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The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are
impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation,
raising the question how rhythm improves movement in PD.We addressed this question with magnetoenceph-
alography recordings during a choice response task with rhythmic and non-rhythmicmodes of stimulus presen-
tation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and
(iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature.
The results showweaker phase synchronisation of slowoscillations and a relative shift frompredictive to reactive
movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased betamodula-
tion depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and
not reactivemovement-related beta power suppression. Operation of a predictivemechanism, induced by rhyth-
mic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of
cue utilisation points to facilitation of basal ganglia-premotor interactions, contrastingwith the popular view that
rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There is evidence that rhythmic cues can improve gait in patientswith
Parkinson’s disease (PD) (for review see Keus et al., 2007; Nombela et al.,
2013; Spaulding et al., 2013). Recent studies, however, have shown that
PD patients are impaired in rhythm perception, especially of beat-based
rhythms with strong temporal regularity (Grahn and Brett, 2009). This
deficit might have its basis in the involvement of the basal ganglia in
rhythmperception andproduction, as suggestedbyneuroimaging studies
(Grahn and Rowe, 2009, 2013) and by neural recordings inmonkey basal
ganglia (Bartolo et al., 2014; Bartolo andMerchant, 2015;Merchant et al.,
2015). The impairment in rhythm perception and its presumed basis in
basal ganglia dysfunction raise the question how rhythm can improve
movement in PD patients (Chen et al., 2009; Nombela et al., 2013; Te
Woerd et al., 2014).

An important element of the recent evidence for basal ganglia
involvement in rhythmperception is that putaminal activity and associ-
ated putamen-premotor interaction during rhythm perception are en-
gaged in a predictive fashion (Grahn and Rowe, 2009, 2013; Merchant
et al., 2015). Notably, relevant putamen-premotor interactions include
interactions with the supplementary motor area but also with the
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lateral premotor cortex. The predictive engagement of putamen-
lateral premotor cortex circuits by rhythm processing underscores the
significance of the question how rhythm improves movement in PD.
This is because this predictive engagement contradicts the popular
view that the lateral premotor cortex supports compensation in PD due
to a mode of processing that is more externally driven than requiring in-
ternal generation and prediction (Cunnington et al., 1995, 2001;
Jahanshahi et al., 1995; Samuel et al., 1997; Sabatini et al., 2000;
Debaere et al., 2003; Vercruysse et al., 2012).

To investigate the physiological basis of rhythmic stimulation bene-
fits in PD, we recordedmovement-related brain activity during a choice
response task with rhythmic and non-rhythmic modes of stimulus pre-
sentation, usingmagnetoencephalography (MEG) in 15 PD patients and
15 control subjects. There is increasing recognition that brain oscilla-
tions tend to entrain to environmental regularities and that this physio-
logical mechanism may underlie behavioural advantages conferred by
such regularities (Schroeder and Lakatos, 2009). Hence we analysed
slow brain oscillations in the frequency range of the stimulus presenta-
tion rate. Of key interest was, furthermore, the response of the sensori-
motor beta rhythm, which is a known pathophysiological marker of PD
(e.g. Gatev et al., 2006; Hammond et al., 2007; Pollok et al., 2012;
Brittain and Brown, 2014), and which is hypothesised to represent an
internal likelihood index for pending voluntary action (Engel and
Fries, 2010; Jenkinson and Brown, 2011). The magnitude of the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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movement-related beta amplitude modulation, commonly attenuated
in PD (e.g. Devos et al., 2003; Doyle et al., 2005; Heinrichs-Graham
et al., 2014), was expected to demonstrate a gain with rhythmic stimu-
lus presentation. Crucially, to evaluate whether such a gain is due to the
adoption of a more predictive mode of control, as opposed to reactive
responding, movement-related beta suppression was separated into a
predictive and a reactive phase, occurring before and after a reaction
stimulus, respectively (Praamstra and Pope, 2007; Te Woerd et al.,
2014). Fig. 1 outlines the different outcome scenarios based on this
distinction.

2. Methods

2.1. Participants

Participantswere 15 PD patients (10men; aged 61±5years) and 15
healthy subjects (9 men; aged 61 ±5 years). Control subjects were
without history of neurological or psychiatric disease. PD patients
were of mild to moderate disease severity (see Table 1). Participation
was based on informed consent according to the Declaration of Helsinki
and the study was approved by the local ethics committee (CMO
Arnhem-Nijmegen). All patients were on dopaminergic medication
and had a mean score of 28 (±7) on the motor section of the Unified
Parkinson’s Disease Rating Scale (UPDRS) (see Table 1). The investiga-
tion and UPDRS rating were performed in the morning, after overnight
withdrawal of medication (N12 h).

