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Abstract

Background: Secretory Apolipoprotein J/Clusterin (sCLU) is a ubiquitously expressed chaperone that has been functionally
implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role
of sCLU in red blood cells (RBCs) remained largely unknown. In the current study we identified sCLU as a component of
human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane
sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as
well as during physiological in vivo cellular senescence.

Methodology/Principal Findings: By using a combination of molecular, biochemical and high resolution microscopical
methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and
cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute
stress (e.g. smoking), in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases,
sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers
which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation.

Conclusions/Significance: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but
an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-
responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell
exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox
imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.
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Introduction

Mammalian red blood cells (RBCs) have a unique structure,

composition and functional properties that allow them to

efficiently fulfil their crucial role in the maintenance of tissues

homeostasis. Although mature RBCs represent a simplified cell

type, they retain a number of molecular components of signalling

and/or regulatory pathways [1]. Determination of the RBCs

lifespan is a complex process affected by many cellular parameters.

Specifically, the aging process of RBCs is characterized by cell

shrinkage, membrane remodelling, micro-vesiculation and expo-

sure of surface removal markers that trigger erythrophagocytosis

[2-4]. Powerful removal signals are the externalization of

phosphatidylserine and the binding of autologous immunoglobu-

lins G (IgGs) to senescence-specific neo-antigens that originate

from structural changes in the protein Band 3 [5]. The process of

RBCs senescence is also associated with the operation of an

apoptosis-like cell death program probably mediated by calpains

and caspases activation [6-8]. As in the typical mammalian cells, a

range of mechanisms that are responsive to oxidative stress seem to

drive normal RBCs senescence in vivo [5,9].

Secretory Apolipoprotein J/Clusterin (sCLU) is a heterodimeric

disulfide-linked glycoprotein of ,75-80 kDa being encoded by a

single copy gene [10]. It functions at High Density Lipoprotein

particles as an apolipoprotein [11]. Also, it has been shown that it

binds to hydrophobic regions of partially unfolded proteins and via

an ATP-independent mechanism inhibits protein aggregation and

precipitation [12]. On the basis of this latter property, sCLU was

classified as a functional homologue of the small Heat Shock

Proteins (sHSPs) [13]. Considering this latter property it is not

surprising that sCLU has being involved in several physiological

processes including development [14], lipid transportation [11],

differentiation [15], cellular senescence, in vivo aging as well as in

many age-related diseases including neurodegeneration, vascular
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damage, diabetes and tumorigenesis [16]. As a result sCLU has

attracted significant biomedical interest [10] being currently an

antisense target in Phase III clinical trials in prostate cancer

patients [17], while CLU gene variants were recently found to

associate with Alzheimer’s disease [18,19]. Considering that the

only common characteristic shared by all these, otherwise

unrelated in their etiology and/or clinical manifestation, patho-

logical conditions is the fact that they are all characterized by

increased oxidative stress and injury, we recently proposed that

sCLU is a sensitive cellular biosensor of oxidative stress that

functions to protect cells from the deleterious effects of free radicals

and their derivatives [16,20].

The elucidation of signalling mechanisms operating during

RBCs senescence or exposure to endogenous or exogenous stress

are of great interest in cases of anemia, organism aging, exposure

to noxious factors and blood banking. The appropriate interven-

tion to those mechanisms could favourably affect both RBCs

survival and functional competence. In view (1) of the functional

implication of sCLU in cellular senescence and pathological

conditions of increased oxidative injury, including organism aging

[16] and (2) our previous preliminary studies showing sCLU

localization in human RBCs [21] we investigated the probable role

of sCLU in mature human healthy and stressed erythrocytes. In

the present report we provide novel evidence showing that sCLU

distributes in RBCs cytosol and membrane and that its relative

content during senescence or in diseases closely correlates to the

expression of typical cellular senescence, erythrophagocystosis and

oxidative stress markers. Our novel findings clearly imply a

functional role for sCLU in the physiology of human RBCs as a

sensitive molecular biomarker of senescence and redox imbalance.

Materials and Methods

Ethics
The study has been submitted and has been approved by the

Research Bioethics and BioSecure Committee of the Faculty of Biology/

University of Athens. Investigations were carried out in accordance with

the principles of the Declaration of Helsinki. Written informed consent

was obtained from all blood donors participating in this study.

