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Resting state functional connectivity analysis is a widely used method for mapping

intrinsic functional organization of the brain. Global signal regression (GSR) is commonly

employed for removing systemic global variance from resting state BOLD-fMRI data;

however, recent studies have demonstrated that GSR may introduce spurious negative

correlations within and between functional networks, calling into question the meaning of

anticorrelations reported between some networks. In the present study, we propose that

global signal from resting state fMRI is composed primarily of systemic low frequency

oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain.

We introduce a novel systemic noise removal strategy for resting state fMRI data,

“dynamic global signal regression” (dGSR), which applies a voxel-specific optimal time

delay to the global signal prior to regression from voxel-wise time series. We test our

hypothesis on two functional systems that are suggested to be intrinsically organized

into anticorrelated networks: the default mode network (DMN) and task positive network

(TPN). We evaluate the efficacy of dGSR and compare its performance with the

conventional “static” global regression (sGSR) method in terms of (i) explaining systemic

variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity

measures. dGSR increases the amount of BOLD signal variance being modeled and

removed relative to sGSR while reducing spurious negative correlations introduced in

reference regions by sGSR, and attenuating inflated positive connectivity measures. We

conclude that incorporating time delay information for sLFOs into global noise removal

strategies is of crucial importance for optimal noise removal from resting state functional

connectivity maps.

Keywords: resting state networks, BOLD fMRI, functional connectivity analysis, systemic oscillations, global signal

regression, systemic noise removal

INTRODUCTION

Over the past two decades, interpreting the spatiotemporal patterns and strengths of correlations
in low frequency spontaneous hemodynamic fluctuations (∼0.01–0.1Hz) of blood oxygen level
dependent (BOLD) signals has become the focus of many functional magnetic resonance imaging
(fMRI) studies, especially during resting state (Fox and Raichle, 2007). Several robust and
consistent spatial patterns of coherent low frequency hemodynamic signals have been observed
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across human subjects (Biswal et al., 1995; Greicius et al.,
2003, 2004; Fox et al., 2005, 2006; Fransson, 2005; Damoiseaux
et al., 2006; Vincent et al., 2006, 2008; Buckner et al., 2008),
even in the absence of external stimuli, and have been
identified as “resting state networks.” Recently, investigation
of alterations in connectivity strengths within and between
these functional networks has gained increasing interest for
understanding abnormalities in functional brain organization
(Seeley et al., 2009; Dosenbach et al., 2010), which has promising
applications for early detection of brain connectivity pathologies
in neuropsychiatric (Anand et al., 2005, 2009; Garrity et al.,
2007; Greicius et al., 2007; Zhou et al., 2007; Uddin et al.,
2008; Whitfield-Gabrieli et al., 2009) and neurological disorders
(Greicius et al., 2004;Wang et al., 2007; Zhou et al., 2008; Hedden
et al., 2009; Sheline et al., 2010).

Resting state functional connectivity magnetic resonance
imaging (fcMRI) analysis is based on the assumption that
information exchange between functionally related brain regions
causes synchronized neuronal activations which, in turn, result
in temporally coherent hemodynamic fluctuations unique to
each functional network (Beckmann et al., 2005; Damoiseaux
et al., 2006; De Luca et al., 2006). However, a major problem
with fcMRI analysis arises from the presence of a common
global systemic noise effect that is superimposed on top of
many of the functional networks (Fox et al., 2009; Murphy
et al., 2009; Van Dijk et al., 2010). Although the origin of
such neuronally unrelated, systemic physiology-based systemic
interference is not clear (Sassaroli et al., 2012), the frequency
spectrum of a significant portion of this global effect, namely
the systemic low frequency oscillations (sLFOs), overlaps
with frequencies of interest involved in detecting neuronally
induced spatiotemporal coherence patterns (∼0.01–0.1Hz).
Consequently, sLFOs are widely intermixed with spontaneous
neuronal oscillations in the resting state BOLD signals, resulting
in inflated, or in other words, spurious positive correlations
between brain regions and an increase in apparent functional
connectivity strengths (Murphy et al., 2013) which in turn,
reduces the specificity for detecting brain regions with neuronal
activity related coherent hemodynamic fluctuations in fcMRI
analyses.

Most existing physiological noise removal methods have
focused on cardiac and respiratory fluctuations, and have treated
systemic low frequency noise as an epiphenomenon of these
processes, or an aliasing artifact (Glover et al., 2000; Lund et al.,
2006; Birn et al., 2008a,b; Chang et al., 2009; Chang and Glover,
2009a,b). However; recent studies suggest that sLFOs may arise
from a variety of sources including spontaneous variations of
arterial blood pressure (Julien, 2006), vasomotion of vessel walls
(Gustafsson, 1993; Aalkjaer et al., 2011) and fluctuations in
arterial CO2 (Wise et al., 2004; Murphy et al., 2011). Hence; they
cannot be solely attributed to an aliasing artifact. Previous work
from our group has also demonstrated that sLFOs in the brain
differ spatially and temporally from low frequency oscillation
signal regressors obtained through modeling of cardiac and
respiratory signals and their aliasing effects, and should be treated
as an independent physiological phenomenon (Tong et al., 2012;
Hocke et al., 2016).

One method which does treat the sLFO signal directly is the
use of global signal regression (GSR) as a preprocessing step
prior to fcMRI analysis. GSR simply involves regressing out the
average signal across all voxels within the brain from voxel-wise
BOLD data (Desjardins et al., 2001; Greicius et al., 2003; Fox
et al., 2005; Fransson, 2005; Tian et al., 2007; Wang et al., 2007;
Fair et al., 2008; Uddin et al., 2009). Such a signal averaging
procedure emphasizes the common global systemic variance in
low frequency BOLD signals while suppressing local spontaneous
fluctuations of neuronal origin. Consequently, application of
GSR is considered to enhance the observation of spatial patterns
of neuronally induced coherent spontaneous hemodynamic
fluctuations. However, recent studies have demonstrated that
employing GSR as a preprocessing step for noise removal may
cause spurious findings of negatively correlated regions in the
brain (Fox et al., 2009; Murphy et al., 2009; Van Dijk et al., 2010).
This is mainly attributed to the mathematical bias of mandatory
negative correlations introduced through the GSR technique,
the details of which have been extensively discussed in previous
studies (Vincent et al., 2006; Buckner et al., 2008; Fox et al., 2009;
Murphy et al., 2009). Briefly, for seed-based resting state fcMRI
analysis, regressing the global signal out of each voxel’s time
series will mathematically force the distribution of voxel-wise
correlation values to the time series of a seed region of interest
(ROI) to always have a mean correlation value that is less than
or equal to zero. Such a shift in the distribution of correlation
strengths toward negative values necessarily introduces false
or spurious negative correlations where none may exist or it
may artificially increase the magnitude of existing true negative
correlations. The introduction of artificial negative correlations
has a profound impact on assessing the neurobiological validity
of, for example, anticorrelations reported between the default
mode network (DMN) and the dorsal attention system or task
positive network (TPN) which have been thought to reflect an
antagonistic relationship between these two functional systems
(Fox et al., 2005; Fransson, 2005). Currently; it is still a matter of
debate whether the anticorrelations observed between the DMN
and TPN are introduced artificially through GSRmethodology or
have a neurobiological basis (Buckner et al., 2008; Fox et al., 2009;
Van Dijk et al., 2010; Murphy et al., 2013).

Previous work from our group has presented compelling
evidence that sLFOs, the major constituent of low frequency
global systemic noise overlying resting state functional networks
(Tong and Frederick, 2010, 2014; Birn, 2012; Murphy et al.,
2013), are intrinsic natural signals that travel with blood to
all parts of the body (Tong and Frederick, 2012; Tong et al.,
2013). sLFOs have been shown to propagate dynamically not
only in peripheral tissue with site-dependent temporal delays
(Tong et al., 2012); but also throughout the brain with cerebral
blood circulation (Tong and Frederick, 2010, 2014; Tong
et al., 2011). More specifically, it has been demonstrated that
sLFOs obtained from non-brain tissue are widely present in
resting state fMRI (rsfMRI) data and they travel with the bulk
cerebral blood flow with voxel-specific time delays while the
spatiotemporal pattern of their arrival time in each voxel is
closely associated with cerebral blood flow circulation patterns
(Tong and Frederick, 2010; Tong et al., 2012). sLFOs can also
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be derived from rsfMRI data with a recursive procedure (Tong
and Frederick, 2014), and their flow pattern has been shown
to be very consistent with the blood flow patterns obtained
via enhanced contrast (DSC) imaging in a recent multimodal,
quantitative comparison study (Tong et al., 2016). These studies
emphasized the importance of integrating voxel-specific sLFO
arrival time information into noise removal strategies for resting
state functional connectivity analyses. In previous studies which
utilized GSR as a preprocessing step, the low frequency global
systemic effect has been modeled as a spatially and temporally
homogeneous static phenomenon, and its dynamic passage
through the cerebral vasculature has not been taken into account.

In the present study, we test the efficacy of an improved
method for removing the global signal from rsfMRI data
by taking into consideration a recently well-established
physiological observation: dynamic propagation of low frequency
systemic oscillations through the cerebral vasculature. We call
our method as “dynamic global signal regression (dGSR)” and
compare its performance in reducing systemic variance from
resting state fcMRI maps to the conventional GSR technique,
which will be referred to as “static global signal regression

(sGSR).”
We propose that global signal calculated from rsfMRI data

can be used as a proxy systemic regressor for tracking the
dynamic passage of sLFOs through the cerebral vasculature. We
hypothesize that applying a voxel-specific optimal time delay
to global signal prior to regression will (i) improve modeling
and removal of systemic physiological noise and (ii) reduce
spurious negative correlations in resting state fcMRI maps. To
test our hypothesis, we focus on two systems that are suggested
to be intrinsically organized into anticorrelated networks: the
DMN and TPN. We evaluate the efficacy of both dGSR and
sGSR methods in terms of enhancing specificity and sensitivity
of functional connectivity measures, and examine the spatial
extent and magnitude of negative and positive correlations with
an ROI in posterior cingulate cortex (PCC), a hub region in
DMN, when dGSR is applied instead of the conventional sGSR
method. Lastly, we discuss some of the potential mechanisms for
why the proposed approach provides better performance with
supplementary results from simulation data.

