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Ocean acidification is a growing threat to coral growth and the accretion of
coral reef ecosystems. Corals inhabiting environments that already endure
extreme diel pCO2 fluctuations, however, may represent acidification-
resilient populations capable of persisting on future reefs. Here, we exam-
ined the impact of pCO2 variability on the reef-building coral Pocillopora
damicornis originating from reefs with contrasting environmental histories
(variable reef flat versus stable reef slope) following reciprocal exposure to
stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria
over eight weeks. Endosymbiont density, photosynthesis and net calcifica-
tion rates differed between origins but not treatment, whereas primary
calcification (extension) was affected by both origin and acclimatization to
novel pCO2 conditions. At the cellular level, corals from the variable reef
flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery
rates in response to experimental acidification stress (pH 7.40) than corals
originating from the stable reef slope, suggesting environmental memory
gained from lifelong exposure to pCO2 variability led to an improved ability
to regulate acid–base homeostasis. These results highlight the role of cellular
processes in maintaining acidification resilience and suggest that prior
exposure to pCO2 variability may promote more acidification-resilient
coral populations in a changing climate.
1. Background
The combined impacts of ocean warming and acidification are existential
threats to the structure and function of coral reef ecosystems. The increasing fre-
quency and intensity of climate-driven marine heatwaves has provided
powerful visual evidence of our changing climate, manifested by mass coral
bleaching events and subsequent coral mortality [1]. The impacts of ocean acid-
ification on reef-building corals and other reef fauna and flora are not as
visually striking, though they are occurring in response to progressive increases
in seawater pCO2 and declines in pH observed across coastal reef systems [2,3].
It is difficult to disentangle multiple co-occurring stressors and individually
quantify acidification-specific effects, which often require microscopic or phy-
sico-chemical techniques to accurately examine [4–6]. However, manipulative
experiments provide strong evidence that the synergistic impacts of ocean
warming and acidification will lead to the dramatic decline of coral reef ecosys-
tems by mid-to-late century if our current rate of greenhouse gas emissions are
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Figure 1. (a) Cartoon map of the Great Barrier Reef showing the approximate location of Heron Island, with the inset displaying the geomorphological zones and
study sites at Heron Island. (b) In situ CO2 profiles, where points indicate individual measurements, were recorded from the reef flat and reef slope in 2016. (c) Daily
in situ CO2 amplitude is shown as means ± s.e. (Online version in colour.)
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not reduced [7,8]. As the effects of climate change intensify,
the growing threat of ocean acidification to reef accretion
and maintenance cannot be ignored.

Naturally variable habitats provide a glimmer of hope
that climate-resilient coral populations already exist on coral
reefs worldwide. Variable habitats or extreme environments,
such as tidally dominated back reefs and reef flats, expose
organisms to short-term fluctuations in temperature and
pH conditions similar to those projected for future reefs
[6,9–12]. There is evidence that exposure to high diel temp-
erature variability can promote resilience to temperature
stress via holobiont adaptation or non-genetic mechanisms
such as acclimatization through ‘environmental memory’,
stress-tolerant endosymbiont communities (Symbiodiniaceae)
and/or changes in gene expression [13–15]. The effects of pH
variability on coral environmental memory, however, are less
clear. Some studies have shown neutral or positive effects of
pH variability on corals and other calcifiers, whereas other
studies have shown negative effects, with observed differ-
ences probably a result of the magnitude of pH amplitude,
the duration of the experiment and/or the response variables
examined in addition to regional- and species-specific
responses [6,9,10,16,17]. Further, most experiments did not
characterize the long-term pH or pCO2 conditions from
which the study specimens were collected, which can fluctu-
ate dramatically on diurnal, seasonal and spatial scales
[2,6,18]. As a result, the question remains on whether lifelong
exposure to pCO2 variability promotes increased tolerance to
acidification stress.