Subjects
Venous blood of 45 healthy adult volunteers was used in the

present study. In this cohort, 37 were non-smoking adults while 8

were heavy smokers. The non-smoking group consisted of young

(N = 13, 20-28 years old, on average 24.162.2y), middle (N = 14,

30-45 years old, on average 39.164.3y) or old (N = 10, 74-87 years

old, on average 8264.9y) age subjects. The cigarette smokers were

all of middle age (N = 8, 36-42 years old, on average 39.462.4y)

and have been consuming two or more packets of cigarettes per

day for 22.463.2 years. Blood samples from adult patients with

hemolytic anemia (N = 10) who have been clinically diagnosed for

mild or typical hereditary spherocytosis (HS, N = 5) [HS-1

(splenectomised), -4 and -5 with primary defects in spectrin; HS-

2, -3 with primary defects in ankyrin], heterozygous 4.1(-)

hereditary elliptocytosis (N = 2) and beta+ thalassemia/sickle cell

anemia (N = 3) were collected in ethylenediaminetetraacetic acid

(EDTA) and heparin. All patients were in good health and none

presented transfusion-dependent anemia. Healthy non-smoking

subjects were used as controls.

Erythrocytes isolation and preparation of lysates, plasma
membranes, cytoskeletons and vesicles

RBCs were isolated by the method of Beutler [22]. Briefly,

leukocytes and platelets were removed from the blood samples by

filtering through columns of a-cellulose and microcrystalline cellulose

mixture (1:1 by weight) in isotonic saline, phosphate buffered saline

(PBS) or (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes)-

buffered isotonic saline (NaCl 133 mM, KCl 4.5 mM and Hepes

10 mM, pH 7.4) supplemented with protease inhibitors. RBCs were

extensively washed and diluted to an appropriate hematocrit; in some

cases a gentle negative pressure was applied to facilitate filtration.

Purified RBCs were lysed with hypotonic (5 mM) sodium phosphate

buffer (pH 8.0) containing a cocktail of protease inhibitors and

membrane or cytosol fractions were prepared as previously described

[23]. RBCs cytoskeletons were prepared from the washed mem-

branes by Triton X-100 extraction [24]. Protein concentration was

determined by using the Bradford protein assay.

In vitro biotinylation, proteinase K treatment and
oxidation of purified RBCs

For RBCs labelling with biotin, 26108 leukodepleted RBCs

samples were surface labelled with 2 mM Sulfo-NHS-LC biotin in

PBS, according to the manufacturer’s instructions. For the

proteinase K experiments, 26108 intact RBCs were digested with

proteinase K (100 mg/ml) for 1 h at 37uC in PBS and were

subsequently washed with ice-cold PBS containing protease

inhibitors. RBCs intracellular proteinase digestions were carried

out under identical conditions except that Nonidet P-40 (NP-40,

0.005% in PBS) was added in the digestion and washing buffers.

RBCs were then pelleted, osmotically lysed and processed to

biochemical fractionation into membrane and cytosol fractions

(see above). For the in vitro oxidation experiments 30 ml of purified

RBCs per sample were exposed to 2.5 mM t-butyl hydroperoxide

(tBHP) in PBS. Following incubation for 30 min at 37uC the cells

pelleted and the supernatant was centrifuged to collect the RBC-

derived membrane vesicles.

Isolation of young and senescent RBCs through
fractionation according to cellular density

RBCs fractionation according to density was performed by

means of a Percoll discontinuous gradient as described previously

[25,26]. Briefly, the gradient was built up in five layers of Percoll

medium varied between 1.087 and 1.098 g/ml buffered with

Hepes buffer solution pH 7.4, containing 5.25% (w/v) bovine

serum albumin. The RBCs’ suspension (40% hematocrit in Hepes-

buffered isotonic saline) was layered on the top of the gradient and

the fractions were collected by low speed centrifugation (2500 g)

for 30 min at room temperature. Cells were excessively washed

with Hepes buffer to remove Percoll and a range of age-dependent

RBC parameters were recorded in each fraction (mean cellular

volume MCV, mean cellular hemoglobin and mean cellular

hemoglobin concentration MCHC) by means of an automatic

blood cell counter (Sysmex K-4500, Roche).

Immunoblotting analysis, detection of protein carbonyl
groups and of Reactive Oxygen Species (ROS)

Equal amounts (12-200 mg) of RBCs fractions were loaded in

Laemmli gels, blotted to nitrocellulose membranes and probed

with primary and horseradish peroxidise (HRP)-conjugated

secondary antibodies as previously described [27]. Immunoblots

were developed using an enhanced chemiluminescence (ECL)

reagent kit and quantified by scanning densitometry (Gel Analyzer

v.1.0 image-processing program). Purified RBCs plasma mem-

brane proteins were processed for the detection of carbonyl groups

using the OxyblotH detection kit as per manufacturer’s specifica-

tions. For quantification purposes, the proteome carbonylation

index (PCI) was calculated as described previously [28].