It is important to note that by allowing for optimized time
delay between the global signal and time series in any voxel,
their correlation will by definition be equal to or greater than the
correlation when no temporal shifting is applied, which will in
turn lead to the removal of more noise variance. However, more
importantly, temporally shifting the global signal by an amount
which maximizes its cross-correlation with voxel-wise rsfMRI
time series prior to regression, may attenuate the introduction
of spurious negative or positive correlation measures that results
from regressing out a systemic regressor which is aligned with
an incorrect time shift with respect to the underlying systemic
component of that voxel time series. The reduction in the
magnitude of spurious correlations (false and/or inflated positive
and negative correlation measures), and the increase in the
specificity of neuronal activity related functional connectivity
measures are the primary goals of developing this noise removal
method.

MATERIALS AND METHODS

Subjects and Study Design
A concurrent resting state near infrared spectroscopy (NIRS)
and fMRI study was conducted on 11 healthy volunteers. Two
subjects were excluded due to poor signal quality and the results
for nine subjects will be shown here for analysis (6 males, 3
females, average age± SD, 35.6± 14). The protocol was approved
by the McLean Hospital Institutional Review Board and written
informed consents were obtained from all subjects prior to
scanning. A 6min 30 s resting state MRI scan was performed on
each subject while NIRS data was simultaneously recorded from
a probe placed on the right fingertip. During the resting state
scan, subjects were asked to refrain from excessive movements
and stay motionless in the scanner while viewing a gray screen
with a central fixation point.

fMRI Data Acquisition and Preprocessing
All MRI data were acquired on a Siemens TIM Trio 3 T scanner
(Siemens Medical Systems, Malvern, PA) using a 32-channel
phased array head matrix coil. A high-resolution anatomical
image set was acquired for slice positioning and coregistration
of the functional data (MPRAGE, TR/TI/TE = 2530/1100/3.31,
256 × 256 × 128 voxels over a 256 × 256 × 170mm sagittal
slab, GRAPPA factor of 2). fMRI resting state scans with 32 axial
slices were collected with the following parameters: TR/TE =

520/30ms, flip angle 43◦, matrix = 64×64, FOV= 220×220mm,
multiband factor= 6, 323.5mm slices with a 0.5mm gap parallel
to the AC–PC line extending down from the top of the brain.
For each subject, resting state fMRI data was preprocessed using
the “First-level analysis-> Pre-stats” option of FEAT, part of the
FMRIB Software Library (FSL; Smith et al., 2004) prior to further
analysis. This consisted of discarding the first 20 volumes of
each run to allow for T1-equilibration effects, motion correction,
slice timing correction, and spatial smoothing with a 5mm
Gaussian kernel. A temporal bandpass filter was applied to retain
frequencies in the range of 0.01–0.1Hz. Spurious or regionally
nonspecific variance due to motion was removed by regression
of six nuisance variables obtained by rigid body head motion
correction. Finally, functional images were registered first to the
high resolution anatomical images taken during each scan, and
then to a high resolution T1 anatomical template in the Montreal
Neurological Institute (MNI) atlas space, MNI152 (Evans et al.,
1993) at 2mm isotropic resolution, by computing and applying
affine and nonlinear transforms for each step.

NIRS Data Acquisition
NIRS data was collected by means of two MRI compatible NIRS
probes, one placed on each subject’s forehead over the right
prefrontal area and the other placed on the right fingertip. Data
from the forehead probe was not used in the present analysis.
The fingertip probe had two optical fibers, one source fiber and
one detector fiber (with a source-detector distance of 1.5 cm).
A near-infrared tissue imager (Imagent, ISS, Inc., Champaign,
IL) was placed in the MRI control room and connected to the
probe by 10m optical fibers. The sampling rate of NIRS data
acquisition was 6.25Hz, and two illumination wavelengths (690
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and 830 nm) were used. NIRS data was recorded continuously
during the MR exam. NIRS signals were converted to time series
of concentration changes of oxygenated hemoglobin (HbO) and
deoxygenated hemoglobin (HBR) using the Lambert-Beer Law
during the post-processing step and band-pass filtered to the low
frequency range (0.01–0.1Hz).

fMRI Data Analysis
Physiological Noise Correction Methods
For each subject, the average BOLD signal across all voxels in the
brain was computed and denoted as “global signal.” Physiological
noise in fMRI data was then removed using two regression
approaches for the global signal: (1) the conventional sGSR,
which utilizes the global signal as a regressor for removing
systemic effects in a generalized linear model (GLM) analysis;
(2) the dGSR, which utilizes a voxel-specific optimally delayed
version of global signal as a regressor in the GLM. For each
voxel, the dynamic global regressor was obtained by shifting
the global signal time series with an “optimal” time delay that
maximized its cross-correlation with that voxel’s BOLD time
series. The optimal delay that provides maximum correlation
with voxel time series was determined using the “Regressor
Interpolation at Progressive Time Delays (RIPTiDe)” procedure
with in-house, custom software (Frederick et al., 2012). The time
delay analysis software can be downloaded from https://github.
com/bbfrederick/rapidtide. The performance of both static and
dynamic global regression methods were compared to the case
where no physiological correction method was applied to the
standard preprocessed fMRI data and this approach was denoted
as “no regression.”

Resting State fcMRI Analysis
fcMRI analysis was performed using a seed based approach
(Biswal et al., 1995). After each physiological noise correction
method was applied, connectivity maps were obtained by
computing correlation between themean signal time course from
voxels within a specific ROI in PCC and the time courses from all
acquired voxels using Pearson’s correlation coefficient (R). The
PCC seed region was determined by drawing a 10mm sphere
centered around a previously published Talairach coordinate
(after conversion to MNI coordinates; Shulman et al., 1997; Fox
et al., 2005). Correlation coefficients were converted to normally
distributed z-scores using Fisher’s r-to-z transformation to allow
for second level group analysis.

FollowingMurphy et al.’s procedure (Murphy et al., 2009), the
individual subject correlation maps generated after sGSR were
thresholded at a correlation value of ± 0.3 (corresponding to
p < 0.0001 when corrected for multiple comparisons using a
Bonferroni correction) to define masks for task negative and
task positive regions at the subject level. The mean correlation
strengths within the task negative and task positive region masks
were computed for both methods and compared to interpret how
the strength of negative correlations observed using conventional
sGSR are altered when dGSR is applied.

For each physiological noise correction method, the group
level functional connectivity map was generated by performing
a fixed effects one-sample t-test across all subjects. The group

level z-score maps were corrected for multiple comparisons at a
significance level of p < 0.05. A schematic representation of the
data analysis pipeline is demonstrated in Figure 1.

Performance Evaluation
We hypothesized that applying a voxel-specific optimal time
delay to the global signal prior to regression would improve
modeling and removal of systemic physiological noise from
resting state fMRI data and reduce spurious negative and positive
correlations in fcMRI maps. This hypothesis was tested both on
real and simulated data.

To compare the performance of dGSR and the conventional
sGSR methods in terms of functional network detection, we
focused on two systems that are suggested to be intrinsically
organized into anticorrelated networks: the task negative network
(TNN), or in other words DMN, which consists of brain regions
that exhibit coherent spontaneous fluctuations in the absence
of a task and deactivation during cognitive tasks (Shulman
et al., 1997; Raichle et al., 2001); and the TPN which has been
shown to exhibit coherent hemodynamic fluctuations during
cognitive and attentional tasks (Fox et al., 2005; Fransson,
2005). We created ROIs for representative subregions that were
positively or negatively correlated with the PCC seed, a major
hub region in DMN, following Fox et al. (2005). The TNN
ROIs (regions positively correlated with PCC) were created in
medial prefrontal cortex (MPFC), and the left and right lateral
parietal cortex (LLPC, RLPC). The TPN ROIs included frontal
eye field (FEF), left and right insula [Insula (L), Insula (R)], left
and right intraparietal sulcus [IPS (L) and IPS (R)], left and
right dorsolateral prefrontal cortex [DLPFC (L) and DLPFC (R)],
medial temporal lobule (MT) and supplementary motor area
(SMA; Chai et al., 2012).

The efficacy of dGSR and sGSR methods in modeling and
removing physiological noise was evaluated by comparing three
metrics: (i) % variance explained with static and dynamic global
regressors, (ii) magnitude (sensitivity), and (iii) specificity of
connectivity measures in selected ROIs after each regression
method is applied.

Explained variance
For each subject’s fMRI data; the correlation maps obtained by
correlating each voxel time series with static and dynamic global
regressors were squared and multiplied by 100 to determine
the percentage of signal variance explained in each voxel. For a
quantitative comparison, the mean explained variance over all
voxels was calculated for both regression methods at the subject
level (Figure 5A). For each subject, a spatial map of the additional
variance explained by dGSR was generated by subtracting the
sGSR variance map (Figure 2A) from the variance map obtained
with dGSR (Figure 2B). These single subject additional variance
maps were averaged to produce a group level map showing
the spatial distribution of improvements offered by dGSR
(Figure 5B).