2.2. Task and procedure

The experiment consisted of a serial choice response task to arrow
stimuli presented on a screen, with the response being an index ormid-
dle finger button press, depending on the direction of the arrow. The or-
dering of left and rightward arrows was always random. The critical
Fig. 1. Possible outcome scenarios of changes in beta power modulation as a result of
rhythmic vs. non-rhythmic stimulus presentation. (A) Typical time course of beta power
in a serial reaction task with stimuli presented at time points indicated by vertical lines.
A decrease of beta power relative to baseline is called event-related desynchronisation
(ERD). An increase of power is called event-related synchronisation (ERS). Movement
preparation and execution is accompanied by a beta ERD (movement-related beta sup-
pression). This suppression can be divided in a predictive and a reactive part. Predictive
beta suppression is calculated as the power change from pre-stimulus ERS-peak to stimu-
lus-onset (shown by the right arrow in A) relative to the modulation depth (from
pre-stimulus ERS-peak to subsequent ERD-trough; left arrow in A). Rhythmic stimulus
presentation is expected to increase the beta modulation depth. (B) This increase might
be mediated by a stronger desynchronisation, producing higher amplitude reactive beta
suppression. (C) Alternatively, it might be mediated by a stronger synchronisation,
indicating a predictivemode of cue utilisation and yieldinghigher predictive beta suppres-
sion. (D) An increase in beta modulation may also consist of increased synchronisation
and desynchronisation phases.
experimental manipulation concerned the temporal predictability of
successive stimuli, whichwasmanipulated by using two types of blocks.
In one version (the “rhythmic” condition), the SOA (stimulus onset
asynchrony) between successive stimuli was always 1.5 s. In the other
version (the “non-rhythmic” condition), the SOA between successive
stimuli varied between 1 and 2 s (in 0.1 s steps, with the majority
being 1.5 s (~40%)). Subjects used one hand during each block, starting
the first block with their dominant hand and switching to the other
hand for the next block. Half the subjects started with the rhythmic,
the other half with the non-rhythmic condition. Rhythmicity was alter-
nated every two blocks, such that all subjects first performed one condi-
tion with both hands before switching to the other condition.

The experiment was divided in eight blocks of ~5min each, contain-
ing 160 stimuli per block. Each blockwas preceded by a 20 s resting pe-
riod duringwhich ongoing brain activitywas recorded. In order tomake
an unbiased comparison between conditions, only the 1.5 s intervals
from the non-rhythmic condition were used for analyses and an equal
number of stimuli from the rhythmic condition. The experiment was
preceded by a short practice block and participants were instructed
to press the correct button as swift as possible, and were not made
aware of the rhythmicity manipulation. Stimuli were presented with
Presentation 14.9 software (Neurobehavioral Systems), using a liquid
crystal display video projector, and back-projected onto a translucent
screen in the magnetically shielded room. Participants were seated in
the MEG-chair with their eyes 75 cm from the screen, and response
pads attached to the armrests of the chair. Stimuli were presented in
white on a grey background for 300 ms. The fixation area was perma-
nently indicated by white brackets surrounding the central screen
area where the arrow stimuli were presented. The brackets enclosed a
square of 7.2° × 6.1° of visual angle; the arrows measured 1.2° × 1.2°
of visual angle.

2.3. MEG recordings

Ongoing brain activity was recorded using a whole-head MEG sys-
tem with 275 axial gradiometers (VSM/CTF Systems, Coquitlam, BC) in
a magnetically shielded room. During the experiment, we continuously
measured head position relative to the sensor array using localisation
coils that were placed at the nasion and in the left and right ear canals.
Vertical electro-oculogram (EOG) was recorded from the supra- and
infraorbital ridges of the left eye, and horizontal EOG from the bilateral
canthi. MEG and EOG data were sampled at 1200 Hz.

2.4. Behavioural analyses

Reaction time analyses were performed on the responses to the
visual cues. We excluded trials with erroneous responses and discarded
trials in which the response was too slow (N900 ms). Mean response
times were determined for each condition separately. Differences in re-
action time variability, at the individual subject level, were determined
by using the coefficient of variation (ratio of standard deviation to the
mean response time). As musical training could influence the experi-
mental outcomes (Grahn and Rowe, 2009), all subjects filled out the
subpart ‘musical training’ of the Goldsmiths Musical Sophistication
Index (v1.0) (Müllensiefen et al., 2014). All correlations between
reaction time and other behavioural or neurophysiological markers
are calculated by means of a (parametric) Pearson correlation, and are
listedwith uncorrected p-values. However, if a correlation does not sur-
vive a Bonferroni correction for multiple comparisons, this is explicitly
mentioned.

2.5. MEG data preprocessing

MEG data were analysed with MATLAB (2011b) (Mathworks,
Natick, MA) using the open-source FieldTrip toolbox (Oostenveld
et al., 2011). For the main analyses, epochs of 5000 ms (3000 ms



Table 1
Demographic and clinical characteristics of participating Parkinson patients. UPDRS motor score was determined directly after the experiment. Levodopa was always used with a
dopadecarboxylase inhibitor.

