimulation (Fig. 2e).

GAA Promoted the Conversion of LPS‑Induced 
Microglial Cells from M1 Status to M2 Status

Reactive polarized microglia were characterized by differ-
ential expression of cell surface markers. To evaluate M1/
M2 polarization, we analyzed the expression of M1 and 
M2 cell surface markers (iNOS and Arg-1 respectively) in 
LPS-induced BV2 microglial cells after GAA treatment for 
24 h [21]. The results showed that iNOS was significantly 
increased after LPS stimulation, GAA treatment could 
inhibit the up-regulation of iNOS in LPS-induced BV2 
microglial cells. On the contrary, the expression of Arg-1 
was significantly decreased after LPS stimulation, GAA 
treatment significantly reversed the down-regulation of 
Arg-1 in LPS-induced BV2 microglial cells (Fig. 3a). In 
order to further confirm this, we measured the expression 
iNOS and Arg-1 using western blot. The results showed that 
GAA reversed the up-regulation of iNOS and the down-
regulation of Arg-1 in LPS-induced BV2 microglial cells 
(Fig. 3b, c). In other words, GAA promoted the shift of M1 
status to M2 status in LPS-induced BV2 microglial cells.

GAA Attenuated Pro‑Inflammatory Cytokines IL‑1β, 
IL‑6 and TNF‑α and Enhanced Neurotrophic Factor 
BDNF Expression in LPS‑Induced BV2 Microglial 
Cells

It has been reported that LPS stimulation induced inflam-
matory response in microglial cells, resulting in the release 
of pro-inflammatory cytokines. In order to evaluate the 
effect of GAA on the production of LPS-induced pro-
inflammatory cytokines, we detected the levels of TNF-
α, IL-1β and IL-6 in cell lysates using the western blot 
method. The results showed that compared with the con-
trol group, the expression of TNF-α, IL-1β and IL-6 were 
significantly increased after LPS stimulation. However, 
GAA treatment significantly inhibited the LPS-induced 
TNF-α, IL-1β and IL-6 secretion in BV2 cells (Fig. 4a–c). 
In addition, BDNF plays an important role in anti-inflam-
matory effects, we measured the expression of BDNF after 
LPS stimulation and found that the expression of BDNF 
was also significantly decreased by 64.9% (P < 0.01) after 
LPS stimulation. However, GAA treatment significantly 
reversed LPS-induced BDNF down-regulation by 38.5% 
(P < 0.05) (Fig. 4d). Furthermore, we detected the levels 
of TNF-α, IL-1β, IL-6 and BDNF in cell culture super-
natant using ELISA method. The results showed that the 
expression of TNF-α and IL-6 were significantly increased 
in the cell culture supernatants of LPS-stimulated BV2 
microglial cells compared with control group, but GAA 
treatment could not significantly decrease the expression 
of TNF-α and IL-6 in the cell culture supernatants of LPS-
stimulated BV2 microglial cells (Fig. 4e, f). Unfortunately, 
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we did not detect the expression of IL-1β and BDNF in 
the supernatants of LPS-stimulated BV2 microglial cells 
according to the manufacturer’s instructions. These results 
further confirmed that GAA can promote the conver-
sion of BV2 microglial cells from M1 to M2 after LPS 
stimulation.

GAA Reversed LPS‑Induced FXR Downregulation 
in BV2 Cells

To further ascertain the mechanism of the GAA effects 
in BV2 microglial cells after LPS stimulation, the effects 
of GAA on FXR expression were detected. Cellular 

Fig. 2   GAA suppressed the LPS-induced BV2 microglial cells prolif-
eration and activation in vitro. a BV2 cells were cultured with differ-
ent concentration of GAA for 24 h. b BV2 cells were stimulated with 
different concentration of LPS for 24  h. c BV2 cells were cultured 
with different concentration of GAA in the presence of 0.5 μg/ml LPS 
for 24  h. Cell proliferation was detected by CCK-8 assay. d Immu-
nofluorescence images showing the BV2 microglial cells after LPS 
stimulation which was labeled with anti-Iba1 antibody, With GAA, 

the expression of Iba1 is decreased. Scale bar equals to 100  μm. e 
The protein levels of Iba1 were detected by Western blot. After nor-
malization to the control, data were analyzed using one-way ANOVA 
followed by post hoc Turkey tests and were presented as Mean ± SEM 
for three independent experiments. (a–c *P < 0.05 LPS 0.5 µg/ml vs. 
CON, **P < 0.01 LPS 0.75  µg/ml vs. CON, #P < 0.05 LPS + GAA 
50  µg/ml vs. LPS; Fig.  1e, **P < 0.01 LPS vs. CON; ##P < 0.01 
LPS + GAA vs. LPS)
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immunofluorescence staining showed that FXR was sig-
nificantly decreased after LPS stimulation, GAA treatment 
reversed the FXR down-regulation after LPS stimulation 
(Fig. 5a). In order to further confirm the data, we measured 
the expression of FXR by western blot. The results showed 
that GAA treatment can increase the expression of FXR by 
46.7% (P < 0.05) after LPS stimulation (Fig. 5b), which was 
consistent with the immunostaining results.