One potential concern with the dGSR method is whether any
aperiodic or periodic low frequency signal (such as a sinusoidal
wave) could remove equal or similar amounts of variance
when an optimal time delay is applied prior to regression. To
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FIGURE 1 | A schematic representation of the data analysis pipeline.

test this hypothesis, we applied the same dynamic regression
procedure by (a) using periodic low frequency sine waves as noise
regressors and (b) randomly swapping subjects’ global signals
with each other and employing dGSR with a different subject’s
low frequency global signal regressor (Figure 6). Here, we should
note that applying a band-pass pass filter and an optimal
alignment to any two random signals will result in an inflation
of correlation measures between them. Therefore; false positive
correlations can be calculated with the significance thresholds
obtained from traditional statistical methods. This phenomenon
has been well investigated in a recent study (Hocke et al., 2016).
To prevent the chance of obtaining any spurious significant
correlations between optimally aligned systemicmodel regressors
and voxel-wise signals, the lower threshold for significance of the
maximum correlation coefficient was calculated with a Monte
Carlo simulation procedure and found to be Rthr = 0.28 at α =

0.01. In other words, a voxel time series will be considered valid
for regression only if the initial correlation with low pass filtered
and time shifted systemic regressor is above this threshold.

Specificity comparison
We examined the specificity of the two preprocessing strategies
for detecting correlations and anticorrelations with a metric
which describes the absolute correlation strength for each
ROI with respect to an uncorrelated reference region ROI
(Weissenbacher et al., 2009). More precisely, we compared
the specificity of sGSR and dGSR methods by computing

connectivity between the PCC seed and the selected ROIs in
TNN (DMN) and TPN regions, and comparing them with
connectivity between PCC seed and two reference regions with
which no correlation is expected. The reference regions were
10mm spheres that were centered around MNI coordinates
(−30, −88, 0) and (30, 88, 0) corresponding to visual cortex.
Following Weissenbacher et al. (2009), we defined specificity as:

Starget =

∣

∣Ztarget
∣

∣ −
∣

∣Zreference
∣

∣

∣

∣Ztarget
∣

∣ +
∣

∣Zreference
∣

∣

(1)

Ztarget is the group level Z score from the PCC to the selected
ROI, and Zreference represents the average Z score from PCC to
the left and right visual reference regions (with these regions, no
significant correlation is expected). Specificity of each target ROI
ranges from−1 to 1.

Time Delay Simulations
To demonstrate how sGSR can introduce spurious positive and
negative correlation measures in seed based fcMRI analyses, we
adopted a time delay simulation scheme very similar to the
phase simulations presented by Murphy et al. (2009). In these
simulations (Figure 9), null time series lasting 1000 time points
were generated on a 64 by 64 grid. Keeping in mind that global
systemic fluctuations carry a mixture of multiple frequencies in
the low frequency range, the resting state systemic fluctuations
were modeled with a regressor obtained by bandpass filtering a
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FIGURE 2 | Percent explained variance map computed by using static (A) and dynamic (B) global regressors is illustrated for a representative subject.

random Gaussian noise signal (mean zero, standard deviation
of 1, length 1000) to the frequency range of 0.01–0.1Hz. This
systemic effect modeling regressor was added to each time series
with temporal shifts ranging from 0 to 10 s along the x-axis in
equal incremental steps. A time delay range of 10 s was chosen to
ensure that we completely cover the physiological time range for
blood to complete its cycle from carotid arteries to the jugular
veins which takes about 6–9 s (Crandell et al., 1973). Random
Gaussian noise with a mean of zero was added to each voxel time
series to represent process noise. The standard deviation of this
noise varied progressively along the y-axis from 0 to 5 in equal
increments. A “neuronal” hemodynamic signal was generated by
convolving the canonical hemodynamic response function with
a 1000 point stimulus regressor consisting of zeros and ones,
with ones representing stimulus presentation. This “neuronal”
signal was added to various voxels forming vertical columns
(C1–C7) on the 64 by 64 grid to simulate a coherent network
representing functionally related regions. The contribution of
these neuronally induced signals to the voxel signals in which
they reside varied from 0.5 to 4% depending on the noise level.
The resulting data set consisted of a 64 by 64 grid of time series
with systemic fluctuations of varying temporal shifts in x-axis and
increasingly large noise components in y-axis (we avoid to use the
term “phase” in this simulation since the systemic fluctuations
are aperiodic and carry multiple frequencies, and hence phase
would have no meaning). The regions where coherent neuronal
signals of different amplitudes were added consisted a total of
14% of the voxels. Global signal was obtained by averaging signals

from the 4096 time courses and was tested to be orthogonal to
the “neuronal” hemodynamic signal. A 3 by 3 voxel ROI was
drawn in voxels where the neuronal signals reside. The average
time series in seed ROI was determined prior to regression, and
after applying sGSR and dGSR methods. The correlation of each
voxel to the seed ROI time series was calculated to generate
connectivity maps before and after each method was applied.

These simulations were repeated by keeping all procedures
the same; however choosing single frequency periodic sinusoidal
waves spanning the 0.01 to 0.1Hz range whose phase varied
progressively in the x-axis from 0 to π/4 (as in the original
work of Murphy et al., 2009) to represent systemic physiological
effects. We observed the improvement in extracting the
true correlations and preventing false negative and positive
correlation measures with the dGSR method in a consistent
manner and report one example simulation in the Supplementary
Material.

RESULTS

We begin by showing evidence that the global signal from
resting state fMRI is a good representation of the low frequency
systemic physiological fluctuations by illustrating its similarity
to a peripheral fingertip oxygenation signal of purely non-
neuronal origin. Figure 3 presents time courses of the oxygenated
hemoglobin (HbO) concentration change measured from the
fingertip with a NIRS probe (green) and the whole brain resting
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FIGURE 3 | Low frequency systemic oscillations measured from the periphery with NIRS show a close resemblance to the global signal from fMRI.

Time courses of the low frequency NIRS-HbO signal measured from the fingertip (green) and the whole brain global signal from fMRI-BOLD data are shown for a

representative subject, together with an optimally delayed version of the fingertip NIRS-HbO signal (dashed green line). R, correlation between fingertip NIRS-HbO and

brain global signal; Ropt, Maximum cross correlation between the two signals; Time delay, Optimum time delay applied to fingertip NIRS-HbO signal to achieve

maximum cross correlation.

state global BOLD signal measured with fMRI (blue) for a
representative subject, together with an optimally delayed version
of the fingertip signal (dashed green line) so that its correlation
with the global signal is maximized. Both systemic signals are
band-pass filtered to the low frequency range (0.01–0.1Hz). Low
frequency oscillations (LFOs) measured simultaneously from
the fingertip with NIRS reflect purely systemic hemodynamic
fluctations with no contribution from neuronal activity and show
a good correspondance to the low frequency global signal from
resting state fMRI data (R = 0.55, p < 0.001). Notice how an
optimally delayed version of this sLFO signal measured using
NIRS, a different modality and in fingertip, a non-brain tissue,
closely matches the global signal from fMRI (R = 0.65, p <

0.001). This observation suggests that systemic LFOs are a major
constituent of the global brain fMRI signal in the low frequency
range. Table 1 demonstrates correlation at zero time delay
(Pearson’s correlation coefficient, R), correlation at optimum
time delay (maximum cross-correlation denoted as Ropt) and the
time delay that maximizes cross correlation between fingertip
NIRS-HbO and the whole brain global fMRI BOLD signal for
each subject. All cross-correlation values deemed significant at
p < 0.01. Improved correlation between global signal from the
brain and the sLFO signal measured from the periphery after
applying an optimal time delay is consistent with the idea that
sLFOs propagate throughout the body, including the brain, with
the blood with varying time delays, which has been extensively
discussed in our previous work (Tong and Frederick, 2010, 2012;
Tong et al., 2013, 2016). Note that the heterogenous lag times
likely reflect individual circulatory path differences in the arm
and in the carotids, however the range is smaller than the ranges
of time delays seen throughout the brain itself (Figure 4).

TABLE 1 | A summary of correlation (R), maximum cross-correlation

(Ropt), and time delay measures between the low frequency fingertip

NIRS-HbO signal and the whole brain global signal for each subject.

Subjects R Ropt Time delay (s)

S1 0.22 0.39 3.1

S2 0.33 0.6 −5.2

S3 0.55 0.66 3.12

S4 0.33 0.47 −2.6

S5 0.7 0.73 0.4

S6 0.36 0.4 −1.52

S7 −0.23 0.54 3.09

S8 0.16 0.22 3.12

S9 0.57 0.63 1.04

Mean 0.34 0.51 0.75

STD 0.28 0.16 4.9

The group mean and standard deviation (STD) are shown for each parameter.

Figure 4A represents the mean spatial map of voxel-specific
optimal time delays applied to the global signal, averaged over
all subjects. A few points are worth consideration in this figure.
The optimal time delay computed for each voxel resulted in a
spatial map whose patterns closely matched the dynamic passage
of cerebral blood flow through the brain with respect to both
flow path and circulation time. Early delays (light green, blue
and light blue) could be observed in symmetrical central regions
in the top middle section such as the motor cortices which
are fed mostly by middle cerebral arteries, while voxels with
late time delays were concentrated in the white matter and
draining veins. The drainage systems were mostly colored with
red and yellow, indicating they are located toward the end of
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FIGURE 4 | (A) Maximum correlation time or time delay map indicates the relative arrival time of global signal to each voxel. Maps represent the group average of the

voxel-specific delays in arrival time of the global signal. The delay value that produces the optimal correlation between global signal and voxel-specific BOLD signals

varies across space. Both the spatial pattern (A) and quantitative distribution (B) of the time delay parameter show considerable similarity among subjects.

the blood passage. Hence; we believe the time delay parameter
obtained with global signal represents the relative arrival time
of sLFOs in each voxel. Moreover; the dynamic map shows a
good consistency to the cerebral blood flow patterns obtained
with DSC bolus track imaging (Tong et al., 2016) and the patterns
obtained with recursively generated sLFOs from fMRI (Tong and
Frederick, 2014) and from peripheral NIRS recordings (Tong

et al., 2012) which is indicative of the physiological relevance
and robustness of the procedure. Figure 4B shows a histogram
of time delay values for all subjects. The time delay distribution
histograms show a remarkable consistency among subjects in the
form of normal distributions slightly centered to the left. The full
width half maximum (FWHM) values for these relative blood
arrival time distributions fall approximately between 4 and 7
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s. This range is in compliance with the time ranges measured
for cerebral blood to complete a full cycle between the internal
carotid artery and the internal jugular vein in healthy subjects in
previous studies (Crandell et al., 1973; Schreiber et al., 2002).