Subject number Age (years) and gender Years since diagnosis Most affected side UPDRS motor score Dominant hand Medication (daily dose)

1 66, M 13 R 37 R Levodopa 1000 mg
Entacapone 800 mg
Pramipexol 1 mg

2 63, M 10 R 30 R Levodopa 700 mg
3 66, M 6 L 40 R Levodopa 700 mg

Pramipexol 1.125 mg
4 56, M 3 R 22 R Levodopa 300 mg
5 53, M 2 L 27 R Levodopa 700 mg
6 61, M 14 R 24 L Levodopa 500 mg

Pramipexol 3.75 mg
7 54, F 6 R 33 R Levodopa 800 mg
8 68, F 15 L 30 R Levodopa 850 mg

Pramipexol 3.75 mg
Amantadine 200 mg

9 63, F 5 L 14 R Levodopa 600 mg
Pramipexol 1.5 mg

10 66, M 2 L 22 R Levodopa 300 mg
11 55, F 4 L 25 R Levodopa 600 mg

Pramipexol 0.375 mg
12 56, M 7 R 33 R Levodopa 500 mg
13 69, M 5 L 25 R Levodopa 300 mg

Pramipexol 1.125 mg
14 58, F 7 L 19 R Levodopa 300 mg

Ropinirol 6 mg
Selegiline 10 mg
Amantadine 200 mg

15 62, M 6 R 32 L Levodopa 900 mg
Entacapone 800 mg
Ropinirol 2 mg
Amantadine 200 mg

Mean (±SD) 61 ± 5 7 ± 4 28 ± 7
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pre-stimulus and 2000 ms post-stimulus) were extracted from the
continuous data separately for both task conditions and response
sides. After removal of trials containing muscle artefacts, slow drift, or
SQUID (superconducting quantum interference device) jumps, data
were down-sampled to 600 Hz. Independent component analysis was
used to remove any remaining variance caused by eye blinks and heart-
beat artefacts. As an extra check, the remaining data epochs were visu-
ally inspected and any remaining epochs with artefacts were removed
manually. The remaining stimulus-locked epochs were submitted to
time-frequency and statistical analyses. For more details about the pre-
processing, we refer to Te Woerd et al. (2014). All statistical analyses
presented here were performed using SPSS version 19 (IBM Corp.
Armonk, NY) unless stated otherwise.
2.6. MEG analyses

2.6.1. Beta activity
Since beta oscillatory activity (13–30 Hz) is most prominent in the

sensorimotor system, and lateralises with unimanual responses, senso-
rimotor regions of interest (ROI) were determined by a subtraction
(across conditions and groups) of beta activity associated with the left
and right hand responses. Subsequently, the 25 channels with strongest
beta modulation above each hemisphere were selected and those with-
out a homologous sensor over the opposite hemisphere rejected. This
resulted in two symmetric ROIs overlying the sensorimotor cortices
with 19 sensors each.

Differences in oscillatory power in the ROIs between conditions
were investigated by means of cluster-based non-parametric permuta-
tion tests (Maris and Oostenveld, 2007) in FieldTrip. To study beta
power changes over time, power values were averaged over the entire
beta band and all sensors per ROI, creating contra- and ipsilateral time
series of beta power. Time series for the left and right hand response
conditions were combined by averaging the conditions separately for
the contra- and the ipsilateral hemisphere. Modulation depth of beta
power was defined as the difference between maximum pre-stimulus
ERS and subsequent ERD trough. The amount of predictive beta modu-
lation was defined as the change in beta power from maximum pre-
stimulus ERS to the time of stimulus onset, relative to the modulation
depth. The baseline against which beta power changes were measured
was defined by the mean power of the analysis epoch, effectively the
same as the mean power across the whole measurement session (Tan
et al., 2014a). The results were verified with an alternative baseline,
i.e., the resting power before the start of experimental blocks.
2.6.2. Delta activity
For the analyses of delta phase entrainment, the source of beta activ-

ity was identified using frequency-domain beam-forming source esti-
mation (Gross et al., 2001). We contrasted the beta ERD with the beta
ERS activity using two 500ms timewindows centred on the time points
of maximal post-stimulus ERD and ERS. As the beam-former input
required only one frequency, we used the 20 Hz frequency (resulting
in 10 full cycles per time window). A realistic single-shell head model
(Nolte, 2003) was created for all individuals using the brain surface
from their individual segmented MRI (if available) or an MNI template-
MRI (Holmes et al., 1998). The brain volume of each individual was
discretised to a grid with a 10 mm resolution and the lead field matrix
was calculated for each grid point according to the head position in the
system and the forward model. A spatial filter was then constructed for
each grid point using the covariance and lead field matrices. Source
strengths were calculated for the ERD and ERS windows, after which
thesewere contrasted and the location coordinates ofmaximal difference
were saved. Delta phase analyses were performed on spatially filtered
data using a time-domain beam-former source estimation (Van Veen
et al., 1997). This beam-forming spatial filter for the stored location of