This study examines a suite of physiological parameters to
better understand how resistance to natural pH variability
influences resilience to ocean acidification in a common herma-
typic coral. We characterize the in situ pCO2 conditions within
two habitats, a tidally dominated reef flat and an oceanic reef
slope of Heron Island, southern Great Barrier Reef (figure 1),
and reciprocally exposed corals of the species Pocillopora dami-
cornis to replicated pCO2 variability from each habitat while
controlling for many other factors that covary in situ. We inves-
tigate whether environmental memory gained from lifelong
exposure to pCO2 variability in the field promotes a higher tol-
erance to acute acidification stress and if P. damicornis can gain
or lose resilience (e.g. resistance to stress) when exposed to
changed pCO2 regimes over a period of two months. Further,
we explore the cellular mechanisms involved in coral
acid–base homeostasis, how these differ between corals with
distinct environmental histories, and if energetic costs are
involved in driving these differences.
2. Methods
(a) Study location and environmental conditions
The experiment was performed during the austral summer from
mid-January to late March 2021 at Heron Island Research Station
(HIRS), southern Great Barrier Reef (23 27°S, 151 55°E). Heron
Reef is composed of five distinct geomorphological habitats
characterized by diverse benthic communities and biogeochem-
ical conditions [19,20]. This study focused on two distinct
habitats, the reef flat (North Beach) and reef slope (North
Bommie) (figure 1). Semidiurnal tidal fluctuations on the reef
flat result in higher variability in temperature and CO2 compared
to reef slope habitats, and exposes reef flat corals to extreme
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Figure 2. (a) Upstream CO2 conditions measured in experimental sumps over the course of the experiment. Points indicate individual measurements and the dashed
box highlights the subset represented in (b). (b) A one week subset of CO2 conditions demonstrating diel variability. Points indicate individual measurements and
grey shading indicates periods of darkness. (c) Daily CO2 amplitude is shown as means ± s.e.
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temperature and CO2 conditions projected for future reefs
[11,12,20] (figure 1; electronic supplementary material, figure
S1). In-field measurements (temperature, photosynthetically
active radiation (PAR) and nutrients) were recorded concurrently
with the manipulative experiment at the same locations where
corals were collected (8 January to 18 March 2021), whereas
pCO2 was recorded over the same season, but in 2016 (8 January
to 18 March 2016; electronic supplementary material, Methods).
Long-term studies show remarkable consistency in pCO2

measurements recorded at the same location between years [2],
suggesting pCO2 variability measured within these identical reef
habitats over the same time period may be similar across years.
(b) Sample collection, species identification and
experimental design

Fragments of the coral P. damicornis were collected from the reef
flat and slope locations within the same depth range (1–3 m) on
14 and 15 January 2021 (figure 1). Four fragments were collected
from each individual colony (genetic clones), totalling 96 frag-
ments from 24 colonies (n = 12 per habitat) (electronic
supplementary material, figure S2). One additional chip per
colony was preserved in 100% ethanol and kept at −80°C for gen-
etic analyses to confirm the collected coral specimens were all
P. damicornis based on the mitochondrial ORF (cf. [21]) and ident-
ify the species of resident intracellular Symbiodiniaceae using the
ITS2 rDNA and chloroplast minicircle psbA non-coding region
(cf. [22,23]; full details in electronic supplementary material,
Methods). All 96 collected coral fragments were standardized to
a length of approximately 5 cm using bone cutters and randomly
suspended with nylon fishing line from a bamboo stick (electronic
supplementary material, figure S2). Six fragments were suspended
from each stick and two sticks placed in each experimental treat-
ment tank (33 l; n = 12 fragments per tank). To minimize ‘tank
effects’, the eight tanks were randomized across one outdoor
table (n = 4 per treatment), with each set of coral fragments rotated
into an adjacent tank of the same treatment every third day. Tanks
and lids were covered with filters (Old Steel Blue no. 725, Lee Fil-
ters) to mimic the light environment at the collection sites
(figure 1; electronic supplementary material, figures S1 and S3).
Notable paling was observed during the first week of the exper-
iment, so light intensities were reduced with an additional
shade cloth (electronic supplementary material, figure S1). All sur-
faces including exposed cut coral bases were cleaned every 3 days
to remove any epilithic algae.