Performance Evaluation
Explained Variance
Figure 5 compares the performance of dGSR and sGSR methods
in terms of explaining variance in the data. In Figure 5A, an

average of the percentage of signal variance explained by static
global signal and the optimally delayed dynamic global signal
over all brain voxels is demonstrated for each subject. The
dynamic global signal explains variance in the data to a greater
extent in all subjects (two tailed paired t-test, p < 0.05), with
a mean additional explained variance of 12.5% when compared
to the static global signal. Static global signal accounts for a
large fraction of the signal variance throughout the brain—
up to 30% in some subjects. However, adjusting for blood

FIGURE 5 | Percentage signal variance explained by sGSR and dGSR methods. dGSR explains variance in the data to a greater extent when compared to

sGSR. (A) Mean % signal variance explained by dynamic and static global regressors. Error bars represent standard error of the mean. (B) A spatial map of the mean

additional variance explained by voxel-wise optimally delayed (dynamic) global regressor and the static global regressor, averaged over all subjects.
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arrival time differences in each voxel with the dynamic global
signal increases the amount of signal variance modeled and
removed throughout the brain for all subjects, with particularly
large increases in heavily perfused regions in the cortex and
in large blood vessels such as the superior sagittal sinus and
lateral sinus. Subtracting the static global regression variance
map from the dynamic global regression map yields a spatial
map of the additional variance explained over the brain volume,
shown in Figure 5B. Applying a voxel-specific optimal time delay
to the global signal prior to regression leads to an increase
in the amount of variance explained in all brain voxels, with
particularly large increases in heavily perfused regions in the
cortex and in large blood vessels near superior saggital sinus
and lateral sinus. Up to 20% additional variance is explained
using dGSR in highly perfused regions and near large blood
vessels.

One concern with the dynamic regression approach is
whether the same variance removal performance can be obtained
by optimally delaying any randomly selected aperiodic (i.e.,
low frequency global signal of another subject) or periodic
low frequency signal (such as a sinusoidal wave). Figure 6

demonstrates a spatial comparison of explained variance
performance averaged over all subjects obtained by using
(a) a dynamic global regressor, (b) a static global regressor,
(c) an optimally delayed sham global regressor, and (d) an
optimally delayed low frequency (0.1Hz) sinusoidal wave
regressor. For this data set, 81% of the voxels presented
significant correlations with the dynamic global regressor with
an overall mean explained variance of 29%. Meanwhile; most
of the cross-correlations obtained between voxel time series and
swapped (sham) global regressors or periodic sinusoid wave
regressors did not pass the statistical significance threshold.
Moreover, for the surviving voxels which had significant
correlation with the optimally aligned sham global or sine
wave regressors, the mean time delay maps did not produce
any spatial coherence (Supplementary Material). These results
suggest that the spatially consistent time delay maps resembling
cerebral circulation and the consequent improvement in systemic
variance removal can be achieved only by systemic regressors
that are intrinsic to each subject’s physiology during data
collection.

Magnitude of Connectivity Strengths (Sensitivity)
Figure 7 demonstrates connectivity strengths from the PCC
seed to selected ROIs in (i) TNN regions, or in other words
major DMN hubs with which significant positive correlations
are expected (Figure 7A), (ii) major TPN regions in the dorsal
attention system with which anti-correlations have been reported
in previous studies (Figure 7B; Chang and Glover, 2009b; Chai
et al., 2012) and (iii) reference regions with which no significant
correlations are expected (Figure 7C). The connectivity strengths
with related ROIs are illustrated after fMRI data is preprocessed
with dGSR and sGSR methods and compared to the case when
no physiological noise correction is performed.

As shown in Figure 7A, for TNN regions associated with
DMN, dGSR results in higher positive correlations between PCC
and all of the selected ROIs (p < 0.001) when compared to

sGSR. After sGSR, the average correlation strength in z-values
for MPFC, LLPC and RLPC were 0.33 ± 0.03, 0.45 ± 0.05,
0.41 ± 0.04, while after dGSR, the average correlation values
for the same ROIs were 0.37 ± 0.03, 0.48 ± 0.05, 0.43 ± 0.04
respectively.When no physiological noise correction was applied,
positive correlations were much stronger which suggests that
common physiological noise contributes to the overestimation of
correlations between these brain regions unless it is removed.

As shown in Figure 7B, for TPN regions, anticorrelations
that are computed after sGSR are still observed after dGSR but
with much smaller magnitude (Figure 7B). After static global
regression, the average correlation strength in z-values for FEF,
insula (L), insula (R ), IPS (L), IPS (R), DLPFC (L), DLPFC (R),
MT and SMAROIs were−0.15±0.01,−0.22±0.02,−0.18±0.02,
−0.15± 0.02,−0.15± 0.01,−0.17± 0.01,−0.14± 0.01,−0.15±
0.02, −0.25 ± 0.02, and −0.2 ± 0.02 while after dynamic global
regression, the average correlation values for the same ROIs were
−0.12 ± 0.07, −0.14 ± 0.01, −0.15 ± 0.01, −0.413 ± 0.07,
−0.13 ± 0.07, −0.12 ± 0.08, −0.13 ± 0.05, −0.15 ± 0.01
and 0.13± 001 respectively. When none of the GSR methods are
applied, all of the selected ROIs in TPN and DMN are positively
correlated with PCC, which is highly indicative of a false positive
or type 1 error.

Connectivity from PCC to functionally unrelated regions
(in which neither positive nor negative correlations were
expected) was assessed using the average connectivity measures
between PCC and reference region ROIs (Figure 7C). Artifactual
anticorrelation between PCC and reference regions appeared
when sGSR was applied (p < 0.001, one tailed t-test). When
no physiological correction method is applied, correlation of
PCC with reference regions were inflated, yielding false positives.
With the dGSR strategy, neither negative nor positive significant
correlations existed with the reference regions. This result is
indicative of the efficacy of dGSR method for (a) removing
spurious positive correlations due to common systemic noise
overlying the two networks and (b) avoiding the spurious
negative correlations introduced by sGSR.

Specificity
Specificity for positively correlated regions with PCC (Figure 8A)
was significantly higher (p < 0.05, two tailed paired t-test) when
dGSR was applied instead of sGSR. This finding was consistent
for all three DMNhub regions. sGSR did not result in a significant
improvement in specificity measures when compared to the case
where no physiological correction was applied. For ROIs within
the TPN (negatively correlated regions), dGSR resulted in a
clear increase in detecting network specific anticorrelations when
compared to sGSR (Figure 8B).

Time Delay Simulations
Figure 9 demonstrates time delay simulation results for the three
methods. It can easily be observed that when no regression
method is applied, the majority of “reference” voxels which
have no coherent spontaneous neuronal oscillation content
(voxels outside the C1–C7 regions) presented significant positive
correlations with the seed ROI time series due to common
physiological noise (Figure 9A). When the sGSR method is
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FIGURE 6 | A spatial map of % Explained Variance averaged across all subjects is shown for (A) Dynamic global signal regressor, (B) Static global

signal regressor, (C) Sham global signal regressor (For each subject’s resting state fMRI data, explained variance is calculated using another subject’s

global signal), (D) a Sinusoidal Wave Regressor with a frequency of 0.1Hz.

applied, several points should be noted: (1) Approximately half
of the voxels (51%) presented negative correlation with the seed
ROI. This finding is in accordance with previous reports by other
groups (Fox et al., 2009; Murphy et al., 2009; Weissenbacher
et al., 2009) which discussed the mathematical bias of sGSR
forcing approximately half of the correlation values to be negative
regardless of the initial correlation distribution. (2) About 99%
of the voxels which reside outside the depicted network and

presented no significant positive or negative correlation with
the seed ROI prior to regression (IRseed,voxI < 0.28), became
significantly negatively correlated after sGSR. This result using
simulated data shows that sGSR inflates negative correlation
measures and can introduce spurious negative correlations in
regions where no correlation is expected. Moreover; some of
the voxels which contained coherent spontaneous neuronal
fluctuations with the seed ROI became either uncorrelated (C3
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FIGURE 7 | Group level connectivity strengths from the PCC seed to ROIs in (A) major DMN ROIs (task negative regions), (B) TPN ROIs, (C) reference

regions. L, left hemisphere; R, right hemisphere; VIS, visual cortex ROI.

and C4 regions) or anticorrelated (C5, C6, C7). This result
demonstrates that sGSR may obscure true neuronal network
correlations by either reducing positive correlation strength
and making some of these voxels uncorrelated, or introducing
anticorrelations in some regions where none should exist. sGSR
may also underestimate the true positive correlation measures in
some regions (C2 region) where coherent neuronal fluctuations
do exist. Some of the positive correlation measures were
attenuated in the C2 region while some regions containing no
neuronal content remained positively correlated with seed ROI
(false positives) due to suboptimal noise removal.

When the dGSR method is applied; all of the reference
voxels which are expected to have no significant negative or
positive correlations with the seed ROI were uncorrelated
after regression. This result is indicative of the ability of
dGSR to attenuate both false positive and false negative
correlation measures. The true correlations with voxels which
contained coherent neuronal oscillations were preserved
to a good extent as well. These findings using simulated
data demonstrate evidence for the improved efficacy of
the dGSR approach in (i) preventing inflated spurious
negative and positive correlation measures, (ii) preserving
true positive correlations, and (ii) eliminating artifactual
anticorrelations.