GS, A Selective FXR Antagonist, Blocked the Effects 
of GAA in LPS‑Stimulated BV2 Microglial Cells

To further evaluate the modulation mechanism of GAA in 
LPS-induced BV2 microglial cells, GS, a selective FXR 

antagonist was used to block FXR. First, we evaluated the 
cytotoxic effect of GS to BV2 microglial cells. The results 
showed that GS had no cytotoxicity to BV2 microglial 
cells at concentration of 1–100 µM (Fig. 6a). Second, we 
evaluated the concentration of GS which could block FXR 
expression. The results showed that GS blocked FXR at a 
dose dependent manner (Fig. 6b). In this study, the optimal 
concentration that could block FXR was 100 µM. Finally, we 
evaluated whether blockage of FXR could reverse the effect 
of GAA in LPS-induced BV2 microglial cells. The results 
showed that blocking FXR could reverse the down-regu-
lation of TNF-α (Fig. 7a) and the up-regulation of BDNF 
(Fig. 7b) in LPS-induced BV2 microglial cells after GAA 
treatment.

Fig. 3   GAA suppressed the up-regulation of iNOS and the down-
regulation of Arg-1 in LPS-stimulated BV2 microglial cells. a Immu-
nofluorescence images showing the BV2 microglial cells after LPS 
stimulation which were labeled with anti-iNOS or anti-Arg-1 anti-
body. With GAA, the expression of iNOS was decreased and the 
expression of Arg-1 was increased. Scale bar equals to 100 μm. b The 

protein levels of iNOS were detected by Western blot. c The protein 
levels of Arg-1 were detected by Western blot. After normalization 
to the control, data from three independent experiments was analyzed 
using one-way ANOVA followed by post hoc Turkey tests and were 
presented as Mean ± SEM. (*P < 0.05, ***P < 0.001 LPS vs. CON; 
##P < 0.01, ###P < 0.001 LPS + GAA vs. LPS)
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FXR Knock‑Down Blocked the Effects of GAA 
in LPS‑Stimulated BV2 Microglial Cells

To further determine whether FXR affects the effect of 
GAA on LPS-stimulated BV2 microglial cells, we chose 
FXR siRNA to knock down FXR. After 36 h transfection 
and 24 h cell culture under different treatment, the expres-
sion of FXR, TNF-α and BDNF were detected by western 
blot. The results showed that FXR protein was signifi-
cantly decreased compared with FXR-NC group (Fig. 8a). 
Moreover, FXR knock down could significantly reverse the 
down-regulation of TNF-α (Fig. 8b) and the up-regulation 
of BDNF (Fig. 8c) in LPS-induced BV2 microglial cells 
after GAA treatment. These results further demonstrate 

that GAA could suppress LPS-induced neuroinflammation 
through activation of FXR in BV2 microglial cells.

Discussion

We sought to study the effects of GAA on LPS-induced neu-
roinflammation in BV2 microglial cells and its underlying 
mechanisms. We found that (1) GAA significantly inhibits 
LPS-induced BV2 microglial cells proliferation and activa-
tion in vitro; (2) GAA promoted the conversion of LPS-
induced microglial cells from M1 status to M2 status; 3) 
GAA prominently attenuated pro-inflammatory cytokines 
IL-1β, IL-6 and TNF-α and enhanced neurotrophic factor 

Fig. 4   The effects of GAA on IL-1β, IL-6, TNF-α and BDNF expres-
sion levels in LPS-stimulated BV2 microglial cells. The protein lev-
els of IL-1β (a), IL-6 (b), TNF-α (c) and BDNF (d) were detected 
by Western blot. After normalization to the control, data from three 
independent experiments were analyzed using one-way ANOVA fol-
lowed by post hoc Turkey tests and were presented as Mean ± SEM. 