Fig. 2. Group mean response times for both groups in the non-rhythmic and rhythmic
conditions. Error bars represent 1 standard deviation, and all reaction times are averaged
over left and right hand responses.
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interest (the contralateral motor cortex) was used to filter the MEG data.
The LCMV spatial filter passed the activity at the location of interest with
unit-gain, while optimally suppressing all other noise and source contri-
butions to theMEGdata. To allow the estimation of phase at low frequen-
cies,we expanded eachdata epochwithmirror (time-reversed) images of
itself. This procedure increased the length of each epoch to ~16.7 s
(resulting in a ~0.067Hz frequency resolution)while preservingdata con-
tinuity (Cohen, 2014). The strength of phase preference was acquired by
calculating the intertrial phase coherence (ITPC) over all trialswithin each
individual in the frequency range 0.13–10 Hz. Evoked power was investi-
gated by averaging all epochs and submitting the averaged epoch to time-
frequency analysis using a single Hanning taper and an adaptive window
of three cycles for each frequency in the range 0.13–10 Hz. As a strong
ITPC at the task rhythm(~0.67Hz) could also be causedby evoked activity
from stimulus presentation,we calculated the power of evoked activity at
0.67 Hz for all subjects and conditions and used a repeated measures
ANOVA to test for differences between conditions and groups. For the
analysis of instantaneous phase, all epochs were band-pass filtered be-
tween 0.05 and 3 Hz using a finite impulse response least squares filter.
Phase values were calculated using the Hilbert transform of the band-
pass filtered data. To test if any phase preference was present at stimulus
onset, Rayleigh’s test for uniformity of phase datawas used (Fisher, 1993).
Rayleigh’s test and ITC calculations were performed using the MATLAB
circular statistics toolbox (Berens, 2009).

3. Results

3.1. Behavioural data

Participants had to respond as fast as possible to arrow stimuli pre-
sented on screen. Mean response times to all intervals were faster in
the rhythmic than non-rhythmic condition (controls: 401 ± 49 ms vs
422±43ms; PD patients: 460± 82ms vs 486±81ms), yielding a sig-
nificantmain effect of Rhythmicity (F1,28=45.6, P b 0.0001) (see Fig. 2).
Mean response times of control subjects were faster than those of PD
patients, as indicated by a main effect of Group (F1,28 = 6.6, P =
0.016). However, both groups benefitted equally from rhythmicity, as
there was no interaction between Rhythmicity and Group (F1,28 b 1).
The amount of musical training was not different between groups
(F1,28 = 1.4, P= 0.25), and did not correlate with reaction time benefit
(r = 0.11, P = 0.55).

3.2. Oscillatory brain activity

3.2.1. Phase entrainment of delta oscillations
Since the rhythmic stimuli allow for entrainment of slow oscillations,

we analysed phase synchronisation in the delta band (0.05–3 Hz) using a
virtual channel located in the contralateral motor cortex. Oscillatory
delta-band activity was entrained to the reaction stimuli as shown by
analyses of phase-consistency over trials (Fig. 3). Delta-band oscillations
showed a significant phase preference at stimulus onset (Rayleigh’s test
for non-uniformitywith P b 0.05, for both groups and conditions). The in-
stantaneous phases of delta at stimulus onset (aligned to the preferred
phase for all subjects) in themotor cortex are shown in Fig. 3A. Phase syn-
chronywas significantly stronger (as represented by themodulus length,
Fig. 3D) in the rhythmic than non-rhythmic condition, yielding a main
effect of Rhythmicity (F1,28 = 6.7, P = 0.015). Overall, phase synchrony
was stronger in healthy controls than PD patients (F1,28 = 7.8, P =
0.009), but there was no interaction between the factors Rhythmicity
and Group. The strength of delta phase synchrony correlated with re-
sponse speed, but only in the rhythmic (r=−0.41, P=0.024; uncorrect-
ed p-value, does not survive multiple comparison correction) and not in
the non-rhythmic condition (r =−0.21, P= 0.27), supporting a be-
havioural benefit of entrainment of slow oscillations in conditions of
rhythmic stimulus presentation, that is absent with non-rhythmic
presentation (cf. Cravo et al., 2013).
Relevant to the interpretation of phase synchrony is whether it
is due to alignment of endogenous slow oscillations as opposed to a
stimulus-evoked effect. The fact that there was no increase in power
at the task rhythm (0.67 Hz) (Fig. 3C), suggests that the strong ITPC
values at this frequency (Fig. 3B) reflect the entrainment of endogenous
oscillations. This is supported by the fact that evoked power (at the task
rhythm) at stimulus onset was stronger in the non-rhythmic than
rhythmic condition for both groups (F1,28 = 28.2, P b 0.001) (Fig. 3F),
while the ITPC effect showed a trend in the opposite direction
(F1,28 = 3.1, P = 0.09) (Fig. 3E).

Together, these results show that phase synchronisation across condi-
tions was weaker in patients than in controls. Entrainment, i.e., elevated
phase synchronisation with rhythmic stimulus presentation, was the
same in both groups. The behavioural relevance of this entrainment was
supported by a correlation with reaction time.

3.2.2. Distribution of sensorimotor beta activity
Time-frequency analyses of data from the ROI-sensors showed

predominant movement-related modulations in the beta band. We
first evaluated the distribution of the beta modulation, by quantifying
beta power peak-to-peak from maximum desynchronisation to subse-
quent maximum synchronisation. The modulation of beta activity was
maximal over the motor cortex contralateral to the response hand, as
seen in Fig. 4.

As shown in the time-frequency plots of Fig. 5, the modulation
of beta power occurred over the full beta range from 13 to 30 Hz. The
beta modulation followed a fixed pattern, with a reduction in beta
power before and during movement, and a subsequent increase in
beta power shortly after movement termination. These power changes
were, for both groups, stronger in the rhythmic than non-rhythmic con-
dition, as shown by two clusters of stronger desynchronisation and one
of synchronisation (P b 0.032 for all clusters).