After 7 days of recovery from collection and handling, corals
were exposed to two distinct treatments for eight weeks: (i)
stable pCO2 and (ii) variable pCO2 (figure 2), which were main-
tained following previously described methods [8,24] (electronic
supplementary material, Methods and figure S3). Upstream CO2

was continuously recorded in treatment sumps (figure 2) and
within experimental tanks, seawater temperature (HOBO
pendant logger) and PAR (Odyssey PAR sensor) were continu-
ously measured at 30 min intervals in each treatment by
randomly rotating two probes per treatment between tanks (elec-
tronic supplementary material, figure S1). Weekly samples (n = 3
per treatment) were collected for total alkalinity (AT) and pHTotal

at midday and midnight. AT was determined via the Gran titration
method using 0.1 M HCl and pHTotal was determined via a high-
precision glass pH electrode (DGi101-SC, Mettler Toledo) across
replicated 20 g seawater samples [25]. Acid concentration was



Table 1. Mean carbonate chemistry throughout the two months experiment. All values are displayed as means ± s.e. (n = 27). pCO2 and aragonite saturation
state (Ωarag) were calculated from pHTotal, total alkalinity (AT), temperature and salinity using the package seacarb in R [26]. Salinity remained constant at 35.0
throughout the experiment.

time of day treatment temp (°C) pCO2 (μatm) AT (μmol kg
−1) pHTotal Ωarag

midday stable 27.42 ± 0.04 288.4 ± 5 2279 ± 6 8.15 ± 0.006 4.34 ± 0.05

midday variable 27.42 ± 0.04 283.6 ± 9 2273 ± 4 8.15 ± 0.01 4.39 ± 0.08

midnight stable 27.41 ± 0.04 368.7 ± 18 2263 ± 6 8.07 ± 0.02 3.79 ± 0.11

midnight variable 27.41 ± 0.04 582.2 ± 27 2268 ± 5 7.91 ± 0.02 2.90 ± 0.13
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calibrated at the beginning of each titration session using the cer-
tified reference materials from the Dickson Laboratory at Scripps
Institute of Oceanography, USA. Salinity was measured via
refractometer and remained constant at 35.0 throughout the exper-
iment. Parameters of the seawater carbonate chemistry, including
carbonate, bicarbonate, aragonite saturation state, were calculated
from our temperature, salinity, AT and pHTotal measurements
using the seacarb package in R [26] (table 1).

(c) Physiological analyses
Coral survivorship was assessed visually daily, and only one
coral fragment died during the experiment. Net calcification, sur-
face area (a proxy for extension [11]), volume and dark-adapted
photosynthetic efficiency (Fv/Fm) of coral fragments were
measured six times during the experiment (approx. two weeks
intervals) via buoyant weight and photogrammetry using pre-
viously described methods [27–29] (electronic supplementary
material, Methods, figures S4 and S5). At the end of the exper-
iment, metabolic rates (net photosynthesis, dark respiration and
light-enhanced dark respiration) were assessed via changes in
oxygen evolution using oxygen optodes connected to an OXY-
10 (PreSens) optical analyser [30] (electronic supplementary
material, Methods). Upon completion of these living analyses,
half of the coral fragments were flash frozen in liquid nitrogen
and stored at −80°C. Subsequent laboratory analyses were
done on these 48 specimens. For these analyses, corals (n = 12)
were water-piked on ice to remove coral tissue from the skeleton
using 50 ml of 0.1 M phosphate buffered saline solution. The
tissue slurry was centrifuged at 4°C once for 5 min at 2500g to
sufficiently separate host tissue and the intracellular endosym-
biont cells. Host tissue was analysed for host-soluble protein
concentration and mycosporine-like amino acids (MAAs)
concentrations spectrophotometrically [31]. Endosymbiont den-
sities were determined from cell counts of three aliquots using
a haemocytometer [30]. Host protein concentration and endo-
symbiont cell densities were standardized to surface area (cm2),
which was determined using the single wax-dipping technique
[32], whereas MAAs were normalized to host protein content.
Endosymbiont photopigments were extracted in 100% acetone
for 24 h and concentration of chlorophyll a were determined
via absorbance at 630, 663 and 750 nm using the equations in
[33]. Pigment concentrations were standardized to both surface
area and endosymbiont densities. Wax-dipping was also used
to determine calcium carbonate (CaCO3) bulk density, where
the skeleton was sealed with a coat of wax, dry weighed and
then buoyant weighed [34]. The difference between dry weight
and buoyant weight was calculated to determine the bulk
volume, which was subtracted from the dry weight to yield
bulk density. The other half of the fragments were transported
alive from Heron Island to the University of Queensland, Bris-
bane to assess intracellular acid–base status and acidification
resilience following established methods [35]. Briefly, cells were
loaded with SNARF-1AM and imaged using a confocal
microscope (Zeiss LSM 710) via excitation at 561 nm, with
SNARF-1 fluorescence emission acquired in two channels (585
and 640 ± 10 nm) simultaneously (see full details in electronic
supplementary material, Methods).