The protein levels of IL-6 (e) and TNF-α (f) were detected by ELISA 
assay. Data were analyzed using one-way ANOVA followed by post 
hoc Turkey tests and were presented as Mean ± SEM. N = 5–6 each 
group. (*P < 0.05, **P < 0.01, ***P < 0.01 LPS vs. CON; #P < 0.05 
LPS + GAA vs. LPS)
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Fig. 5   GAA reversed the down-regulation of FXR in LPS-stimulated 
BV2 microglial cells. a Immunofluorescence images showing the 
BV2 microglial cells after LPS stimulation which were labeled with 
anti-FXR antibody. With GAA, the expression of FXR is signifi-
cantly up-regulated. Scale bar equals to 100 μm. b The protein lev-

els of FXR were detected by Western blot. After normalization to the 
control, data from three independent experiments was analyzed using 
one-way ANOVA followed by post hoc Turkey tests and were pre-
sented as Mean ± SEM. (**P < 0.05 LPS vs. CON; #P < 0.05 LPS vs. 
LPS + GAA)

Fig. 6   GS dose-dependently blocked the expression of FXR in LPS-
stimulated BV2 cells. a BV2 cells were stimulated with different con-
centration of GS for 24 h. b The protein levels of FXR were detected 
by Western blot. After normalization to the control, data from three 

independent experiments was analyzed using one-way ANOVA fol-
lowed by post hoc Turkey tests and were presented as Mean ± SEM. 
(*P < 0.05 GS 30 μM vs. control; ***P < 0.001 GS 100 μM vs. con-
trol)
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BDNF expression in LPS-induced BV2 microglial cells; (4) 
GAA reversed LPS-induced FXR down-regulation in BV2 
microglial cells; (5) the effects of GAA were blocked after 
FXR antagonist GS or FXR siRNA treatment in LPS-treated 
BV2 microglial cells.

Microglia-mediated neuroinflammation is a hall mark 
of neurodegenerative diseases, including AD, PD, amyo-
trophic lateral sclerosis (ALS) and MS [6]. Microglia 
are the resident neuroimmune cells of the central nerv-
ous system and play an important role in maintaining 

homeostasis in normal conditions [22]. In response to 
injury or stimuli, microglia become readily activated and 
consequently modulates their phenotypes to adapt the acti-
vated state. Accumulating evidence strongly showed that 
LPS can activate BV2 microglial cells to produce various 
cytokines, nitric oxide, PGE2, COX2 and iNOS, hence 
LPS-stimulated BV2 microglial cells were often used as an 
in vitro neuroinflammation model [23–25]. Previous stud-
ies have shown that LPS can induce BV2 microglial cells 
and brain resident microglia proliferation and activationin 

Fig. 7   GS inhibited the 
anti-inflammatory effects of 
GAA in LPS-stimulated BV2 
microglial cells. The protein 
levels of TNF-α (a) and BDNF 
(b) were detected by Western 
blot. GS was administrated to 
BV2 microglial cells for 2 h 
before LPS and GAA treatment 
for 24 h. After normalization 
to the CON, data from three 
independent experiments 
was analyzed using one-way 
ANOVA followed by post hoc 
Turkey tests and were presented 
as Mean ± SEM. (*P < 0.05, 
***P < 0.001 LPS vs. CON; 
##P < 0.01, ###P < 0.001 
LPS + GAA vs. LPS; $$P < 0.01, 
$$$P < 0.001 LPS + GAA + GS 
vs. LPS + GAA)

Fig. 8   The effects of FXR knock-down on GAA-mediated expres-
sion of FXR, TNF-α and BDNF levels in LPS-stimulated BV2 micro-
glial cells. The protein levels of FXR (a), TNF-α (b) and BDNF (c) 
were detected by Western blot. After normalization to the CON, data 
from three independent experiments was analyzed using one-way 

ANOVA followed by post hoc Turkey tests and were presented as 
Mean ± SEM. (***P < 0.001 FXR-NC vs. FXR-si-RNA; **P < 0.01, 
***P < 0.001 LPS vs. CON; ##P < 0.01, ###P < 0.001 LPS + GAA vs. 
LPS; $$$P < 0.001 LPS + GAA + FXR-si-RNA vs. LPS + GAA)
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vitro and vivo [26–28]. Subsequently, activated microglia 
releases inflammatory mediators such as TNF-α, IL-1β, 
IL-6. These inflammatory factors in turn act on microglia 
and brain and lead to neurodegenerative diseases [29].
Cumulative studies have showed that pharmacologic regu-
lation of microglia activation is effective in the treatment 
of neurodegenerative diseases [30, 31]. Consistent with 
previous results, our results showed that GAA inhibited 
LPS-induced BV2 microglial cells proliferationand activa-
tion, indicating that it plays an important role in neuroim-
mune regulation.

