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Objective: To investigate the in vitro and in vivo antibacterial activities of tigecycline
and other 13 common antimicrobial agents, alone or in combination, against multi-drug
resistant Acinetobacter baumannii.

Methods: An in vitro susceptibility test of 101 A. baumannii was used to detect minimal
inhibitory concentrations (MICs). A mouse lung infection model of multi-drug resistant A.
baumannii, established by the ultrasonic atomization method, was used to define in vivo
antimicrobial activities.

Results: Multi-drug resistant A. baumannii showed high sensitivity to tigecycline (98%
inhibition), polymyxin B (78.2% inhibition), and minocycline (74.2% inhibition). However,
the use of these antimicrobial agents in combination with other antimicrobial agents
produced synergistic or additive effects. In vivo data showed that white blood cell (WBC)
counts in drug combination groups C (minocycline + amikacin) and D (minocycline +
rifampicin) were significantly higher than in groups A (tigecycline) and B (polymyxin B)
(P < 0.05), after administration of the drugs 24 h post-infection. Lung tissue inflammation
gradually increased in the model group during the first 24 h after ultrasonic atomization
infection; vasodilation, congestion with hemorrhage were observed 48 h post infection.
After 3 days of anti-infective therapy in groups A, B, C, and D, lung tissue inflammation
in each group gradually recovered with clear structures. The mortality rates in drug
combination groups(groups C and D) were much lower than in groups A and B.

Conclusion: The combination of minocycline with either rifampicin or amikacin is
more effective against multi-drug resistant A. baumannii than single-agent tigecycline or
polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable
model for drug screening and analysis of infection mechanism.

Keywords: Acinetobacter baumannii, multi-drug resistant, ultrasonic atomization, pneumonia infection model,
combination treatment

Introduction

Acinetobacter baumannii is a nonfermentative, gram-negative bacillus, whose natural reservoir
still remains to be determined. It can represent an opportunistic pathogen in humans, and
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often causes nosocomial infections in immunocompromised
patients, such as pneumonia, urinary tract infection, and sepsis
(Dettori et al., 2014). Until recently, most studies on A.
baumannii have focused on antibiotic resistance, treatment and
epidemiological analysis (Erac et al., 2014). With the large
amount of clinical applications of antibiotics, the isolation rate
of drug-resistant A. baumannii has been gradually rising, and the
emergence of multi-drug resistant strains poses a big challenge
for antibiotic treatment (Lee et al., 2011; Sievert et al., 2013). In
recent years, the drug resistance issue has attracted worldwide
attention. New therapeutic strategies against A. baumannii are
urgently needed.

The treatment choices available for this infection are limited.
Tigecycline and polymyxin B have shown some efficacy, as
evidenced by both in vitro and in vivo experiments (Durante-
Mangoni et al., 2013; Stein and Babinchak, 2013; Chuang
et al., 2014). However, due to the lack of large-scale clinical
studies, as well as the high cost of tigecycline and the
potential nephrotoxic effects of polymyxin, the clinical use
of these drugs has been limited. Combinations of two or
more antimicrobial drugs are often used for the treatment
of multi-drug resistant A. baumannii infections. It has been
reported that meropenem, polymyxin B and minocycline have
synergistic effects in vitro against A. baumannii (Zusman
et al., 2013; Ning et al., 2014). In addition, the combination
of sulbactam with imipenem displays synergistic bactericidal
activity in the lung tissue (Dinc et al., 2013). The combination
of rifampicin with imipenem, sulbactam, and colistin has the
ability to potentiate the anti-infection activity of these drugs
(Pachón-Ibáñez et al., 2010).

Although both in vitro and in vivo data support the
efficacy of certain antibiotics against A. baumannii, discrepancies
have been found in the results, due to the unstable or
inefficient animal model (Mutlu Yilmaz et al., 2012). Hence,
it is of particular importance to establish a stable model for
drug screening or for investigating infection mechanisms. At
present, the mouse model of A. baumannii infection has been
shown not to be successful, as only a self-limiting bacterial
pneumonia is induced, even if a high dose of bacteria is
administered. To improve this model, some research groups
used immunocompromised mice or mucin-treated mice to
increase their sensitivity to A. baumannii (van Faassen et al.,
2007; Pichardo et al., 2010). Lung infections in murine models
have been produced by direct tracheotomy infection (Eveillard
et al., 2010), micro-tracheal injection (Eveillard et al., 2010), or
intranasal administration (Russo et al., 2008). However, those
methods have clear disadvantages, leading to low infection rate
(Qiu et al., 2009).