3.2.3. Rhythmicity and beta modulation depth
The modulation depth was significantly larger in the rhythmic than

in the non-rhythmic condition (F1,28= 25.0, P b 0.0001), andwas larger
in the hemisphere contralateral than ipsilateral to the response hand,
for both groups (F1,28 = 153.3, P b 0.0001) (see Fig. 6A-B). More impor-
tantly, there was no interaction between Group and Rhythmicity
(F1,28 b 1). This means that the increase in modulation depth was



Fig. 3. Phase entrainment analyses in a virtual channel located in the motor cortex contralateral to the response hand (all results are averaged over all trials and response hands).
(A) Distributions of instantaneous delta phase at stimulus onset (aligned to the preferred phase of each subject). The light grey traces show all individual subjects, and the black traces
are the group means. Intertrial phase coherence (ITPC) values (B) and evoked (ERF) power (C) are shown for both groups and conditions. (D) Overview of modulus lengths resulting
from the phase distributions in (A) for both groups and conditions. ITPC values (E) and evoked power (F) at stimulus onset for both conditions (non-rhythmic in blue, rhythmic in
red) and groups (controls in left panel and PD patients in right panel). Insets show the ITPC and evoked power around the stimulation frequency (0.67 Hz) at stimulus onset.
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equal for both groups. Also, in both groups, the increase in modulation
depth was solely caused by a stronger ERS phase (as shown by the dif-
ference between conditions in Fig. 5), with similar spatial distribution
for both groups (Fig. 6D).

Figs. 5 and 6 show an apparent reduction in modulation depth in PD
patients, but there was not a significant difference between groups
(F1,28 = 2.2, P = 0.15). The apparent difference between the group av-
erages could be due to greater variability in reaction times in the patient
compared to the control group, leading to poorer alignment of ERD and
ERS phases. This mechanism cannot explain the between-conditions ef-
fect, as reaction time variability was similar between conditions. The
difference between rhythmic and non-rhythmic condition can neither
be explained by a difference in reaction time variability (between con-
ditions) at the individual subject level. This was established by comput-
ing for each subject and condition the coefficient of variation. A Group
by Rhythmicity analysis of this coefficient revealed no significant differ-
ence between groups (F1,28 = 1.7, P = 0.20), nor a difference between
conditions (F1,28 = 1.8, P = 0.19).

To rule out any effects due to the choice of baseline, the same analy-
seswere repeatedwith data baselined to a 20 s resting period before the
start of each block (Fig. S1). These analyses showed the same results as
presented here, and confirmed that the increase in beta modulation
depthwas exclusively due to a higher amplitude synchronisation phase.

The behavioural relevance of the increased modulation depth was
underscored by a significant correlation between beta modulation
depth in the contralateral hemisphere and reaction time (across
groups), in both the non-rhythmic (r = −0.46, P = 0.011) and rhyth-
mic condition (r = −0.50, P = 0.005) (Fig. S2).

3.2.4. Predictive beta modulation
Predictive beta modulation was calculated as the percentage of beta

modulation that occurred before stimulus onset (beta power change
from maximal pre-stimulus ERS to stimulus onset) compared to the
total beta modulation depth (beta power change between maximal
ERS and subsequent maximal ERD). By definition, this means that a
stronger ERS will lead to an increase in predictive beta modulation (as-
suming the ERD remains the same), while a stronger ERD phase leads to
a decrease in predictive modulation. Across groups, the predictive beta
modulation was higher in the rhythmic than non-rhythmic condition
(F1,28 = 28.7, P b 0.0001), which agrees with the higher amplitude
ERS phase in the rhythmic condition. The predictive beta modulation
was higher in the contralateral than ipsilateral hemisphere (F1,28 =
52.6, P b 0.0001) and significantly lower in PD patients than in healthy
controls (F1,28 = 4.9, P = 0.035). There were no interactions involving
the factors Group, Rhythmicity or Hemisphere.

Therewas a significant correlation (across groups) betweenpredictive
beta modulation in the hemisphere contralateral to the upcoming re-
sponse hand and reaction time, in both the non-rhythmic (r = −0.55,
P = 0.002) and rhythmic condition (r = −0.72, P b 0.001) (Fig. S2).
The correlation between the between-conditions difference of both the
predictive modulation and reaction time was also significant (r = 0.46,
P = 0.01), meaning that the speeding of reaction time correlates with
the increase in predictive beta modulation. Since we found a correlation
between reaction time and both the contralateral modulation depth
and predictive beta modulation, we used partial correlations to find out
which of the two best explained reaction time. There was a significant
partial correlation between predictive beta modulation and reaction
time, regressing out modulation depth, in both conditions (non-
rhythmic: r = −0.48, P = 0.009; rhythmic: r = −0.66, P b 0.001).
Partial correlations between modulation depth and reaction time,
regressing out predictive beta modulation, showed a trend towards
significance in both conditions (non-rhythmic: r = −0.36, P =
0.057; rhythmic: r = −0.35, P = 0.06). These findings indicate
that both modulation depth and predictive modulation of contralat-
eral beta oscillatory power are related to reaction time, the latter
more robustly.