(d) Statistical analysis
Seawater temperature, CO2, PAR and nutrient concentrations
were analysed for differences within and between experiment
treatments (treatment: stable, variable) and reef habitats (origin:
reef flat, reef slope). The effect of tide (tide: high, low) was also
explored on nutrient concentrations. The interactive effects of
origin and treatment were explored on P. damicornis growth
(net calcification, extension, CaCO3 density) and physiology
(dark respiration, light-enhanced dark respiration, host-soluble
protein, MAAs, net photosynthesis, photosynthetic efficiency,
endosymbiont density, chlorophyll a concentration) using linear
mixed effects (lme) models with colony genotype as a random
effect [36]. Similarly, the interactive effects of origin, treatment
and cell type (i.e. cells lacking microalgal endosymbionts (non-
symbiocytes) and containing microalgal endosymbionts (symbio-
cytes)) were explored on intracellular pH (pHi) using a lme
model. Colony genotype was included as a random effect in all
lme models. All data met assumptions (homogeneity of variance,
normality of distribution) through graphical analyses of residual
plots. The significance of fixed effects and their interactions was
determined using an analysis of variance with a type III error
structure using the Anova function in the car package [37].
Significant interactive effects were followed by pairwise compari-
son of estimate marginal means using the emmeans package with
Tukey HSD adjusted p-values [38]. All statistical analyses were
done using R v. 4.0.0 software [39], and graphical representations
were produced using the package ggplot2 [40].
3. Results and discussion
(a) Physico-chemical conditions differed between

habitats and treatments
The mean seawater pCO2 (µatm) in situ (measured in 2016)
was similar between the reef flat (454 ± 3.0) and reef slope
(418 ± 1.9), but the reef flat experienced twice the mean
daily pCO2 amplitude than the reef slope (797 ± 20 versus
399 ± 8 d−1, respectively; figure 1). A number of other
environmental conditions covaried with pCO2 between the
two habitats, including temperature and PAR. While the
mean temperature (°C) was the same between the reef flat
(26.8 ± 0.02) and reef slope (26.8 ± 0.01), the daily amplitude
was nearly three times greater on the reef flat than the reef
slope (4.3°C versus 1.3°C; electronic supplementary material,
figure S1). Mean PAR (µmol quanta m−2 s−1) was signifi-
cantly higher on the reef flat than the reef slope (456 ± 7.2
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versus 288 ± 4.5; F = 2391, p < 0.0001; electronic supp-
lementary material, figure S1), driven by tidal fluctuations
in depth. Seawater nutrient concentrations (ammonium,
nitrate, nitrite, phosphate) were not significantly different
between habitats (F = 0.56, p = 0.57) or between low or high
tide (F = 0.16, p = 0.69) throughout the experimental period
(electronic supplementary material, figure S6).

Within the experimental treatments, seawater pCO2

dynamics differed significantly between treatments. Specifi-
cally, there was a 4.2-fold difference in mean diel pCO2

amplitude (µatm) between the variable (911.3 ± 30.69) and
stable (218.3 ± 9.14) treatments across the experimental
period in the upstream sumps, which resulted in a mean
pCO2 that was slightly higher in the variable treatment
(620 ± 3.4) compared to the stable treatment (540 ± 0.9)
(F = 506, p < 0.0001; figure 2). Downstream of the sumps,
the physiological activity of the corals influenced pCO2