Given the low infection rate and instability of the current
pneumonia models, we intended to establish a new A. baumannii
infected mouse model using ultrasonic atomization. The drugs
that were found to have antibacterial effect in vitro, tigecycline
and polymyxin B were validated in this in vivo model.
Additionally, some relatively cost-effective antibiotics were
compared, including amikacin, minocycline and rifampicin, and
the efficacy of the combinations including those drugs was
analyzed. In conclusion, this study presented a new in vivo

model for future studies, and provided experimental evidence
of an effective combination therapy for multi-drug resistant A.
baumannii infection.

Materials and Methods

Strains
One hundred and one multi-drug resistant A. baumannii strains
were obtained from Hangzhou First People’s Hospital and were
identified by the Vitek 2 Compact analyzer (BioMérieux SA,
France). Multi-drug resistant strains were identified by drug
susceptibility test and stored at −80◦C. Pseudomonas aeruginosa
ATCC27853 were used as control strain.

Experimental Animals
Five hundred specific pathogen-free BALB/c mice (half male
and half female, weight 12–14 g, age 4 weeks) were bred at a
temperature of 18–25◦C and humidity of 40–70%. The license
number was SCXK (Shanghai) 2013–0016. According to “Animal
Quality Management Approach” (1997), the experimental
procedures were under the approval by the Experimental Animal
Center of Zhejiang Chinese Medical University.

Experimental Drugs and Main Instruments
The drugs purchased and used in this experiments were
the following: imipenem/cilastatin sodium (IMP/CS)
(Merek sharp & Dohme Corp., New Jersey, United States);
piperacillin/tazobactam sodium (TZP) (Wyeth Lederle SPA,
New Jersey, United States); cefoperazone/sulbactam sodium
(SCF) (Pfizer, New York, United States); ceftazidime (CAZ)
(Hailing Chemical Pharmaceutical Co., Ltd., Haikou, Hainan);
rifampicin (RIF) (Shuangding Pharmaceutical Co., Ltd.,
Shenyang, Liaoning); amikacin (AMK) (Qilu Pharmaceutical
Co., Ltd., Jinan, Shandong); levofloxacin (LEV) (Yangtze River
Pharmaceutical Group Ltd., Taizhou, Jiangsu); polymyxin
B (PB) (Japan Pharmaceutical Industry Co., Ltd., Taipei,
Taiwan); tigecycline (TIG) (Hisun Pharmaceutical Co., Ltd.,
Taizhou, Zhejiang); minocycline (MNO) (Wyeth Pharmaceutical
Co., Ltd., Suzhou, Jiangsu); chloramphenicol (C) (Modern
Pharmaceutical Co., Ltd., Shanghai); erythromycin (E) (Kelun
Pharmaceutical Co., Ltd., Chengdu, Sichuan); fosfomycin
sodium (FOS) (Northeast Pharmaceutical Group Shenyang No.1
Pharmaceutical Co., Ltd., Shenyang, Liaoning); methotrexate
(MTX) (Hengrui Pharmace utical Co., Ltd., Lianyungang,
Jiangsu). Ultrasonic Nebulizer (402A1 type, Jiangsu Diving
Medical Equipment Co., Ltd., Suzhou, Jiangsu).

Minimum Inhibitory Concentration (MIC)
According to standard Regulations of Clinical Laboratory
(Piewngam and Kiratisin, 2014), the broth dilution method
was used to detect MIC. Briefly, solutions with different
concentrations of antimicrobial agents were added to a sterile
96-well polystyrene plate. A concentration of 0.5 McFarland
units (5 × 108 CFU/ml) of bacterial suspension was diluted
with Lysogeny Broth (LB) (final concentration 5 × 105 CFU/ml)
and was added to each well of the plate. The plate was sealed
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and incubated at 35◦C for 18–24 h. Pseudomonas aeruginosa
ATCC27853 was used as control. The concentration of the
drugs that completely inhibited bacterial growth was defined as
MIC. The evaluation of tigecycline was based on FDA standards
and the other antibiotics were in accordance with Clinical and
Laboratory Standards Institute (2014).