Based on previous studies showing a coupling between delta and
beta oscillatory activity in rhythmic tasks, we investigated the



Fig. 4. Spatial distribution of the beta powermodulation (in % change), measured frommaximal post-stimulus ERD to maximal ERS, at the sensor level (left panel) and projected onto an
MRI-derived cortical surface (right panel). The topographies are averaged over both conditions and response hands (by first mirroring the topographies of the left hand condition over the
anterior–posterior axis and then averaging over the right and left hand conditions), but separately for both groups (scaling of the PD group is increased by 10% for illustrative purposes).
Thus, the left hemisphere sensors are contralateral, and the right hemisphere sensors ipsilateral to the side of movement.

Fig. 5. Time-frequency representations of the changes in spectral power in the contralateral sensorimotor area ROI (see Fig. 6C) for controls and PD patients in both the non-rhythmic and
rhythmic conditions. The vertical dotted lines indicate stimulus onset. The power difference (rhythmicminus non-rhythmic) between conditions is represented in the right-most column.
Black solid lines surround time-frequency clusters that are significantly different (P b 0.05) between conditions, as tested by means of a cluster-based nonparametric permutation test.
Note, there are two significant clusters of beta ERD, of which the first is due to averaging of trials with non-equal SOAs preceding the standard 1.5 s interval in the non-rhythmic condition.
The second cluster of ERD represents a sensory gating effect (see Section 3.2.5).
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Fig. 6. The group mean beta power changes over time, averaged across all beta frequencies (13–30 Hz) and all sensors overlying the ROI contralateral to the response hand (in C). Beta
power traces are shown for controls (A) and PD patients (B) in the non-rhythmic (blue traces) and rhythmic (red traces) conditions. Beta modulation depth is equal to the difference
betweenmaximal pre-stimulus ERS and subsequent ERD trough (shown by the black arrow). Shaded areas around themean beta power traces represent the SEM, and the vertical dotted
line indicates stimulus onset. Topography of the difference in beta power between conditions is shown in (D), during a 200ms-window around the ERS peak (averaged across both hands,
by first mirroring the topographies of the left hand condition over the anterior–posterior axis and then averaging over the right and left hand conditions).
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correlation between the strength of delta phase entrainment and the
amount of predictive beta modulation. This correlation was significant
in the rhythmic (r= 0.38, P=0.041), but not in the non-rhythmic con-
dition (r = 0.09, P = 0.65), supporting that phase-amplitude coupling
of delta and beta oscillations may contribute to the behavioural advan-
tage observed in the rhythmic condition.
3.2.5. Modulation of stimulus-evoked beta activity
In both groups, the beta power in the non-rhythmic condition

briefly increased at a fixed latency of ~100 ms after stimulus onset,
showing a small peak. In the rhythmic condition this peak reduced
to a mere notch. The peak and notch correspond in time with a ro-
bust peak of beta synchronisation over posterior areas, at which lo-
cation there was no amplitude difference between conditions. The
short latency and temporal coincidence with posteriorly distributed
beta synchronisation of high amplitude indicate that the central beta
modulation concerns a modulation of stimulus-evoked beta activity.
Importantly, the reduced beta power in the rhythmic condition re-
veals a gating of sensory input to sensorimotor areas due to further
advanced movement preparation in this condition (Seki and Fetz,
2012). Within the sensorimotor cortex ROI, the size of the beta
power difference between rhythmic and non-rhythmic conditions
was identical between groups (F1,28 = 1.5, P = 0.23). Analysis of
this between-conditions effect across all sensors revealed a cluster
of sensors in which beta power was significantly lower in the rhyth-
mic compared to non-rhythmic condition for both controls
(P b 0.001) and PD patients (P b 0.001). This effect displayed a
focus over the contralateral sensorimotor cortex. The gating effect
corroborates that the gain in beta modulation depth, the elevated
beta-ERS, and the increased predictive beta suppression express in-
creased preparatory activity due to a predictive mode of cue
utilisation.
4. Discussion

Themain results of this study are, first, that PD patients benefit from
a rhythmic compared to a non-rhythmic presentation of stimuli, both in
terms of reaction time, entrainment of slow oscillations, and properties
of beta oscillatory activity. Second, the entrainment of slow oscillations
and the increase in modulation depth of beta oscillatory activity in PD
patients, under a rhythmic stimulation regime, are identical to those
in healthy control subjects. Third, the increase in modulation depth of
beta oscillatory activity is, both in patients and controls, entirely due to
an increased beta ERS phase that improves the predictive movement-
related beta suppression, reflecting a predictive mode of cue utilisation.
Fourth, the beneficial effect of rhythmic stimulus presentation on reaction
time, phase synchronisation of slow oscillations and predictive beta sup-
pression, in both groups, are found against the backdrop of an overall sig-
nificant group difference on thesemeasures, with patients demonstrating
slower reaction times, poorer phase synchronisation and smaller predic-
tive beta suppression.