within the experimental tanks, resulting in a lower mean
pCO2 (µatm) conditions in the stable (327.8 ± 10.5) and vari-
able (435.7 ± 25.3) treatments, which were more similar to
mean pCO2 conditions measured in situ. Importantly, tank
pCO2 was significantly influenced by the interaction between
treatment and time (F = 40.8, p < 0.0001), with pairwise com-
parisons revealing no difference in pCO2 conditions during
midday ( p = 0.99) but significantly higher pCO2 in the vari-
able treatment during the programmed spike in conditions
at midnight ( p < 0.0001; table 1). Similarly, pH within exper-
imental tanks was significantly influenced by the interaction
between treatment and time (F = 33.7, p < 0.0001). At midday,
however, there was no difference in mean pH between treat-
ments (8.15) ( p = 0.98; table 1), while pairwise comparisons
showed pH in the variable treatment was approximately 0.15
pH units lower than the stable treatment at the midnight
peak in pCO2 (p< 0.0001; table 1). As expected due to con-
trolled tank conditions, temperature, irradiance and nutrients
did not differ within and across experimental treatments (elec-
tronic supplementary material, figures S1 andS6). The mean
temperature was 27.4°C, below Heron Island’s bleaching
threshold (maximum monthly mean (MMM) +1°C of 28.3°C),
and mean PAR was approximately 125 µmol quanta m2 s−1

throughout the experiment. Generally, these experimental con-
ditions were more similar to the reef slope than flat conditions
(electronic supplementary material, figure S1). This successful
maintenance of consistent temperature, PAR and nutrient con-
centrations between treatments suggests that differences in
pCO2 amplitude throughout the experiment are likely drivers
of the physiological responses observed.
(b) Consistency in coral and Symbiodiniaceae species
between habitats suggests important role of
organismal acclimatization at local scale

All coral colonies used in the experiments were confirmed to
be P. damicornis (GenBank accession numbers OP296503–
OP296521; 100% match to Pocillopora type alpha cf. [21]
with GenBank accession numbers JX985598 and JX985606).
These results align with earlier studies, which also exclu-
sively found P. damicornis across the reef flat and reef slope
environment at Heron Reef [41]. The microalgal endosym-
bionts were all consistent with ITS2-type C1-b-c/C42-a (cf.
[22]), containing co-dominant rDNA repeats identified as
sequence alpha-numericals C1, C1b, C1c, C42, C42a present
in characteristic ‘fingerprint’ DGGE profiles of each sample.
The ITS2 rDNA data, coupled with the phylogenetic analyses
of psbA sequences (electronic supplementary material, figure
S7; GenBank accession numbers OP279755–OP279774), sup-
port that all coral specimens contained the recently
described pocilloporid-specific endosymbiont Cladocopium
latusorum [42]. Our findings that corals from the different
habitats were indeed the same species for both the host and
endosymbiont are important to our understanding of the
effects of pCO2 variability on coral physiology, as it reduces
confounding species-specific effects that often covary with
habitat. Earlier studies at the study location have demon-
strated divergent Symbiodiniaceae species associated with
P. damicornis inhabiting the reef flat (C. latusorum; previously
type ‘C42a’) or slope (Cladocopium type ‘C33a’) [22,41,43].
Surprisingly, none of the samples in the present study were
found to contain Cladocopium ‘C33a’. The discrepancy with
prior studies may be due to: (i) depth, with reef slope P. dami-
cornis sampled at shallower depths (1–3 m) in this study
relative to others (>4 m) [22,41,43]; (ii) spatial variability,
with reef slope P. damicornis sampled on the open-ocean
side of Heron Reef, in contrast to the turbid channel between
Wistari and Heron Reef sampled by others (figure 1)
[22,41,43]; and/or (iii) thermal stress, as our study was con-
ducted 1 year after significant heat stress and coral
bleaching occurred [44]. In general, Cladocopium type ‘C33a’
is more specialized to deeper, darker, or turbid areas [43]
and may have been more sensitive to the 2020 bleaching
(approx. nine months prior), whereas C. latusorum appears
to be more of a generalist [42] and may have been less
affected, ensuring its retention. It has been suggested that
adaptation to the harsh environmental conditions of the
reef flat may, in part, stem from an association with
divergent Symbiodiniaceae species [41]. Although all endo-
symbionts were identified as C. latusorum, the psbA region
indicates substantial genotypic diversity in this group but
based on our study samples no identifiably consistent
differences were observed between habitats (electronic sup-
plementary material, figure S7). Albeit based on a small
sample size, the consistency of Symbiodiniaceae species and
genotypic diversity between slope and flat habitats suggests
that acclimatization plays a significant role in tolerance to
environmental variability. Indeed, holobiont adaptation in
response to distinct environmental regimes can occur in the
absence of distinct endosymbiont genotypes [13], and, even
in host–symbiont specific associations, such as those
belonging to the family Pocilloporidae, a large degree of phe-
notypic plasticity to varying environmental conditions at
small spatial scales has been observed [45,46].