Chequerboard Assay
The drug combination regimens are listed in Table 1. A micro-
dilution method associated with checkerboard was applied in
the drug combination screening on three randomly selected
strains. Drug interactions were determined by the fractional
inhibitory concentration index (FICI). FICI was defined as
FICI = MICA2/MICA1+MICB2/MICB1 and FICI index ≤0.5,
0.5–1, 1–4, >4 were used to define synergism, addition, non-
relation or antagonism, respectively (Sopirala et al., 2010).

Time-Kill Curve Experiments
Tigecycline, polymyxin B, minocycline, rifampicin,
chloramphenicol and fosfomycin sodium were used in the
time-kill curve experiments. Drug concentrations of 0.5 ×
MIC, 1 × MIC, 2 × MIC, and 4 × MIC were chosen for these
experiments. Briefly, tubes containing LB with antibiotics were
inoculated with A. baumannii in a log-phase inoculum of
roughly 5 × 105 CFU/ml. Tubes were incubated in an ambient
atmosphere at 35◦C. At time 0, 2, 4, 8, and 24 h after inoculation,
serial 10-fold dilutions were performed and aliquots were
plated onto nutrient agar. The time-kill curve experiments were
performed twice and results were analyzed by mean colony
count values from the duplicate plates for each isolate (Rodriguez
et al., 2010). The bactericidal activity of single antibiotics or
combinations was defined as ≥3 log10 CFU/ml decrease in the
viable count compared with the initial inoculum. Synergism
and antagonism were respectively defined as ≥2 log10 CFU/ml
decrease or increase in the viable count with the combination
compared with the most active agent alone at different time
points (Tängdén et al., 2014).

Establishment of Pneumonia Model and Drug
Treatment
After 1 week adaptation, the median lethal dose of methotrexate
was detected (data not shown). The experiment included control
(10 mice), model (90 mice) and treatment groups (divided into A,

TABLE 1 | The scheme for antibiotics combination.

Antibiotics RIF TZP C FOS E MNO AMK IMP/CS PB

PB + + + + + − − − −
TIG + − + + + + + − −
MNO + − + + + − + − +
FOS − − + − + − + + −
C − − − − − − − + −

PB, Polymyxin B; TIG, Tigecycline; MNO, Minocycline; FOS, Fosfomycin sodium; C,
Chloramphenicol; RIF, Rifampicin; TZP, Piperacillin/tazobactam sodium; E, Erythromycin;
IMP/CS, Imipenem/cilastatin sodium; AMK, Amikacin; “+” represents the combination of
two drugs; “−” represents the non-combination of two drugs.

B, C, and D group, 80 mice per group). The mice in the control
group were fed normally, while those in the model and treatment
groups received an intraperitoneal injection of methotrexate
(0.3 mg/day) for 3 consecutive days. The dose of methotrexate
was calculated based on body surface area (Men and Mice
medication ratio is 1:0.0026). Three days later, the mice in the
model and treatment groups were given with 10% chloral hydrate
(250 mg/kg) by intraperitoneal injection. The anesthetized mice
were placed in a plastic container with two ports. A concentration
of 5 × 108 CFU/ml of multi-drug resistant A. baumannii was
placed in a small ultrasonic nebulizer. A. baumannii flowed into
the plastic container through an entry, and was discharged from
the other end. In total, the ultrasonic frequency was 1.7 MHz ±
10%, atomization speed was 2 ml/min and the time of continuous
atomization was 30 min. All operations were performed in a
biological safety cabinet.