Magnitude and Spatial Extent of Positive and

Negative Correlations
Figure 10 demonstrates the average correlation values with PCC
in TNN and TPN region masks for each subject. For TNN
regions (positive correlations with PCC), dGSR and sGSR reduce
connectivity strengths to a similar extent when compared to no
regression method (no statistically significant difference between
the two methods is observed for any of the subjects). However;
for TPN regions (negative correlations with PCC, Figure 10B),
the mean correlation values with PCC were significantly less in
magnitude after dGSR when compared to the mean correlation
values obtained after sGSR for each subject (two tailed paired t-
test, p < 0.05). Moreover; two findings are worth consideration:
(1) Despite the high variability between subjects in mean
correlation values between TPN and PCC for uncorrected fcMRI
maps, sGSR processing resulted in anticorrelations that did not
present a significant variability in magnitude across subjects.
(2) After dGSR, the anticorrelations were still present but their
magnitudes were attenuated and a variability among subjects
could easily be observed. Results of a group level fixed effects
analysis after dGSR and sGSR methods for negative and positive
correlations with the PCC are shown in Figure 11 (corrected for
multiple comparisons at a significance level of p < 0.05). When
compared to functional connectivity measures obtained with
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FIGURE 8 | Specificity of each method for (A) task negative (DMN) and

(B) task positive region ROIs. dGSR method increases connection

specificity profoundly in all of the selected ROIs in task positive and task

negative network regions when compared to sGSR method (2 tailed paired

t-test, p < 0.05).

dGSR at the group level, sGSR increases the spatial extent and
magnitude of significant negative correlations in TPN regions,
while it reduces the spatial extent and magnitude of positive
correlations in DMN regions.

DISCUSSION

The presented study provides evidence that correcting resting
state BOLD-fMRI signals for blood arrival time enhances
functional connectivity analysis. The low frequency systemic
component of resting state fMRI-BOLD signal moves with
blood flow within the cerebral circulation mechanism. The
dynamic propagation of these systemic LFOs through the
cerebral vasculature can be modeled by applying voxel-specific
optimal time delays to the global signal. The close resemblance
of the time delay map obtained in this study to the cerebral
blood circulationmaps obtained in previous studies indicate that,
voxel-specific optimal alignment of the global signal regressor
presents a physiologically appropriate approach for modeling
the moving systemic LFO component of resting state BOLD

signals. We present physiological and quantitative evidence that
modeling and removing systemic noise in resting state fMRI
data (0.01–0.1Hz) by accounting for the relative arrival time of
sLFOs in each voxel will be amore plausible approach for optimal
denoising when compared to the conventional sGSR method. In
the following paragraphs, we discuss the performance of dGSR
and sGSR in terms of reducing systemic variance, and enhancing
the specificity and sensitivity of positive and negative correlations
with PCC, a hub region in the DMN. In addition, we discuss some
of the potential mechanisms by which the performance of sGSR
and dGSR may differ.

Explained Variance
Our results suggest that the nonhomogeneous distribution of
global systemic effects is captured to a greater extent when
these systemic effects are modeled and removed with the dGSR
method. We report significant improvements in systemic noise
removal as reflected in the % explained variance parameter when
compared to sGSR. Removing the global signal by accounting
for its optimal time delay with respect to local signals explains
additional variance in a majority of brain voxels, with up to
20% additional explained variance in highly perfused regions
and near large blood vessels (Figure 5B). Correcting for the
relative arrival time of the blood borne physiological signal in
each voxel enhances the amount of BOLD signal variance being
modeled and removed when compared to conventional static
global regression (Figure 5A).

Applying voxel-specific optimal time delays to the global
signal results in spatial maps that reflect the dynamic propagation
of sLFOs with bulk blood, and that show a good correspondence
in both cerebral blood flow patterns and circulation time
(Figure 4) to the delay maps obtained in previous work through
the use of auxiliary peripheral NIRS recordings (Tong and
Frederick, 2012; Tong et al., 2013) and fMRI based recursive
regressors (Tong and Frederick, 2014) and which have recently
been validated to be in compliance with gold-standard DSC
cerebral blood flowmeasurements (Tong et al., 2016). In contrast,
applying dynamic regression procedure with subject non-specific
low frequency regressors (sham global or sinusoid) can neither
explain the variance in the data nor generate these circulatory
maps. These observations highlight the fact that global signal
from rsfMRI contains a considerable amount of sLFOs intrinsic
to subject physiology and optimally delaying this proxy systemic
regressor is a physiologically justified method of modeling the
propagating sLFO component of resting state BOLD signals.

Sensitivity and Specificity of Negative and
Positive Correlations
Our results demonstrated that a preprocessing pipeline utilizing
dGSR after bandpass filtering and removal of motion parameters
improves both sensitivity and specificity for detecting TPN and
DMN regions in seed based fcMRI analysis when compared
to the standard sGSR approach. When no physiological noise
correction is applied, false positive correlations between PCC and
reference regions exist due to effects of common systemic noise
(Figure 7C). These positive correlation measures are spurious or
at least inflated since reference regions are chosen based on no
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FIGURE 9 | The results of time delay simulations are illustrated. The time series for each voxel are generated on a 64 by 64 grid. In each voxel; the systemic

component of resting state fluctuations was represented with a band-pass filtered (0.01–0.1Hz) aperiodic signal which was shifted with time delays ranging from 0 to

10 s along the x-axis. Random Gaussian noise with a mean of 0 and a standard deviation varying from 0 to 5 along the y-axis was added to represent varying levels of

process noise. A “neuronal” hemodynamic signal was generated by convolving the canonical hemodynamic response function with a stimulus regressor and was

implemented in voxels beneath the columns denoted as C1-C7 to represent a coherent functional network. Each panel displays correlation values to the seed

functional ROI (black square) (A) when no global signal regression is applied, (B) after sGSR, and (C) after dGSR. Without global noise regression (A) all voxels are

correlated on the basis of common systemic global signal. (B) When sGSR is performed, approximately half of the voxels become negatively correlated. sGSR may

obscure true neuronal correlations by either reducing positive correlation strengths (C2) and making some of these voxels uncorrelated (C3 and C4), or introducing

anticorrelations in some regions (including C5, C6, C7) where none should exist. When the dGSR method is applied; all of the reference voxels which are expected to

have no significant negative or positive correlations with the seed ROI were uncorrelated after regression. These results are indicative of the improved efficacy of dGSR

to attenuate both false positive and false negative correlation measures.

expectation of significant correlation with the PCC. However,
when sGSR noise reduction is applied to correct for systemic
noise effects, false negative correlations may result between PCC
and reference areas in visual cortex as we observed at the
group level. Significant negative correlations between PCC and
reference regions after sGSR indicate that sGSR most probably
inflated negative correlation measures and may lead to spurious
negative correlations in regions where no significant correlation
is expected. Instead, applying a voxel-specific optimal time delay
to global signal prior to GSR from voxel-wise data (dGSR)
attenuated artificial negative connectivity measures while still
removing physiological noise effectively (no association is found
between PCC and reference areas).

For positively correlated regions with PCC ROI (DMN or
TNN regions), examining sensitivity at the group (Figure 7A)
and single subject level (Figure 9A) together with the specificity

metric (Figure 8A) suggests that, positive connectivity measures
are underestimated when sGSR is applied instead of dGSR.
This result is in accordance with the rationale of Murphy
et al. (2009) who discussed extensively the mathematical bias
of sGSR method for shifting the distribution of correlation
coefficients toward more negative values. As predicted by
Murphy et al. (2009), sGSR yielded stronger anticorrelations
with PCC in TPN region ROIs both at the group (Figure 7B)
and single subject level (Figure 9B). However; the specificities
of these anticorrelations were quite low (Figure 8A) because
of the inflated negative correlations with the reference regions
(Figure 7C, note how inflated negative measures of reference
regions necessarily decrease the specificity metric in Equation
1). After dGSR, the anticorrelations are still present but with
reduced magnitude and with considerably higher specificity
(Figure 7B).
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FIGURE 10 | Average correlation values across task-negative (A) and

task-positive regions (B) are shown for all subjects. Three conditions are

depicted: (1) without any physiological correction (red), (2) after sGSR

(magenta), and (3) after dGSR (green). Before sGSR, task–positive areas can

be highly correlated with the PCC region with only three subjects showing

slightly negative correlations. sGSR causes all task-positive areas to become

negatively correlated and reduces variability across subjects. When dGSR is

applied, an anti-correlated (task-positive) network is still observed but with

weaker correlation values.

Previous work by Fox et al. (2009) and Weissenbacher et al.
(2009) reported increases in the specificity of fcMRI maps
of several functional systems after employing sGSR. However,
it should be noted that they found specificity improvements
only for systems that would exhibit positive correlations with
the selected seed ROIs. Chai et al. (2012) compared the
specificity of sGSR to a component base noise reduction method
(CompCor; Behzadi et al., 2007) for detecting positive and
negative correlations with a DMN seed region. They reported

higher specificity for CompCor method for positive correlations;
however the specificity of both methods were found to be similar
and lower for negative correlations than for positive correlations.
In our study, specificity of dGSR for detecting both positive
and negative correlations was considerably higher than the sGSR
method.

Anticorrelations between the DMN and TPN regions are still
present when the relative arrival time of sLFOs are taken into
account with dGSR method, but to a lesser extent in magnitude.
Our results suggest that anticorrelation between DMN and
TPN does have some neural origin; however, accounting for
voxel-specific time delays in global systemic effects with the
dGSR method can attenuate artificial false negative correlations
introduced by sGSR while providing relatively higher specificity
for detecting functional network strengths.

Inferences on Sensitivity and Specificity
from Time Delay Simulations
To demonstrate how sGSR can introduce spurious positive and
negative correlation measures in seed based fcMRI analyses,
we adopted a time delay simulation scheme very similar to
the phase simulations presented by Murphy et al. (2009).
These simulations demonstrated the improved efficacy of the
dGSR approach in (i) preventing inflated negative and positive
correlation measures (reference voxels outside the depicted
network have no significant correlations with the seed ROI after
dGSR), (ii) eliminating artifactual anticorrelation measures as
well as (iii) preserving true positive correlationmeasures between
functionally related regions. These simulations also demonstrate
that the relative arrival time of systemic fluctuations in a voxel
can bias those regions to become anticorrelated or uncorrelated
unless arrival time is modeled.