(c) Environmental memory of native physico-chemical
conditions drove phenotypic plasticity

To cope with living under the stress imposed by variable or
extreme environments, corals exhibit remarkable phenotypic
plasticity [47,48]. The ability of corals to change their physio-
logical performance in response to the environment has,
however, been linked to trade-offs between different physio-
logical traits [13]. Here, corals predominantly maintained
similar physiological activity to conspecifics from their
native environment, regardless of being grown under stable
or variable pCO2 for two months. For example, symbiont
density was significantly influenced by origin (F = 6.18, p =
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Figure 3. (a) Representative images of the reef slope at North Bommie and (b) the reef flat at North Beach, Heron Island, southern Great Barrier Reef. Insets show
representative Pocillopora damicornis fragments at the end of the two months experiment, demonstrating analogous phenotypic behaviour to the habitat of origin.
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0.013), with corals originating from the reef flat containing
lower symbiont densities than corals from the slope. This
could be a carry-over effect of sublethal stress from the
harsh temperature and light regimes of the reef flat habitat
(electronic supplementary material, figure S1). Interestingly,
net photosynthesis was slightly higher in corals originating
from the reef flat regardless of treatment (origin: F = 4.15,
p = 0.042) (electronic supplementary material, figure S8),
whereas dark respiration (F = 0.007, p = 0.9), light-enhanced
dark respiration (F = 0.23, p = 0.63) and photosynthesis to
respiration (P : R) ratios (F = 0.03, p = 0.85) displayed no
significant patterns between origin or treatment (electronic
supplementary material, figure S9). These observations
suggest that autotrophic energy acquisition was not impeded
by the daily, extreme, oscillations in pCO2 to which these
corals were acclimatized. This is in contrast to corals exposed
to simulated seawater acidification and/or in situ thermal
stress, which typically exhibit reductions in metabolic rates
[30,35]. In addition, there were no significant differences in
chlorophyll a concentrations (F = 0.21, p = 0.65) or photo-
chemical efficiency (Fv/Fm) between origin (F = 1.25, p = 0.26)
or treatment (F = 0.01, p = 0.91) (electronic supplementary
material, figure S8), suggesting that pCO2 variability did
not have an effect on these parameters. Finally, host protein
content, a proxy for biomass, showed no significant
differences between origin or treatment (F = 0, p = 0.99) (elec-
tronic supplementary material, figure S9), in contrast to
others that have found corals originating from variable habi-
tats tend to have higher tissue biomass than conspecifics from
stable habitats due to a prioritization of biomass over
calcification in harsher environments [9,13].
Coral net calcification (%ΔBW day−1) was significantly
affected by origin, with higher rates in P. damicornis that ori-
ginated from the reef flat (F = 7.24, p = 0.007), while the effect
of treatment was not significant (F = 1.15, p = 0.28) (figure 3).
However, when examining the individual effects of primary
calcification (i.e. extension) and secondary calcification (i.e.
densification) separately, treatment emerged as a significant
factor. For example, surface area (%ΔSA day−1), a proxy for
extension, showed a significant interaction between treatment
and origin (F = 5.82, p = 0.015). Specifically, corals from the
reef flat increased their extension rates in the stable (non-
native) treatment, which could indicate a release from stress-
ful pCO2 conditions (figure 3). Secondary calcification,
measured as CaCO3 bulk density, was found to be lower in
P. damicornis originating from the reef flat compared to the
slope (F = 37.0, p < 0.0001), but treatment had no effect
(figure 3). Lower skeletal density, coupled with higher net
calcification rates, indicates that corals from the reef flat
were extending at higher rates than corals from the reef
slope, resulting in longer branches with more porous skel-
etons (figure 3). Given the amount of new growth observed
(approx. 15–30% of fragment), however, we were unable to
capture changes in density due to treatment (i.e. acclimatiz-
ation to novel experimental pCO2 conditions); however, as
net calcification did not change while extension increased in
response to novel pCO2 conditions, it is likely that densifica-
tion correspondingly decreased. Future studies could isolate
the new growth area to better resolve morphological changes
(e.g. diameter of calyx, porosity) resultant from acclimatiz-
ation to pCO2 variability. The origin-specific differences in
CaCO3 density that we observed aligns with habitat-specific
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patterns observed in earlier studies, where skeletal density
was a direct reflection of wave exposure or water motion
(e.g. lower CaCO3 density in protected reef flats or lagoons
compared to conspecifics from high wave energy reef
slopes) [11,48], but lower densification can also occur in
response to high pCO2 [11,34]. Indeed, strong morphological
variation and branch modularity was also qualitatively
observed, with P. damicornis native to the reef flat continuing
to exhibit lower density of branches and greater branch thick-
ness than corals native to the reef slope (figure 3). Similar
macro-morphological patterns in pocilloporids have been
attributed to flow dynamics [48] and even storm frequency
[47]. It can take as long as six months of exposure to a new
environment to induce gross morphological changes in
P. damicornis [47], and thus more time may have been
needed for organisms to fully converge on the same pheno-
types. Future experiments could, therefore, be expanded
over longer time frames to tease apart the influence of
lifelong acclimatization versus adaptation to diel pCO2