After infection with multi-drug resistant A. baumannii,
the mice were randomly assigned to one of the following
treatment groups: tigecycline (group A), polymyxin B (group B),
minocycline + amikacin (group C), minocycline + rifampicin
(group D). Mice within each group were also randomly assigned
to four sub-groups of different treatment time (post infection
0, 4, 24, and 48 h), each sub-group was 20 mice (10 mice
for recording the body symptoms and mortality, 10 mice for
detection on counts of white blood cells and pathological
examination of lung). Antimicrobial agents were given by
intraperitoneal injection, with dosages as follows: group A
(tigecycline, 10 mg/kg, q12h), group B (polymyxin B, 5 mg/kg,
q6h), group C (minocycline, 7.5 mg/kg, q12h and amikacin,
7.5 mg/kg, q12h), and group D (minocycline, 7.5 mg/kg, q12h
and rifampicin, 25 mg/kg, per day). These doses were chosen
according to previous pharmacokinetic and pharmacodynamic
data from experimental models (Song et al., 2009). The drugs
in each group were administered for three consecutive days.
The body symptoms and mortality of each sub-group (10
mice) were recorded at 0, 4, 24, and 48 h post infection,
correspondently.

Counts of White Blood Cells (WBC) and
Pathological Examination of Lung
Cardiac blood samples were drawn from the mice infected with
multi-drug resistant A. baumannii at 0, 4, 24, and 48 h post
infection. The white blood cell counts were determined. The
lungs were fixed in 40% formaldehyde, and paraffin-embedded
sections were strained by hematoxylin and eosin. The lungs were
subjected to pathological examination to evaluate morphology
and inflammation (Hardy et al., 2009; Giladi et al., 2010). The
mice in drug-treated groups (for three consecutive days) were
sacrificed after therapy for 24, 48, and 72 h. WBC counts and lung
pathological examination were conducted.

Statistical Analysis
The data were presented as mean ± standard deviation (SD).
Differences between comparison groups were analyzed by
Analysis of Variance (ANOVA) using SPSS19.0 software. P <

0.05 was considered significant difference.
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Results

In vitro Antibacterial Activity of Antimicrobial
Agents Alone
The 101 multi-resistant strains tested in this study were
completely resistant to piperacillin/tazobactam sodium,
ceftazidime, levofloxacin, amikacin, fosfomycin sodium,
chloramphenicol (Resistance rate: 100%), and had high resistance
to imipenem/cilastatin sodium, cefoperazone/sulbactam,
erythromycin (Resistance rate: >79%). By contrast, these strains
had high sensitivity to rifampicin (Sensitivity: 79.2%), polymyxin
B (Sensitivity: 78.2%) and minocycline (Sensitivity: 74.2%). The
in vitro antimicrobial resistance values are listed in Table 2.

In vitro Antibacterial Activity of Antimicrobial
Agents in Combination
Chloramphenicol had no additive effects in combination with
other antimicrobial agents, with the exception of polymyxin
B. Similarly, fosfomycin had no additive effects with other
antimicrobial agents, with the exception of erythromycin.
However, all the remaining drug combinations showed either
synergistic or additive effects (Table 3).

Results of Time-Kill Curve Experiments
Chloramphenicol, polymyxin B and fosfomycin sodium at the
concentrations of 4 × MIC or 2 × MIC significantly reduced
the number of colonies within 4 h and completely eliminated
the colonies within 8 h. However, at low concentrations (1 ×
MIC, 0.5 × MIC), they had no effects on bacterial growth. The
strains proliferated during the first two hours with tigecycline
and rifampicin. With minocycline treatment, the number of
colonies increased within 4 h; if higher drug concentrations were
used, they initially decreased, but displayed regrowth 8 h after
treatment (Figure 1).

TABLE 2 | Thirteen normal antibiotics activity profile of multi-drug
resistant Acinetobacter baumannii.