In a very simplistic manner, we propose the resting state
BOLD signal Yn(t) from a voxel n can be modeled as a linear
sum of a neuronal LFO component N(t), a dynamic systemic LFO
component S(t) which arrives in each voxel with a time delay 1T
and some undefined process noise νn as:

Yn(t) = N(t)+ S(t+ 1Tn)+ νn, (2)

If a systemic noise modeling regressor is optimally aligned with
Y(t) prior to regression, it may better model the relative arrival
time of the systemic LFO component in each voxel time series.
Indeed, subtracting a systemic regressor with an incorrect time
shift with sGSR methods likely results in a distortion of the
denoised signal from the neural activity related component N(t)
in a majority of voxels, leading to suboptimal performance. Both
the reduction in the magnitude of spurious correlations in real
and simulated data, and the increase in the specificity of neuronal
activity related functional connectivity measures with the dGSR
method emphasize the importance of including temporal delay
information for sLFOs in fcMRI noise removal procedures.

The close resemblance of time delay maps obtained with
dynamic global regressors to the cerebral blood circulation maps
obtained in previous studies indicate that optimally delayed
global regressors are a reasonable model of the propagating
systemic LFO component of BOLD signals. It is well known that
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FIGURE 11 | Functional connectivity measures from PCC to TPN and TNN regions across all subjects (N = 9) after sGSR and dGSR. sGSR increases the

spatial extent and magnitude of negative correlations while reducing the spatial extent and magnitude of positive correlations at the group level.

systemic noise accounts for up to 30% of the signal variance in
fMRI data (Frederick et al., 2012). We believe the introduction
of spurious negative or positive correlation measures with sGSR
resulted from regressing out a nuisance regressor which is
improperly aligned with the systemic component in each voxel
time series.

The Spatial Extent of Negative and Positive
Correlations
We examined the spatial extent of negative and positive
correlations with PCC when dGSR is applied in lieu of the
conventional sGSR for a better interpretation of the artifactually
inflated anticorrelations and spurious negative correlation
measures introduced. sGSR results in increased spatial extent
and magnitude of negative correlations while reducing those
of positive correlations with PCC when compared to dGSR.
When dGSR is used, negatively correlated regions overlap with
those found after sGSR, however they are more localized and
their magnitude is diminished (Figure 9). In accordance with
similar findings by Chang et al. (2009) and Murphy et al. (2009),
these observations confirm that sGSR forces the distribution of
correlations toward negative measures, necessarily inflating the
magnitude and extent of negative connectivity measures, hence
introducing spurious anticorrelations. This is not the case for
dGSR method.

In summary, performing sGSR for physiological noise
removal from fcFMRI data necessarily results in some artifactual
anticorrelations, as seen most clearly in PCC correlations
with reference regions. In contrast, dGSR may correctly
remove physiological noise without introducing these effects, as
confirmed by reference regions uncorrelated with PCC. dGSR
preserves positive correlations with PCC ROI time series in task
negative regions while attenuating some of the inflated artificial
negative correlations in task positive regions. Anticorrelations
between the DMN and TPN regions remain present when the
relative arrival time of sLFOs are taken into account, but to a
lesser extent. We conclude that anticorrelations in resting state
fcMRI maps cannot be fully attributed to sGSR methodology and
may be neuronal in origin.

The Origin and Physiology of the Global
Signal
An important concern about dGSR or any other denoising
approach utilizing global signal is the possibility that global
signal contains neuronal information. In a study by Scholvinck
et al. (2010), microelectrode recordings in anesthetized monkeys
from single cortical sites at rest were shown to display spatially
widespread cross-correlations with the fMRI BOLD signals over
large regions of the cerebral cortex. Although the global signal
is dominated by systemic oscillations (Birn et al., 2006; Lund
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et al., 2006; Beall and Lowe, 2007), there is a high chance that
it also includes contributions from neurophysiological activity.
The neuronally derived component of the global signal could
reflect a specific spontaneous fluctuation which may arise from
a shared covariation in firing rate of neurons, as discussed in
Scholvinck et al. (2010), or it could simply be an average of
neuronal activity throughout the brain (Murphy et al., 2009).
Nevertheless; regardless of its origin, the neuronal component of
global signal still poses an undesired variance since it is common
to all functional networks (Fox et al., 2009; Carbonell et al., 2011;
Power et al., 2014).

Conventional GSR (sGSR) has been shown to facilitate
removal of these undesired shared components among
functional networks which obscure network specific resting-state
fluctuations and has been reported to enhance the detection of
network specific fluctuations (Nir et al., 2006; Fox et al., 2009;
Carbonell et al., 2011; Power et al., 2014; Fang et al., 2016) as
well as interactions known to exist at the neurophysiological
level in animal models (Dawson et al., 2013). In addition, in
a recent study performed by Keller et al. (2013) on human
subjects; applying sGSR increased the correspondence between
resting state fMRI BOLD signals and electrophysiological high
gamma power (HGP) signals obtained from direct cortical
surface measurements, suggesting increased correspondence
between neuronal and hemodynamic measures after sGSR. In
their study, Keller et al. (2013) reported that sGSR decreased the
variability in discriminability between subjects while increasing
the sensitivity and specificity of BOLD intrinsic functional
connectivity with regard to both correlated and anticorrelated
HGP intrinsic functional connectivity. Moreover; performing
sGSR before computing HGP intrinsic connectivity measures
increased their correspondence with functional connectivity
measures which may potentially reflect the benefits of removing
an obscuring global signal from both the neuronal and
BOLD data.

The rationale behind GSR approaches comes from the
observation that global signal from resting state fMRI data is
dominated by systemic physiological effects of non-neuronal
origin (Biswal et al., 1996; Kruger and Glover, 2001; Kruger et al.,
2001; Wise et al., 2004; Triantafyllou et al., 2005; Birn et al.,
2006; Lund et al., 2006; Beall and Lowe, 2007; Bianciardi et al.,
2009; Murphy et al., 2009). Although some fraction of the global
signal might be neuronally derived (Scholvinck et al., 2010); it is
certain that a large fraction is attributed to systemic physiological
effects originating from fluctuations in the partial pressure of
end-tidal CO2 (Wise et al., 2004; Birn et al., 2006) and oscillations
in vascular tone related to pulsatile changes in arterial blood
pressure and respiration (Kruger and Glover, 2001; Kruger et al.,
2001; Birn et al., 2006), which are independent of changes in
local neuronal activity (Murphy et al., 2013). In addition; the
spatial characteristics of blood arrival times derived with voxel-
specific optimal alignment of the global signal were shown to
be very similar to the cerebral blood flow patterns obtained with
DSC in previous multimodal studies performed by other groups
(Amemiya et al., 2014; Christen et al., 2015) which corroborate
the idea that the major component of global signal is attributed
to cerebrovascular circulatory effects. The time delays observed

among different brain regions are between 6 and 8 s, implicating
a circulatory rather than neuronal origin.

When interpreting the correlation between global signal from
fMRI and the fingertip HbO signal from NIRS measurements
(or any other physiological noise modeling regressor obtained
from the brain or peripheral tissue); one should keep in mind
the possibility that autonomic nervous system (ANS) activity
may shape the neural responses of certain brain regions as
well the fingertip HbO signal, leading to the possibility that
the high correlations observed between two signals may also
be partially attributed to not only non-neuronal effects but
also to shared neuronal contributions. Indeed, a recent study
combining skin conductance measurements from the peripheral
sites and resting state BOLD fMRI measurements showed that
spontaneous BOLD signal fluctuations in key nodes of resting
state networks are associated with changes in skin conductance
response (SCR) measured from the toe (Fan et al., 2012).
However; we should note that there are subtle differences
between the underlying neurobiological mechanisms forming the
SCR and fingertip HbO signals. Changes in SCR are directly and
solely related to sympathetic activity of sweat glands and can be
regarded as accurate correlates of afferent neural activity of the
ANS. Meanwhile; ANS also regulates cardiac output, blood flow,
and blood pressure with feedback and feed-forward regulatory
mechanisms, which will in turn, result in variations in the
fingertip HbO signal as well as brain BOLD signals (Marmarelis
et al., 2013). Variations in the fingertip HbO signal are shaped
by multiple putative contributors from systemic physiology such
as vessel diameter changes or vasomotion (Aalkjaer et al., 2011;
Sassaroli et al., 2012), systemic changes in arterial blood pressure
known as Mayer waves and variations in respiratory volume
and cardiac rate (Glover et al., 2000; Birn et al., 2008a,b).
Therefore, the underlying neurobiological mechanisms forming
the SCR and fingertip HbO signals differ in the sense that
while SCR is governed directly by afferent activity of neurons,
the fingertip HbO signal is an indirect measure of the ANS
modulating systemic circulation signals from the heart. Similar to
the systemic physiological contributors to fingertip HbO signal,
spontaneous low frequency BOLD fluctuations in the brain are
influenced by upstream vascular changes related to pulsatile
blood pressure and respiratory oscillations (Huijbers et al., 2014)
which are independent of changes in local neuronal activity
(Murphy et al., 2013). Hence; while the global signal might have
neuronal contributions, it could at the same time be governed by
non-neuronal vascular effects produced from upstream changes
in cerebral hemodynamics.