variability on the different aspects of coral calcification.
(d) Improved ability to control acid–base homeostasis
indicates acclimatization to extreme diel pCO2
oscillations

Maintaining stable intracellular pH (pHi) is critical for
cellular physiology [49] and requires the capacity to sense
pH changes that may result from internal and external
sources [50], and to regulate downstream compensatory pH
pathways [51]. Similarly, biologically driven elevation of the
pH and aragonite saturation state of the extracellular
calcifying medium (ECM) by the surrounding calicodermis
is essential for coral calcification [52–54]. Acid–base regu-
lation of the ECM and pHi are closely linked, with pH of
the ECM and pHi of P. damicornis both displaying a positive
relationship with increasing seawater pH in both light and
dark conditions [55]. Here, we tested whether acclimatization
to seawater pCO2 variability altered coral acid–base
homeostasis dynamics by exposing P. damicornis cells to acid-
ification stress (pHe 7.40). Symbiocytes had higher pHi than
non-symbiocytes (cell type: F = 42.9, p < 0.0001), and overall,
coral cells both with and without endosymbionts exhibited
an initial acidification of pHi after exposure to acidified sea-
water, followed by recovery to their initial pHi setpoint,
indicative of an active physiological compensatory response
in all cell types (time: F = 2.2, p = 0.049) (figure 4a). Interest-
ingly, the initial change in pHi in response to acidification
stress (i.e. acidosis magnitude after 15 min exposure;
ΔpHi15–0) showed a significant three-way interaction between
treatment, origin and cell type (F = 4.33, p = 0.003) (figure 4b).
Pairwise comparisons revealed that in non-symbiocytes,
there was no difference in acidification magnitude for
P. damicornis originating from the reef flat and acclimated to
either stable or variable pCO2 treatments ( p = 0.6). This
suggests corals native to the flat had a robust ability to
buffer pHi and maintain acid–base homeostasis in the face
of acidification stress regardless of treatment, possibly due
to adaptation and/or constitutive expression of regulatory
mechanisms to compensate for extreme pCO2 oscillations.
While the specific mechanisms were not investigated in
this study, it is possible that the upregulation of acid–base
homeostasis mechanisms in corals native to the reef flat,
such as the proteins involved in pH-sensing [50], proton



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220941

8
or carbonate ion transport [56–59], or conversion of carbon
dioxide into bicarbonate (e.g. carbonic anhydrases) [60],
ultimately primed P. damicornis native to the reef flat to
cope with acute pH stress. This behaviour of ‘front-loading’
stress response pathways has been seen in coral temperature
variability responses [13], and is an important avenue
for future investigation in coral acidification resilience,
especially as many of these mechanisms are also likely
involved in calcification [53,57]. Also, corals may decrease
investment in upregulation ECM pH during times of acid
stress (e.g. by inhibiting Ca2+-ATPase in the calicodermis,
which may uptake protons from the ECM [56]), whereby
cells could reduce intracellular acidosis, but this may come
at the expense of calcification.