Antibiotics S/% I/% R/% MIC range/(μg/ml) MIC50 MIC90

IMP/CS 14.3 2.2 83.5 1–256 32 64

TZP - - 100 64–4096 512 1024

SCF - 8.8 91.2 4–256 32 128

CAZ - - 100 4–512 128 512

LEV - - 100 4–256 8 32

AMK - - 100 128–8192 2048 8192

E 15.8 5.0 79.2 2-256 64 256

RIF 79.2 20.8 - 0.5–32 4 16

TIG 98.0 2.0 - 0.125–2 0.25 0.5

PB 78.2 21.8 - 0.125–4 0.5 2

FOS - - 100 64–4096 512 4096

MNO 74.2 14.9 10.9 1–64 4 16

C - - 100 32-512 256 512

PB, Polymyxin B; TIG, Tigecycline; MNO, Minocycline; FOS, Fosfomycin sodium; C,
Chloramphenicol; RIF, Rifampicin; TZP, Piperacillin/tazobactam sodium; E, Erythromycin;
IMP/CS, Imipenem/cilastatin sodium; AMK, Amikacin; SCF, Cefoperazone/sulbactam
sodium; CAZ, Ceftazidime; LEV, Levofloxacin; S, I, R represents Susceptible, Intermediate
and Resistant, respectively.

In vivo Antibacterial Activity of Antimicrobial
Agents
After ultrasonic atomization infection with A. baumannii for 0,
4, 24, and 48 h, WBCs in cardiac blood of model group were
1.31 ± 0.31, 1.84 ± 0.20, 2.73 ± 0.47, and 4.13 ± 1.10 (×109/L),
respectively. As shown by the data, the WBC counts increased
significantly in a time-dependent manner. After drug treatment
(consecutive 3 days), initiating from 0 h after infection by multi-
drug resistant A. baumannii, WBCs were measured at 24, 48,
and 72 h after drug treatments. WBCs in group D (MNO + RIF)
were significantly higher than those in model group, group A
(TIG), group B (PB) and group C (MNO + AMK) (P < 0.05).
Compared with group C, WBCs in group A and group B were not
significantly affected. After drug treatment (consecutive 3 days),
initiating from 4 h post infection, WBCs in group C and group
D were comparable (P > 0.05) at 24 h after drug treatment.
However, compared with group A and group B, WBCs in group
C and group D were significantly increased at 48 h after drug
treatments. After drug treatment (consecutive 3 days) at 24 h
after infection, WBCs in group C were significantly different
from those in groups A, B, and D at 24 h after treatments. By
contrast, WBCs in group D were comparable with the values in
group A and group B at 24, 48, and 72 h after drug treatments.
After drug treatment (consecutive 3 days), initiating from 48 post
infection, WBCs in groups A, B, C, and D at 24, 48, and 72 h
after drug treatments were significantly different from those in
model group. However, WBCs in groups A, B, C, and D were
comparable at 48 and 72 h after drug treatments. In addition, after
treatments with single drug initiating from 24, 48 and 72 h post
infection, there was no difference regarding WBCs at groups A
and B (Table 4).

Changes of Vital Signs and Mortality Rate
We established a new lung infection model by ultrasonic
atomization. Immediately after infection, there was no mortality
in any group. In the early stage after infection (0–4 h), a few
mice in the model group presented with symptoms such as
shortness of breath and loss of activity. However, after more
prolonged infection, mice mortality rates gradually increased
to 80%. Except for group D, some mice of other three groups
died in the first 4 h after infection. However, at longer infection

TABLE 3 | The fractional inhibitory concentration index (FICI) values of
antibiotics combination.

Antibiotics RIF TZP C FOS E MNO AMK IMP/CS PB

PB 0.500 2.250 0.750 1.125 0.875 N.D. N.D. N.D. N.D.

TIG 0.750 N.D. 1.125 1.125 0.750 0.625 0.875 N.D. N.D.

MNO 0.750 N.D. 1.250 1.125 0.750 N.D. 0.750 N.D. 0.750

FOS N.D. N.D. 1.125 N.D. 0.875 N.D. 1.125 2.000 N.D.

C N.D. N.D. N.D. N.D. N.D. N.D. N.D. 2.000 N.D.

PB, Polymyxin B; TIG, Tigecycline; MNO, Minocycline; FOS, Fosfomycin sodium; C,
Chloramphenicol; RIF, Rifampicin; TZP, Piperacillin/tazobactam sodium; E, Erythromycin;
IMP/CS, Imipenem/cilastatin sodium; AMK, Amikacin; FICI was defined as FICI =
MICA2/MICA1 + MICB2/MICB1. FICI index ≤0.5, 0.5–1, 1–4, >4 were defined as
synergistic, addition, non-relation or antagonism, respectively. N.D., not done.