CLU Involvement in RBCs Senescence and Stress

PLoS ONE | www.plosone.org 2 October 2011 | Volume 6 | Issue 10 | e26032



ROS accumulation in RBCs was detected with the mem-

brane-permeable and redox-sensitive dye 5-(and-6)-chloromethyl

-29,79-dichlorodihydrofluorescein diacetate, acetyl ester (CM

-H2DCFDA) as per the manufacturer’s guidelines with minor

modifications [28]. More specifically, isolated and thoroughly

washed RBCs (in triplicates) were incubated with pre-warmed PBS

in the absence (endogenous ROS) or in the presence (exogenous

oxidation) of 100 mM tBHP at 25uC. Following the removal of the

oxidant (if applied), 1% RBCs suspension was loaded with 10 mM

CM-H2DCFDA in PBS buffer for 30 min. Samples were then

washed and incubated in the same buffer for 10-15 min in order to

render the dye responsive to oxidation. Fluorescent dichlorofluor-

escein (DCF) was measured using the VersaFluorTM Fluorometer

System (Bio-Rad: Excitation, 490 nm; Emission, 520 nm). The

fluorescent intensity was normalized to the total protein level. The

following negative controls were used: (1) unstained RBCs

incubated with only PBS buffer to detect autofluorescence, and,

(2) cell-free mixtures of dye and buffers with or without tBHP.

Confocal Laser Scanning Microscope (CLSM)
immunofluorescence and Transmission Electron
microscopy (TEM) immunogold localization

Immunofluorescence assays were performed as previously de-

scribed [8]. Briefly, RBCs were fixed with 90% methanol in PBS,

permeabilized in PBS containing 0.05% Triton X-100 and blocked

with 3% bovine serum albumin and 0.1% Tween-20 in PBS. Cells

were probed with the appropriate primary and secondary antibodies

conjugated to fluorescein isothiocyanate (FITC) or rhodamine. Slides

were observed under a Digital Eclipse C1 (Nikon, Melville, NY)

CLSM and recorded at the same exposure time. Controls were

prepared as described previously [23] and showed no immunoreac-

tivity. Shown micrographs are representative from RBCs derived

from three different donors and six independent experiments.

For immunoelectron microscopy, RBCs were fixed in 4%

paraformaldehyde, 0.1% glutaraldehyde in PBS pH 7.2 and

embedded in unicryl acrylic resin as described previously [21,23].

Thin sections were blocked with 3% fatty acid-free bovine serum

albumin in PBS; probed with the sCLU antibody and immuno-

globulins conjugated to 15 nm gold particles and examined on a

Phillips EM 300 electron microscope operating at 80 kV acceler-

ating voltage. Controls were as for CLSM and were all negative.

Statistical analysis
Presented experiments have been repeated at least two times,

unless otherwise stated. Data points correspond to the mean value;

error bars denote standard deviation (s.d.). Individual protein

levels were quantified against a reference RBCs membrane protein

or against the sum of the normal proteins further normalized to

the respective corresponding controls (healthy, young or non-

smoking subjects and young or untreated cells). For statistical

analysis the MS Excel and the Statistical Package for Social

Sciences (IBM SPSS; version 19.0 for Windows; administrated by

NKUA) were used. Significance was evaluated using the one-way

analysis of variance (ANOVA). Comparisons between different

groups were performed by the independent t-test or the chi-

squared test. Spearman’s correlation test (two-sided) was used to

assess the relationship between variables (correlation coefficient r).

Significance was accepted at p,0.05. P,0.05 or p,0.01 are

indicated in the graphs by one or two asterisks, respectively.

Material Supplies
The monoclonal antibodies against Band 3 (B9277) and actin

(A5316), the polyclonal antibodies against spectrin (S1515) and

human IgGs (A8792) and the HRP-conjugated secondary antibodies

(A-5420), as well as the Protease Inhibitor Cocktail, tBHP, a-cellulose,

microcrystalline cellulose (Sigmacell type 50), Percoll medium and

common chemicals and buffers were obtained from Sigma-Aldrich

(Germany). Polyclonal antibodies against hemoglobin (Hb)

(GR800GAP) were obtained from Europa Bioproducts (Cambridge).

Primary antibodies against CD47 (sc-25773), CLU (sc-6419), Hsp70

(sc-1060) and Band 3 (sc-20657) as well as secondary antibodies

conjugated to fluorescein isothiocyanate or rhodamine were from

Santa Cruz Biotechnology (Santa Cruz, CA). CM-H2DCFDA was

from Invitrogen, Molecular Probes (C-6827), and streptavidin, HRP-

conjugated secondary antibodies (NA 934) as well as enhanced

chemiluminescence Western blot detection kit were from GE

Healthcare Amersham (Piscataway, NJ). HRP-conjugated secondary

antibodies (P0161) were from DakoCytomation (Glostrup, Den-

mark); Sulfo-NHS-LC biotin (21327) was from Pierce Biotechnology,

Thermo Scientific (Rockford, USA) and Proteinase K was from

Boehringer Mannheim (Germany). The OxyblotH detection kit

(S7150) was obtained from Millipore, Chemicon (Temecula, CA).