There is growing recognition of the role of temporal prediction in
human behaviour (e.g. Large and Jones, 1999; Schwartze and Kotz,
2013; Calderone et al., 2014). One form of temporal prediction is
based on environmental regularity, mediated by endogenous neural os-
cillations that align to regular external events (Schroeder and Lakatos,
2009). This alignment occurs in such a way that timing of low and
high excitability phases of neural oscillations are optimised to the pro-
cessing of relevant events (Lakatos et al., 2008; Henry and Obleser,
2012). Entrainment of neural oscillations to the temporal structure of
a task has demonstrated effects in a variety of behaviours and analyses
of oscillatory entrainment are beginning to be applied to neurological
and psychiatric disorders (Praamstra and Pope, 2007; Lakatos et al.,
2013; Calderone et al., 2014; Leong and Goswami, 2014; Te Woerd
et al., 2014). In PD such analyses have added relevance due to the
wide application of rhythmic cueing in rehabilitation.



307E.S. te Woerd et al. / NeuroImage: Clinical 9 (2015) 300–309
Investigations and reviews on cueing in PD frequently refer to com-
promised basal ganglia-cortical loops involving (pre-)SMA, resulting in
impaired timing and impaired generation of internal cues for the se-
quencing of actions (Cunnington et al., 1995; Rochester et al., 2007;
Nombela et al., 2013). External cues would improve motor function on
the basis of increased activity of the lateral premotor cortex, probably
supported by greater reliance on cerebellar-thalamocortical circuits,
bypassing basal ganglia-thalamocortical loops (Cunnington et al.,
1995, 2001; Samuel et al., 1997; Rochester et al., 2007; Yu et al., 2007;
Sen et al., 2010; Vercruysse et al., 2012; Benoit et al., 2014). This view
on cueing, assuming a shift in activation frommedial to lateral premotor
cortex and, subcortically, a shift from basal ganglia to cerebellum
(Hughes et al., 2010), has also been criticised, however. It has been
noted that there is no preferential involvement of the basal ganglia
in internally generated movements (Turner and Anderson, 2005;
Ballanger et al., 2006), and that functional specialisation of medial and
lateral premotor cortex for internally and externally cued movements
is relative (Jahanshahi et al., 1995; Cunnington et al., 2002; Ballanger
et al., 2006; Gowen andMiall, 2007). In a recent meta-analysis of imag-
ing studies in PD, moreover, no evidence was found for a shift in activa-
tion frommedial to lateral premotor areas (Herz et al., 2014a). Imaging
studies comparing on and off states, furthermore, have shown that rel-
ative overactivation of lateral premotor cortex in PD is a feature of the
off state only, eliminated by dopaminergic therapywhich restores activ-
ity and connectivity of the SMA (Rowe et al., 2010;Michely et al., 2015).
EEG studies using this approach revealed a similar pattern in restored
oscillatory coupling of the SM A with prefrontal, premotor and motor
cortex (Herz et al., 2014b, 2014c).

Recent work on rhythmperception has given an intriguing new per-
spective on this discussion. Grahn and Brett (2009) found impaired per-
ception of beat-based rhythms in PD. Perception of such rhythms does
indeed rely on activation of putaminal-premotor circuits with both
SMA and lateral premotor cortex (Grahn and Rowe, 2009; Geiser
et al., 2012), with the putaminal activation specifically serving beat pre-
diction (Grahn and Rowe, 2013). As pointed out in the introduction, this
raises an important question with respect to rhythmic cueing: if PD pa-
tients are impaired in the perception of beat-based rhythmswith strong
temporal regularity, how can they benefit from rhythmic cueing (Chen
et al., 2009; Nombela et al., 2013)? A closely linked question, not ad-
dressed before, is whether a benefit, if it is there, preserves the predic-
tive nature of putamen-premotor involvement in rhythm processing
or takes a different, more reactive form.

Based on the available evidence on movement-related beta activity,
we hypothesised that a behavioural benefit of rhythmic stimulus
presentation should be accompanied by an increase of beta powermodu-
lation depth in PD.Wewere specifically interested inwhether such an in-
crease is due to a gain in synchronisation or a gain in desynchronisation
(see Fig. 1). Previously, we have observed a preserved modulation
depth in PD, butwith a shift frompredominantly predictive tomore reac-
tive modulation. That is, relative to control subjects patients demonstrat-
ed little beta desynchronisation before the reaction stimuli, but a much
larger desynchronisation after the stimulus, possibly in compensation
(Praamstra and Pope, 2007; teWoerd et al., 2014). In a direct comparison
of rhythmic and non-rhythmic stimulus presentation, this puts key signif-
icance on the sign of a gain in modulation depth. An increase in the syn-
chronisation phase, with concomitant increase of predictive beta
modulation fits the predictive nature of basal ganglia involvement in
rhythm processing (Grahn and Rowe, 2009, 2013), and would provide
an argument for rhythmic cueing to facilitate impaired basal
ganglia-cortical communication. A qualitatively different increase
in the desynchronisation phase, by contrast, would be an argument for
beneficial effects of rhythmic stimulation to be based on mechanisms
that perhaps bypass the basal ganglia. That is, preparatory adjustments
enabled by rhythmic stimulus presentation may involve motor prepara-
tion, but also the presetting of stimulus processing mechanisms (Requin
et al., 1991; Müller-Gethmann et al., 2003; SanMiguel et al., 2013).
When the latter form of preparation predominates, an increase in beta
modulation depth may be reactive only.