Frontiers in Microbiology | www.frontiersin.org 4 May 2015 | Volume 6 | Article 507

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


He et al. Antibiotics against MDR A. baumannii

FIGURE 1 | Time-kill curve for the 6 types of antibiotics. (A) C, Chloramphenicol; (B) PB, Polymyxin B; (C) FOS, Fosfomycin sodium; (D) TIG, Tigecycline; (E)
RIF, Rifampicin; (F) MNO, Minocycline.

times (24 or 48 h post-infection), the medication groups showed
increased mortality. The mortality rates in drug combination
groups (groups C and D) were much lower than in groups A and
B. The mortality rates in medication groups at all time points
were lower than the corresponding values in the model group
(Table 5). These results suggested that the drug combinations
were much more effective than single drug treatment.

Pathological Changes in the Pneumonia Model
and After Drug Treatment
In the model group (Figure 2) at baseline the morphology of
lung tissue was normal, with regular structure, no interstitial
inflammation, slightly dilated blood vessels and no infiltration of
inflammatory cells. Four hours after infection, there was a lung
tissue inflammation reaction composed mostly of lymphocytes
(Grade 1: the amount of inflammatory cell infiltration was less
than 20%). Twenty-four hours after infection, the pulmonary
infiltration of lymphocytes was greatly increased (Grade 2:
the amount of inflammatory cell infiltration was between
20 and 40%). Meanwhile, a small number of neutrophils
and macrophages were observed. Between 24 and 48 h after
infection, a large number of inflammatory cells were found
(mainly neutrophils, Grade 3: the amount of inflammatory cell
infiltration was 41–80%); 48 h after infection, there were severe
inflammation findings, including vascular dilation, congestion
with hemorrhage, neutrophils, lymphocyte and macrophage
infiltration in bronchial and alveolar (Grade 4: the amount of
inflammatory cell infiltration was >80%), a significant dilation
of blood vessels, congestion with hemorrhage, collapse of part of

the alveolar structure and increased visible bacterial colonies in
alveolar abscesses.

Within 4 h after infection, the medication in groups A, B,
C, and D caused decreased inflammatory infiltration (Grade
2). Inflammatory cell infiltration in group D was much lower
than in other groups (Grade 1) (Figure 3). Within 24–48 h
after infection, obvious inflammation infiltration and local
hemorrhage were observed in groups A and B (Grade 3+), and
obvious inflammatory reactions were observed in groups C and
D (Grade 3−) without lung tissue disintegration (Figure 4). After
consecutive 3 days of anti-infective therapy in groups A, B, C, and
D, lung tissue inflammation in each group gradually recovered
with clear structures (Grade 2) (Figure 5).

Discussion

A. baumannii is becoming an important pathogen with the
ability of causing nosocomial infections (Ozturk et al., 2014).
With the increasingly widespread use of antimicrobial drugs,
A. baumannii has developed resistance to several drugs, with
the emergence of multi-drug resistant strains (Bassetti et al.,
2011). In this study, we found that A. baumannii displayed
low sensitivities to carbon penicillins, cephalosporins, and
aminoglycosides. The MIC90 of these drugs were more than
64 μg/ml. The loss of sensitivity to those drugs might be
due to the wide use of antibiotics in the clinical practice.
However, A. baumannii was still sensitive to tigecycline (MIC90:
0.5 μg/ml), polymyxin B (MIC90: 2 μg/ml), minocycline (MIC90:
16 μg/ml) and rifampicin (MIC90: 16 μg/ml). Meanwhile, the
combinational experiments showed that tigecycline, polymyxin
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TABLE 5 | Effect on mortality rates [% (n/N)] at different infected time for
each group.