Interestingly, in contrast to corals native to the reef flat,
P. damicornis native to the reef slope but exposed to the vari-
able conditions showed a three-fold drop in pHi following
exposure to acidified seawater relative to slope corals remain-
ing in their native stable pCO2 conditions ( p < 0.0001), and
this acidification was of significantly larger magnitude than
that of corals originating from the flat in either treatment
( p = 0.002; figure 4b). This large drop in pHi following acute
external acidification suggests that corals adapted to stable
reef slope conditions have a limited ability to buffer their
internal pH after eight weeks of exposure to extreme diel
pCO2 variability. Again, the mechanisms behind this
response are unknown, but are possibly due to an inability
to further upregulate acid–base regulatory machinery
during an acute acid challenge following chronic exposure
to extreme diel pH variability and/or a lower passive buffer-
ing capacity. Furthermore, following the initial acidosis,
P. damicornis native to the reef slope exhibited slower pHi
recovery rates relative to corals native to the flat (F = 4.26, p =
0.039; figure 4c), suggesting that corals native to the reef
slope have a less robust capacity to compensate for acidification
stress than corals native to the reef flat. This investment in acid–
base regulation by reef flat corals may be beneficial for coping
with ocean acidification, but could also come at a cost. For
example, our data appear to demonstrate a trade-off in
response to extreme pCO2 variability, where greater investment
in acid–base homeostasis leaves insufficient energy to support
secondary calcification. If reef flat corals must expend more
energy on pHi regulation, such as through the active (i.e.
ATP-dependent) removal of protons from their tissues, this
could force a trade-off with expensive energy investments
such as skeletal infrastructure (e.g. organic matrix [61]; removal
of protons from the calcification site [56]; transport of Ca2+

through the calicodermis to the ECM [62]), possibly slowing
or ceasing calcification altogether. In addition, as seawater acid-
ification leads to more acidic conditions within the
gastrovascular cavity (coelenteron) [63], particularly the
acidic region lining the aboral tissues [64], it becomes more
energetically costly for corals to move protons from the ECM
through the calicodermis and into the coelenteron. Finally,
symbiocytes displayed faster pHi recovery rates than non-sym-
biocytes (F = 34.9, p < 0.0001; figure 4c), suggesting that
endosymbionts play a significant role in helping buffer host
cells following acidification stress. The mechanisms remain
unknown, but could occur through energetic provisioning to
the host that supports the energetic demands of acid–base
homeostasis (e.g. ATPase activity; intracellular trafficking of
ion channels), or possibly through their own metabolic activity
[5]. However, as our experiments were conducted in the dark,
this mechanism is not due to CO2 consumption via photosyn-
thesis, as can occur in the light [5]. Despite the encouraging
signs that these corals living in extreme pCO2 conditions are
able to better cope with acute acidification stress, as climate
change intensifies, the interactive effects of ocean warming
and acidification could interact to undermine the ability of
corals to regulate acid–base homeostasis [35], ultimately weak-
ening CaCO3 structures that support entire reef ecosystems and
coastal communities [7,8].
4. Conclusion
Our results highlight that pCO2 oscillations, in addition to
commonly recognized parameters like temperature, water
motion and light, play an important role in influencing
phenotypic variability in calcification between extreme
environments and suggest that acclimatization to pCO2 varia-
bility may promote acidification-resilient populations in the
future. However, energy investments into regulating acid–
base homeostasis will become more costly in a more acidic
ocean [60] and tolerance to one stressor may come at a cost
to others (e.g. storms, marine heatwaves). Furthermore, as
ocean warming and acidification intensify, corals will be
pushed to the edge of their physiological limits, with toler-
ance to present-day variability not necessarily conferring
resilience to future ocean warming and acidification [9,11].
While more research is needed to determine how long it
takes to acquire resistance to acidification stress, it is evident
from this study that P. damicornis native to stable environ-
ments cannot acclimatize to extreme pCO2 oscillations
conditions over relatively short time scales. Nevertheless,
our results suggest that reef corals may be more resistant to
future ocean acidification conditions in extreme environ-
ments where diel variation in seawater pCO2 is prominent,
which has important implications for reef persistence in a
changing climate.
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