The effects of rhythmic stimulus presentation were unambiguous.
The gain in modulation depth was of the same size in patients and con-
trols. In addition, the gain was entirely due to stronger synchronisation
in both groups, which resulted in a significantly increased predictive
beta suppression. Both these features are in agreement with the predic-
tive nature of basal ganglia involvement in rhythm processing. Impor-
tantly, the sensory gating effect, which was of equal amplitude in
patients and controls, provides strong confirmation of a predictive
mode of cue utilisation. Finally, the topographic distribution of the ben-
eficial effects of rhythmic stimulation was identical between groups.
This combination of results strongly suggests that the neural mecha-
nism by which rhythmic stimulation facilitates movement is the same
for patients and control subjects.

Serendipitously, the selective modulation, by temporal regularity, of
the ERS phase of the movement-related beta amplitude modulation
closely resembles a recently described effect on beta-ERS of movement
errors in a visuomotor adaptation task (Tan et al., 2014a). The authors
found a negative correlation between error size and amplitude of the
beta-ERS phase, leading to the hypothesis that this beta-ERS effect
serves the trial-to-trialmodification of an internalmodel that guides fu-
ture movement. In our experiment, the difference between actual and
expected (mean or most frequent) interstimulus interval may also
have acted as an error signal, influencing the beta-ERS modulation.
The resemblance of the effects on beta-ERS is important for several
reasons. Firstly, beta-ERSwas hitherto understood as related to an idling
state of themotor cortex or to sensory afferent processing (Pfurtscheller
et al., 1996; Cassim et al., 2001). The proposed relation to updating of an
internal model establishes a conceptual link between the amplitude of
beta-ERS and predictive beta suppression. That is, following successful
performance post-movement beta-ERS will be higher than after an
error, and act to preserve the set of motor commands that achieved
the last response (Tan et al., 2014a). Conversely, reduced beta-ERS
following an error provides theflexibility that is necessary formotor ad-
justments on the next trial (Brittain and Brown, 2014). Naturally, these
different states yield different degrees of preparedness, expressed in pre-
dictive beta suppression. Secondly, Tan et al. (2014b) obtained similar ef-
fects in the subthalamic nucleus (STN) of (medicated) Parkinson
patients, and complemented this observation with analyses of infor-
mation exchange between STN and cortex. These analyses revealed
an STN-driven coupling to the sensorimotor cortex after large errors
which correlated with subsequent behavioural adjustment. This
demonstrates that even in advanced PD the basal ganglia maintain
a significant degree of involvement in adaptive behaviour and,
most relevant here, are able to support the beta modulation we ob-
serve in this study. Note that we do not imply that the beta ERS ef-
fect reported by Tan et al. has the same underlying mechanism as
the modulation we observe. The important resemblance is the asso-
ciation between ERS amplitude and preparation for a subsequent
trial.

Returning to rhythm processing and entrainment in PD, there is a
general view that basal ganglia and cerebellum represent different timing
systems, beat-based and duration-based, respectively (Teki et al., 2011;
Merchant et al., 2015). The distinction may explain why beat-based
rhythms activate putamen-premotor circuits and rhythms without tem-
poral regularity the cerebellum (Grahn and Rowe, 2013). However, a
case has been made that the two systems do not operate independently,
but in a coordinated fashion (Teki et al., 2012; Cope et al., 2014). In the
unified timingmodel of these investigators, the basal ganglia are an oblig-
atory component, required for duration-based as well as beat-based
timing.Moreover, temporal predictionwithin a beat-based context is des-
ignated as a function crucially relying on the basal ganglia (Cope et al.,
2014). Clearly, from the perspective of thismodel, our finding of a predic-
tive mode of cue utilisation in PD supports that the benefit of rhythmic
stimulus presentation involves the basal ganglia, and calls the notion
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of a simple shift from basal ganglia-thalamocortical to cerebellar-
thalamocortical pathways, as the basis for rhythmic cueing, into question.

5. Conclusion

There is a longstanding notion that PD patients do not optimally
exploit advance information or easily engage in advance preparation,
instead adopting a more reactive mode of responding. In line with this
notion, themovement-related suppression of beta power in serial reac-
tion tasks is predominantly reactive in PD patients and more pros-
pective in healthy subjects (Praamstra and Pope, 2007; Te Woerd
et al., 2014). The present data show, however, that rhythmic vs. non-
rhythmic stimulus presentation produces the same gain in beta modu-
lation depth in patients and controls, exclusively due to a higher ampli-
tude beta-ERS phase that increases the predictive, but not the reactive
beta power suppression. Supported by recent work in areas of motor
learning and timing, the results point to a facilitatory effect of rhythmic
stimulation on basal ganglia-premotor cortex interaction, in patients
and controls alike. This outcome echoes the conclusion of Ballanger
et al. (2006), stating that benefits of external cues reflect general prop-
erties of the motor system, rather than being due to recruitment of
ancillary structures compensating for deficient basal ganglia-cortical
projections. A limitation is that we used visual stimuli only, at a presen-
tation rate slightly slower than optimal for inducing entrainment. How-
ever, with stimulus modality and frequency optimised to induce strong
entrainment, the observed predictive mode of cue utilisation is more
likely to be strengthened than to be reversed.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2015.08.018.
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