Groups 0 h 4 h 24 h 48 h

Model 0.0 (0/10) 30.0 (3/10) 60.0 (6/10) 80.0 (8/10)

A 0.0 (0/10) 10.0 (1/10) 10.0 (1/10) 50.0 (5/10)

B 0.0 (0/10) 10.0 (1/10) 30.0 (3/10) 60.0 (6/10)

C 0.0 (0/10) 10.0 (1/10) 20.0 (2/10) 40.0 (4/10)

D 0.0 (0/10) 0.0 (0/10) 10.0 (1/10) 50.0 (5/10)

Group A, Tigecycline (TIG); Group B, Polymyxin B (PB); Group C, Minocycline + Amikacin
(MNO+AMK); Group D, Minocycline + Rifampicin (MNO+RIF).

FIGURE 2 | Pathological changes of Model group (hematoxylin-eosin
staining, ×200).

B and rifampicin displayed synergistic or additive effect when
combined with other drugs. The FICI in all the combination
groups in this study were between 0.5 and 2.25.

Tigecycline is a new type of glycyl prostacyclin antimicrobial
agent, which inhibits bacterial protein translation and produces
antibacterial effects which are modulated by different factors,
including resistance-nodulation-cell division (RND)-type
transporters and other efflux pumps (Sun et al., 2013). Polymyxin
B inhibits bacterial growth by increasing membrane permeability
(Liu et al., 2014). However, because of its nephrotoxicity and
neurotoxicity, this drug is preferably used in combination in
the clinical practice, allowing a dose reduction to alleviate the
toxic effects. Minocycline achieves its bactericidal effects through
protein synthesis inhibition (Rumbo et al., 2013). Because of
dose-dependent effects on the gastrointestinal tract and the
vestibular system, minocycline alone might not be suitable
for anti-infection of multi-drug resistant A. baumannii. In
combination with other antimicrobial agents, minocycline has
been able to achieve significant anti-infective effect (Zhang et al.,
2013).

The antibacterial activity in vitro does not necessarily reflect
the activity in vivo. Hence, a stable and effective animal model
is required to evaluate novel therapeutic approaches and clearly
identify bacterial virulence factors (McConnell et al., 2013). Mice

(such as C57BL/6, BALB/c, and A/J, etc.) have a predisposition
to a variety of pathogens, and mice models are frequently
used to study antimicrobial infection and related pathogenesis.
BALB/c line (inbred) mice are susceptible to pneumonia. In this
study BALB/c mice were used for an animal model of bacterial
pneumonia (Chiang et al., 2013). The ultrasonic atomization
method was used to establish the pneumonia model. Before
the establishment of the model, methotrexate was used to
reduce mouse white blood cells, resulting in immunodeficient
mice. After atomization, the mortality and WBCs gradually
increased with infection time. Several inflammatory cells (mainly
neutrophils) were observed in the lungs 24–48 h after infection.
In addition, clinical manifestations of lung inflammation were
detected in model mice, including shortness of breath, weight
loss, appetite loss, reduced activity. These symptoms mimicked
the clinical presentation of pneumonia, which confirmed the
validity of our model. This allowed us to screen novel therapeutic
strategies for multi-drug resistant A. baumannii pulmonary
infection, as well as to investigate the infection mechanisms.

After successful establishment of the mouse pneumonia
model, the efficacy of drug treatment and pathological changes
in lung tissue were analyzed. According to in vitro susceptibility
test, polymyxin B and tigecycline were effective in inhibiting
multi-drug resistant A. baumannii, and the combinations
(minocycline + amikacin and minocycline + rifampicin) had
synergistic antibiotic effects. We tried to confirm the in vitro
data using our pneumonia model. In this study, within 4 h after
infection, WBC counts in treatment group D was higher than in
groups A, B, and C. These data indicated that minocycline and
rifampicin had synergistic effect in the early stage after infection.
Regarding the time-kill curve experiments, proliferation of
bacteria within 4 h was found in mice treated with minocycline or
rifampicin, although the number of colonies gradually decreased
with the duration of treatment time. In contrast, the minocycline
and rifampicin combination was largely effective in mice within
4 h after infection. The possible mechanisms might be due to
the inhibition of protein synthesis by minocycline and RNA
translation at early phase by rifampicin (Jamal et al., 2014).
However, within 24–48 h after infection, the inhibition effect in
group C became clear and WBC counts were significantly higher
compared with that in group D. Amikacin inhibits bacterial
growth by increasing membrane permeability at logarithmic
growth, leading to release of the functional substance. On
the contrary, minocycline functions through inhibiting protein
synthesis. The combination of these two drugs has synergistic or
additive effect (Cunha, 2006).