Supporting this notion of upstream vascular effects on BOLD
signals at low frequencies, recent work using high temporal
resolution transcranial Doppler flowmetry (TCD) and NIRS
in human subjects showed that spontaneous fluctuations in
cerebral microcirculation are influenced to a great extent by
systemic circulation and upstream changes in cerebral blood
flow (Zhang et al., 1998; Tarumi et al., 2014; Vermeij et al.,
2014). Specifically, it has been shown that both systemic arterial
pressure and cerebral blood flow volume measured in the
basal cerebral arteries have similar power spectral distributions
with predominant fluctuations at frequencies < 0.1Hz (Zhang
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et al., 1998, 2000). Furthermore, perturbations in low-frequency
cerebral blood flow velocity in the middle cerebral artery due to
posture changes could be observed in cerebral microcirculation
(Tarumi et al., 2014) and mathematical modeling indicated that
the relationship between dynamic changes in arterial pressure
and cerebral blood flow is modulated by arterial CO2 through
complicated feed-back and feed-forward regulatory mechanisms
(Marmarelis et al., 2013). These physiological studies suggest
that spontaneous low-frequency BOLD fluctuations at <0.1Hz
are likely to be induced at least partially by changes in
upstream cerebral hemodynamics independent of regional
neuronal activity which will in turn affect whole brain vascular
hemodynamics and dominate the global signal.

One possibility for dissociating physiological noise dominated
by upstream hemodynamics from neural signals arises when
these components can be spatially and/or temporally separated.
In previous work, by applying a range of time delays to the
reference fingertip NIRS LFO signal, it was observed that
the systemic LFOs modeled through peripheral NIRS HbO
regressors evolved temporally through the brain in a manner
that suggests a circulatory rather than neuronal origin, and a
global rather than local character. The temporal evolution of
the systemic LFOs modeled through, peripheral NIRS regressors
(Tong et al., 2012), recursive regressors from the brain (Tong
and Frederick, 2014) and global signal regressor used in this
study and in recent studies by other groups (Lv et al., 2013;
Amemiya et al., 2014; Christen et al., 2015) have time lags in the
range of 6–8 s which would be too long for neuronally induced
time lags, and the spatial pattern of these time lags appears to
closely follow the cerebral circulatory system from arteries to
the gray matter (where most blood vessels reside), to the venous
system and finally in white matter. The spatial patterns of time
delays obtained by optimally aligning the global signal showed
a good consistency with the time delays of cerebrovascular
perfusion that were measured using DSC enhanced perfusion
imaging (Lv et al., 2013; Amemiya et al., 2014; Christen et al.,
2015). In all of these studies, the component of the LFOs that
moved with the blood was already present before the blood
reached gray matter. The spatio-temporal characteristics of time
delays observed in this study and in previous studies suggest
a major source of circulatory origin for the sLFO component
of BOLD fluctuations modeled with optimally aligned global
signal.

To summarize; in accordance with previous studies, our
findings suggest a source for moving component of LFOs (i.e.,
sLFOs) outside of the brain and imply that a major component
of the LFOs detected by both peripheral NIRS and brain-fMRI
measurements arises from the propagation of endogenous global
blood flow and oxygenation fluctuations through the cerebral
vasculature, rather than from local variations in neuronal
activation or localized cerebral blood flow changes. However,
these findings do not necessarily preclude the contribution of
neural activity in global signal. There is always a possibility of
a neuronal contribution to the global signal, but in this study
we assumed global signal is dominated by physiological noise of
non-neural origin as commonly proposed in a variety of studies.
This assumption is most likely valid as averaging signals from

all voxels across the brain will enhance common signals while
canceling out localized effects.

Limitations of the Study and
Recommendations for Future Work
There is a growing concern that GSR could introduce confounds
into between-group connectivity comparisons (Saad et al., 2012;
Yang et al., 2014), especially in cases where one of the clinical
groups exhibits greater resting state signal variability (Yang
et al., 2014). In a recent simulation study by Saad et al.
(2012), it has been pointed out that GSR can artificially induce
group differences if the global signal is unequally distributed in
comparison groups (Saad et al., 2012; Yang et al., 2014) found that
the variability of the resting-state global brain signal was greater
in patients with schizophrenia as compared to matched controls.
We agree that global signal should not be automatically removed
in some clinical studies where the global signal variance is
significantly different between groups especially when comparing
schizophrenia patients with control or other disease/clinical
populations (Hahamy et al., 2014; Yang et al., 2014). However;
it is important to note that the correlation patterns after GSR
were not necessarily distorted in similar studies that compared
neuropsychiatric populations including schizophrenia with other
groups. Anticevic et al. (2015) examined prefrontal cortex resting
state functional differences between patients diagnosed with
early course schizophrenia and healthy matched controls both
with and without GSR implemented. They reported that all
clinical effects remained unchanged and found no alteration in
any of their reported patterns. Similarly, several other groups
investigated the effect of applying and not applying GSR on
their resting state fMRI data collected from healthy controls and
clinical populations to investigate the possible impact of this step
on reported clinical effects. They concluded that their results did
not depend on the effect of removing or not the global signal
from the time series data (Fang et al., 2013; Kim et al., 2014; Liu
et al., 2014; Alonso Montes et al., 2015; Grewen et al., 2015; Liang
et al., 2015; Nair et al., 2015). Group-differences and trends were
highly consistent with those reported using data treated with
GSR. While GSR may in principle pose a risk of distorting fcMRI
group comparisons (Saad et al., 2012); due to the continuing
debate on the virtues of GSR (Power et al., 2014), performing
clinical analyses both with and without GSR has been suggested
by many researchers to ensure robustness of main effects in such
cases. We suggest that dGSRmethod should be used with caution
in clinical connectivity analyses especially when the variability
between global signals in different groups are relatively high or
the inherent interaction structure of the brain is known to be
altered in two different states that are used for comparison.

Currently, there is not a clear consensus with regard to
the best approach for addressing global systemic artifacts in
fMRI data. Many studies still continue to use sGSR, while an
increasing number of studies have begun to employ alternative
methods such as CompCor (Behzadi et al., 2007), PESTICA
(Beall and Lowe, 2007), CORSICA (Perlbarg et al., 2007),
PSTCor (Anderson et al., 2011), and FIX (Griffanti et al., 2014),
which estimate physiological noise contribution from the data
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itself. Among these methods, CompCor method was proposed
to correct for physiological noise by regressing out principle
components from noise regions of interest (ROIs) in whitematter
(WM) and cerebrospinal fluid (CSF) regions (Behzadi et al.,
2007). We should note that CompCor is designed for removing
high frequency noise such as cardiac and respiratory effects and
is biased toward higher frequencies. Our method is preferentially
sensitive to noise in the low frequency range, the band of interest
for studying connectivity. We believe combining CompCor with
dGSR in future studies will be a valuable approach for addressing
confounds in all frequency ranges for data acquisition protocols
where the TR is not short enough to remove aliased cardiac and
respiratory signals in the low frequency range.

We propose dGSR as a reasonable alternative to sGSR,
and show its efficacy in avoiding sGSR related inflated and/or
false negative correlations of spurious origin, that have been
demonstrated both here and in previous studies. In this
preliminary analysis, we observed that anticorrelations between
the DMN and TPN are present also with dGSR but with reduced
magnitude and higher specificity. Therefore, our results suggest
that these anticorrelations may reflect underlying biology rather
than being simply a mathematical artifact. For future work, we
plan to apply this novel dynamic regression strategy to analyze
large scale resting state fMRI data sets collected from healthy
controls and different patient populations to exploit the potential
of this method more thoroughly and investigate the interactions
between task positive and TNNs.

Effective physiological denoising is an important step in
fcMRI analysis. Our previous work indicated that sLFOs are
major contributors to the resting state BOLD signal and must
be considered to be an independent physiological noise source
instead of an aliasing artifact. sLFOs measured by NIRS at the
periphery, or derived recursively from the resting state BOLD-
fMRI measurements, represent the same propagating biological
signal (Tong et al., 2012; Tong and Frederick, 2014). These sLFOs
carry distinct temporal and spatial information (Hocke et al.,
2016) which is different from LFOs derived with models using
the respiratory and cardiac signals (Birn et al., 2008b; Chang et al.,
2009). In this study, we demonstrate the utility of a voxel-specific
temporal alignment for the global signal from fMRI prior to
regression, taking into consideration the dynamic propagation of
global systemic effects throughout the brain. We plan to explore
the extent of correspondance between peripheral low frequency
NIRS oxygenation measurements and resting state global fMRI
signal in a larger scale data set and compare their noise removal
performance.

The dGSR method takes into account a fundamental
property of vascular dynamics that clearly defines the nature of
physiological noise in resting state fMRI data. This fundamental
characteristic has been validated to be reflected in temporal
delays of the global signal both in this work and in other
studies (Lv et al., 2013; Amemiya et al., 2014; Christen et al.,
2015; Tong et al., 2016). Our results indicate that physiological
noise removal methods for fcMRI analysis should incorporate
temporal information about the dynamic propagation of systemic
noise sources. Many physiological fluctuations such as sLFOs,
respiration, and cardiac pulsation, travel with different speeds

inside the blood vessels throughout the body. Since these signals
are dynamic, they cannot be effectively removed from voxel-
wise BOLD-fMRI signals using a static regressor. The RIPTiDe
method can characterize the voxel-specific temporal delay of any
input physiological regressor throughout the brain (Frederick
et al., 2012). We continue to refine this noise removal method
for both resting state and task fMRI studies. While dGSR has
the simple advantage of being parsimonious, we further aim to
compare its performance to other physiological noise removal
methods in future work.