Activated microglia, as in macrophages, the phenotypes 
were heterogeneous, can be divided into either M1 or M2 
type [6], which are considered neurotoxic or neuroprotec-
tive, respectively [32]. Activation of M1 type microglia 
releases diverse pro-inflammatory cytokines and oxidative 
stress-induced free radicals that promotes neuroinflamma-
tion and inhibits brain repair. Conversely, activation of M2 
type microglia improves brain repair and inhibits neuroin-
flammation by releasing anti-inflammatory cytokines, neu-
rotrophic cytokines, and enhancing phagocytosis. However, 
previous studies have shown that most of compounds can 
suppress neuroinflammation simply by inhibiting M1 micro-
glia activation [10, 33, 34], few compounds can suppress 
neuroinflammation by promoting the conversion of M1 type 
to M2 type microglia [35, 36]. Our results showed that GAA 
treatment significantly inhibited the up-regulation of iNOS 
and the down-regulation of Arg-1 expression, which indi-
cate that GAA worked as the molecular switch to convert 
microglia from M1 to M2 type and alleviated inflammation.

Stimulating of BV2 microglial cells by LPS lead to the 
production of pro-inflammatory cytokines, such as IL-1β, 
IL-6 and TNF-α, which have been confirmed that could 
cause neural cell damage, initiate and amplify the inflam-
matory response, and lead to the development of neurode-
generative diseases [29]; Therefore, the suppression of their 
production is pivotal for prevention of neurodegenerative 
diseases [2, 11]. On the contrary, microglia can also secrete 
anti-inflammatory cytokines and some neurotrophic factors 
to ameliorate neurodegenerative disease [37, 38], such as 
BDNF. The expression of IL-4, TGF-β and BDNF were 
detected in this study, unfortunately we did not discover 
the any changes of IL-4 and TGF-β in LPS-induced BV2 
microglial cells. Previous study had reported that GAA 
could not decrease the level of TNF-α, IL-6 and IL-1β in 
the cell culture supernatants of LPS-stimulated primary 
mouse microglia, but GAA could decrease the expression 
of TNF-α, IL-6 and IL-1β in the cell lysates of LPS-stimu-
lated primary mouse microglia [39]. Our results showed that 
GAA significantly attenuated pro-inflammatory cytokines 
IL-1β, IL-6 and TNF-α and enhanced neurotrophic factor 
BDNF expression in cell lysates of LPS-stimulated BV2 
microglial cells, but not in the cell culture supernatant of 

LPS-stimulated BV2 microglial cells, which was in consist-
ent with previous findings.

FXR has been extensively studied in liver disease, such 
as innate hepatic inflammation, cholestatic liver disease and 
non-alcoholic fatty liver disease (NASH) [17]. Intriguingly, 
FXR agonist has been tested in clinic trial for treatment of 
liver disease, demonstrating that FXR has become an attrac-
tive target in human metabolic disease. In fact, FXR was 
not only expressed in liver, gut and kidney [40], but also 
expressed by immune cells, OPCs and mature oligodendro-
cytes, like microglia and astrocyte [41]. Previous studies 
have shown that FXR expression was significantly decreased 
after LPS stimulation in monocytes [42] and IFNγ stimula-
tion in macrophages [43], which indicated a link between 
chronic autoimmune inflammation and FXR expression. 
However, whether or not FXR expression is changed after 
LPS stimulation in BV2 microglial cells remains unclear. 
In the present study, our results further confirmed that FXR 
plays an important role in regulating chronic inflammation.

FXR activation has been proved to confer protection in 
LPS-induced neuroinflammation in BV2 microglial cells 
[44, 45]. However, in order to further validate the effect of 
FXR in LPS-induced neuroinflammation in BV2 microglial 
cells, GS and FXR-siRNA, were chosen to block FXR in 
this study. The present study found that GS or FXR-siRNA 
treatment can significantly reverse the effect of GAA in 
inhibiting TNF-α and promoting BDNF expression in LPS-
induced BV2 microglial cells. These results indicatedthat 
GAA inhibit LPS-induced neuroinflammation through acti-
vation of FXR.

In conclusion, this study demonstrates that GAA sup-
pressed LPS-induced BV2 microglial cells proliferation 
and activation, promoted the conversion of M1 type micro-
glia to M2 type, inhibited the LPS-induced pro-inflamma-
tory cytokine release, and enhanced the neurotrophic fac-
tor BDNF expression. The precise mechanism of GAA in 
inhibiting LPS-induced neuroinflammation was mainly via 
activating FXR. Our results have strongly supported that 
GAA exert an anti-inflammation role in the context of neu-
roinflammation. Therefore, GAA may be a valuable anti-
inflammatory and neuroprotective candidate for the treat-
ment of brain diseases associated with inflammation.
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