Song et al also reported that the combination of two drugs
among polymyxin B, imipenem and rifampicin was effective
against multi-drug resistant A. baumannii (Song et al., 2009).
In a late phase after infection (24–48 h), the medication group
had obvious effects, when compared with the model group.
Meanwhile, according to the time-kill curve experimental data,
six high concentrations (4 × MIC, 2 × MIC) of antimicrobial
agents reduced the amount of the colony count more than
3 log10 within 24 h, suggesting that an increase in the
concentration of antibacterial drug to some extent, can achieve
a good bactericidal effect in vitro. However, in time-kill curve
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FIGURE 3 | Pathological changes of treatment groups at 4 h post infection (hematoxylin-eosin staining, ×200).

FIGURE 4 | Pathological changes of treatment groups at 24 h post infection (hematoxylin-eosin staining, ×200).
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FIGURE 5 | Pathological changes of treatment groups at 48 h post infection (hematoxylin-eosin staining, ×200).

experiments, bacteria treated with the studied agents at low
concentrations displayed an activity of regrowth after 24 h. The
degradation of tigecycline might contribute to the loss of drug
effect. For other antimicrobial agents, the regrowth after 24 h may
be due to the pharmaceutical gradual failure.

The pathological changes after drug treatments also suggested
that drugs in combination had synergistic or additive effects
compared with the same drugs administered as single agents.
Importantly, minocycline and rifampicin combination had a
prominent effect in mice within 4 h after infection, while
amikacin and minocycline combination had synergistic or
additive effect 24 h after infection.

Minocycline is a well-characterized and safe second-line
antimicrobial drug. Both in vivo and in vitro studies indicated
that minocycline has antibacterial effect on multi-drug resistant
A. baumannii. Also, thanks to its low cost, minocycline can
play an important role in the treatment of multi-drug resistant
A. baumannii. However, this drug should be avoided as single
agent. The combination with other antibacterial drugs not only
reduces the doses of single drugs used, but also lowers the risk
of bacterial resistance (Zavascki et al., 2010). On the other side,
rifampicin and amikacin are safe, effective, economical drugs,
which are widely used in the clinic. Therefore, either minocycline
+ amikacin or minocycline + rifampicin not only can reduce
the treatment cost, but can also increase the inhibition activity
against multi-drug resistant A. baumannii.

Although multi-drug resistant A. baumannii was sensitive to
tigecycline and polymyxin B in in vitro experiments, as showed in
the time-kill curve experiments, the effects of these drugs in vivo
are not certain. These data further confirmed the disagreement
of in vivo and in vitro effects in antibacterial activity. The

following reasons might explain this discrepancy. First, based on
pharmacokinetic analysis, the drug half-life in vivo affects the
absorption and distribution of drugs; second, different routes
of administration directly affect drug absorption, distribution,
metabolism and excretion, thus modifying the concentration of
drug in the body and the behavior over time, ultimately affecting
drug efficacy; third, relevant uncontrollable factors affect animal
experiments; fourth, A. baumannii can be divided into mucinous
and non-mucinous types. The mucinous type can easily form
colonies in the lung and recovery is difficult following treatment
(Neonakis et al., 2014). Therefore, it is necessary to establish an
animal model for in vivo screening of anti-bacterial drugs.

In conclusion, this study demonstrated that tigecycline and
polymyxin B were highly sensitive to multi-drug resistant
A. baumannii in an in vitro susceptibility test and, when
combined with other drugs, they can produce synergistic
or additive effects. In vivo experimental data indicated that
minocycline in combination with either rifampicin or amikacin
was more effective against multi-drug resistant A. baumannii
than tigecycline or polymyxin B alone. In addition, the ultrasonic
atomization lung infection model can simulate the entire
processes of clinical infectious pneumonia. This model can be
used to explore the mechanisms and to screen new drugs against
multi-drug resistant A. baumannii infection.
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