CONCLUSION

The current study demonstrates that the global signal can be
used as a proxy systemic regressor to model the dynamic
passage of systemic low frequency fluctuations through the
cerebral vasculature. Our findings suggest that a preprocessing
pipeline using dGSR after band-pass filtering and regressing
out realignment parameters provides better sensitivity in terms
of functional connectivity strength and enhanced specificity
while reducing spurious noise more effectively. We conclude
that incorporating time delay information for sLFOs into global
noise removal strategies is crucially important for optimal noise
removal from resting state fcMRI maps. The dGSR approach
matches the underlying dynamic systemic physiology to a good
extent, relies only on the BOLD data itself, and does not require
any additional physiological measurement, so it can be applied
retrospectively to any resting state data set to improve the
modeling and removal of physiological variance.
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Erdoğan et al. Correcting for Blood Arrival Time

anticorrelated functional networks. Proc. Natl. Acad. Sci.U.S.A. 102, 9673–9678.
doi: 10.1073/pnas.0504136102

Fox, M. D., Zhang, D. Y., Snyder, A. Z., and Raichle, M. E. (2009). The global signal
and observed anticorrelated resting state brain networks. J. Neurophysiol. 101,
3270–3283. doi: 10.1152/jn.90777.2008

Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations:
an fMRI investigation of the resting-state default mode of brain function
hypothesis. Hum. Brain Mapp. 26, 15–29. doi: 10.1002/hbm.20113

Frederick, B. D., Nickerson, L. D., and Tong, Y. (2012). Physiological denoising
of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays
(RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy
(NIRS). Neuroimage 60, 1913–1923. doi: 10.1016/j.neuroimage.2012.01.140

Garrity, A. G., Pearlson, G. D.,McKiernan, K., Lloyd, D., Kiehl, K. A., and Calhoun,
V. D. (2007). Aberrant “default mode” functional connectivity in schizophrenia.
Am. J. Psychiatry 164, 450–457. doi: 10.1176/ajp.2007.164.3.450

Glover, G. H., Li, T. Q., and Ress, D. (2000). Image-based method for retrospective
correction of physiological motion effects in fMRI: RETROICOR. Magn.

Reson. Med. 44, 162–167. doi: 10.1002/1522-2594(200007)44:1<162::AID-
MRM23>3.0.CO;2-E

Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B.,
Kenna, H., et al. (2007). Resting-state functional connectivity in major
depression: abnormally increased contributions from subgenual cingulate
cortex and thalamus. Biol. Psychiatry 62, 429–437. doi: 10.1016/j.biopsych.2006.
09.020

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003). Functional
connectivity in the resting brain: a network analysis of the default
mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258. doi:
10.1073/pnas.0135058100

Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V. (2004). Default-
mode network activity distinguishes Alzheimer’s disease from healthy aging:
evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–4642.
doi: 10.1073/pnas.0308627101

Grewen, K., Salzwedel, A., and Gao, W. (2015). Functional connectivity disruption
in neonates with prenatal marijuana exposure. Front Hum. Neurosci. 9:601. doi:
10.3389/fnhum.2015.00601

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud,
G., Sexton, C. E., et al. (2014). ICA-based artefact removal and accelerated
fMRI acquisition for improved resting state network imaging. Neuroimage 95,
232–247. doi: 10.1016/j.neuroimage.2014.03.034

Gustafsson, H. (1993). Vasomotion and underlying mechanisms in small arteries.
An in vitro study of rat blood vessels. Acta Physiol. Scand. Suppl. 614, 1–44.

Hahamy, A., Calhoun, V., Pearlson, G., Harel, M., Stern, N., Attar, F., et al.
(2014). Save the global: global signal connectivity as a tool for studying clinical
populations with functional magnetic resonance imaging. Brain Connect. 4,
395–403. doi: 10.1089/brain.2014.0244

Hedden, T., Van Dijk, K. R. A., Becker, J. A., Mehta, A., Sperling, R. A., Johnson,
K. A., et al. (2009). Disruption of functional connectivity in clinically normal
older adults harboring amyloid burden. J. Neurosci. 29, 12686–12694. doi:
10.1523/JNEUROSCI.3189-09.2009

Hocke, L. M., Tong, Y., Lindsey, K. P., and Frederick, B. D. (2016). Comparison
of peripheral near-infrared spectroscopy low-frequency oscillations to other
denoising methods in resting state functional MRI with ultrahigh temporal
resolution.Magn. Reson. Med. doi: 10.1002/mrm.26038. [Epub ahead of print].

Huijbers, W., Pennartz, C. M., Beldzik, E., Domagalik, A., Vinck, M., Hofman,
W. F., et al. (2014). Respiration phase-locks to fast stimulus presentations:
implications for the interpretation of posterior midline “deactivations.” Hum.

Brain Mapp. 35, 4932–4943. doi: 10.1002/hbm.22523
Julien, C. (2006). The enigma of Mayer waves: facts and models. Cardiovasc. Res.

70, 12–21. doi: 10.1016/j.cardiores.2005.11.008
Keller, C. J., Bickel, S., Honey, C. J., Groppe, D. M., Entz, L., Craddock, R. C.,

et al. (2013). Neurophysiological investigation of spontaneous correlated and
anticorrelated fluctuations of the BOLD signal. J. Neurosci. 33, 6333–6342. doi:
10.1523/JNEUROSCI.4837-12.2013

Kim, J., Van Dijk, K. R. A., Libby, A., and Napadow, V. (2014). Frequency-
dependent relationship between resting-state functional magnetic resonance
imaging signal power and head motion is localized within distributed
association networks. Brain Connect. 4, 30–39. doi: 10.1089/brain.
2013.0153

Kruger, G., and Glover, G. H. (2001). Physiological noise in oxygenation-
sensitive magnetic resonance imaging. Magn. Reson. Med. 46, 631–637. doi:
10.1002/mrm.1240

Kruger, G., Kastrup, A., and Glover, G. H. (2001). Neuroimaging at 1.5 T 3.0
T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn.

Reson. Med. 45, 595–604. doi: 10.1002/mrm.1081
Liang, X., He, Y., Salmeron, B. J., Gu, H., Stein, E. A., and Yang, Y. (2015).

Interactions between the salience and default-mode networks are disrupted in
cocaine addiction. J. Neurosci. 35, 8081–8090. doi: 10.1523/JNEUROSCI.3188-
14.2015

Liu, B., Zhang, X., Hou, B., Li, J., Qiu, C., Qin, W., et al. (2014).
The impact of MIR137 on dorsolateral prefrontal-hippocampal functional
connectivity in healthy subjects.Neuropsychopharmacology 39, 2153–2160. doi:
10.1038/npp.2014.63

Lund, T. E., Madsen, K. H., Sidaros, K., Luo, W. L., and Nichols, T. E. (2006). Non-
white noise in fMRI: does modelling have an impact? Neuroimage 29, 54–66.
doi: 10.1016/j.neuroimage.2005.07.005

Lv, Y., Margulies, D. S., Cameron Craddock, R., Long, X.,Winter, B., Gierhake,
D., et al. (2013). Identifying the perfusion deficit in acute stroke with resting-
state functional magnetic resonance imaging. Ann. Neurol. 73, 136–140. doi:
10.1002/ana.23763

Marmarelis, V. Z., Shin, D. C., Orme, M. E., and Zhang, R. (2013). Model-based
quantification of cerebral hemodynamics as a physiomarker for Alzheimer’s
disease? Ann. Biomed. Eng. 41, 2296–2317. doi: 10.1007/s10439-013-
0837-z

Murphy, K., Birn, R. M., and Bandettini, P. A. (2013). Resting-
state fMRI confounds and cleanup. Neuroimage 80, 349–359. doi:
10.1016/j.neuroimage.2013.04.001

Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., and Bandettini,
P. A. (2009). The impact of global signal regression on resting state
correlations: are anticorrelated networks introduced? Neuroimage 44, 893–905.
doi: 10.1016/j.neuroimage.2008.09.036

Murphy, K., Harris, A. D., and Wise, R. G. (2011). Robustly measuring
vascular reactivity differences with breath-hold: normalising stimulus-
evoked and resting state BOLD fMRI data. Neuroimage 54, 369–379. doi:
10.1016/j.neuroimage.2010.07.059

Nair, A., Carper, R. A., Abbott, A. E., Chen, C. P., Solders, S., Nakutin, S.,
et al. (2015). Regional specificity of aberrant thalamocortical connectivity
in autism. Hum. Brain Mapp. 36, 4497–4511. doi: 10.1002/hbm.
22938

Nir, Y., Hasson, U., Levy, I., Yeshurun, Y., and Malach, R. (2006). Widespread
functional connectivity and fMRI fluctuations in human visual cortex
in the absence of visual stimulation. Neuroimage 30, 1313–1324. doi:
10.1016/j.neuroimage.2005.11.018

Perlbarg, V., Bellec, P., Anton, J. L., Pélégrini-Issac, M., Doyon, J., and Benali,
H. (2007). CORSICA: correction of structured noise in fMRI by automatic
identification of ICA components. Magn. Reson. Imaging 25, 35–46. doi:
10.1016/j.mri.2006.09.042

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L.,
and Petersen, S. E. (2014). Methods to detect, characterize, and remove
motion artifact in resting state fMRI. Neuroimage 84, 320–341. doi:
10.1016/j.neuroimage.2013.08.048

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and
Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.
U.S.A. 98, 676–682. doi: 10.1073/pnas.98.2.676

Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., et al.
(2012). Trouble at rest: how correlation patterns and group differences
become distorted after global signal regression. Brain Connect. 2, 25–32. doi:
10.1089/brain.2012.0080

Sassaroli, A., Pierro, M., Bergethon, P. R., and Fantini, S. (2012). Low-frequency
spontaneous oscillations of cerebral hemodynamics investigated with near-
infrared spectroscopy: a review. IEEE J. Sel. Top. Quant. Electron. 18,
1478–1492. doi: 10.1109/JSTQE.2012.2183581

Schreiber, S. J., Franke, U., Doepp, F., Staccioli, E., Uludag, K., and Valdueza, J. M.
(2002). Dopplersonographic measurement of global cerebral circulation time
using echo contrast-enhanced ultrasound in normal individuals and patients
with arteriovenous malformations. Ultrasound Med. Biol. 28, 453–458. doi:
10.1016/S0301-5629(02)00477-5

Frontiers in Human Neuroscience | www.frontiersin.org 21 June 2016 | Volume 10 | Article 311

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
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