Unicryl acrylic resin and IgGs conjugated to 15 nm gold particles

were obtained from British Biocell International (Cardiff, Wales,

UK). Bradford protein assay was from Bio-Rad (Hercules, CA). Gel

Analyzer v.1.0 image-processing system and software was obtained

from Biosure (Athens, Greece). The monoclonal antibody against

stomatin and the antiserum against protein 4.1R were kindly

provided by Prof. R. Prohaska (Department of Medical Biochemistry,

Medical University of Vienna, Austria) and Prof. J. Delaunay (Service

d’ Hématologie, Hôpital de Bicetre, Le Kremlin-Bicetre, France)

respectively.

Results

sCLU is a novel structural component of human RBCs
plasma membrane and cytosol

Previous studies suggested that sCLU distributes in human

RBCs [21]. Therefore, we investigated by means of light and

electron microscopy as well as by biochemical cellular fraction-

ation sCLU distribution in RBCs derived from healthy subjects.

sCLU in situ localization analysis by both CLSM immunofluores-

cence (N = 3, Fig. 1A) and TEM immunogold (N = 2, Fig. 1B)

showed that the majority of sCLU-specific labelling was located on

the membrane of the RBCs (solid arrows; Fig. 1A); also a certain

proportion of labelling occurred at the cytosol (dashed arrows;

Figs 1A and B). To confirm the microscopical findings by

biochemical analysis we fractionated the isolated RBCs into

purified plasma membrane, cytoskeleton and cytosol preparations

(N = 18, 21-42 years old, on average 3168.3 years old, females/

males ratio = 1). Immunoblotting analysis revealed that the

majority of the mature sCLU heterodimer (reduced in two bands

of ,40 kDa) [16] co-isolated with the total membrane prepara-

tions while a small proportion of RBCs sCLU was also found at

the cytosol (Fig. 1C), in all the subjects examined (N = 18). As

cytoskeleton fractions were free of sCLU immunoreactivity

(Fig. 1C), we concluded that sCLU is a major component of the

non-cytoskeletal parts of the RBCs membrane and a minor

component of RBCs cytosol.

sCLU localizes at both the extra- and intracellular sides of
the human RBCs membrane
To further investigate the topology of sCLU we sought to

answer the question of whether the membrane-associated sCLU

localizes at the extracellular and/or the intracellular sides. Thus,

we digested the extracellular proteins of intact RBCs with the

highly active and unspecific proteinase K and we examined the

CLU Involvement in RBCs Senescence and Stress
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sCLU content of purified membrane and cytosolic preparations

(N = 3, 24.364.0 years old subjects, females/males ratio = 0.5). As

shown in Fig. 2A, the membrane expression of sCLU in proteinase

K-treated RBCs was significantly decreased compared to the non-

treated RBCs. Interestingly, and in contrast to the transmembrane

protein Band 3 which was totally reduced to a main (intracellularly

protected) proteolytic fragment of 60 kDa, the sCLU plasma

membrane immunoreactivity was not entirely eliminated following

RBCs exposure to proteinase K (Fig. 2A). This finding indicated

that the RBC membrane-associated sCLU localizes at both the

extracellular (exposed to proteinase K) as well as the cytosolic

(protected from proteinase K) sides of the RBC membrane. As

expected, the amount of cytosolic sCLU remained unchanged

after the extracellular digestion of intact RBCs verifying that

cytosolic sCLU represents a membrane-independent component.

In support, proteinase K treatment of RBCs in the presence of

NP-40 (extra- and intracellular unspecific protein digestion)

resulted in further reduction of the membrane-bound sCLU while

the cytosolic molecules were entirely eliminated (Fig. 2A).

To exclude the possibility that the cytosolic sCLU originates

from the membrane-associated protein molecules which redistrib-

ute from the cellular surface to the cytosol during the RBCs

osmotic lysis (applied for the biochemical preparations of

membrane and cytosol fractions) we labelled the surface of intact

RBCs with biotin prior to their osmotic lysis (N = 3, the same

group of subjects). As shown in the representative experiment of

the Fig. 2B, the cytosolic preparations were completely free of

biotinylated membrane proteins. Conclusively, sCLU is a novel

structural component of both the extracellular and cytoskeleton-

free cytosolic sides of the human RBCs plasma membrane.

The RBCs membrane levels of sCLU decrease significantly
during organismal aging or following organism exposure
to exogenous stress

We then focused on the analysis of the sCLU membrane levels

during in vivo organismal aging. For that purpose we studied

purified RBCs from young (N = 13, 24.162.2 years old) and old

(N = 10, 8264.9 years old) healthy subjects. Our analysis revealed

a more than 50% decrease in the sCLU membrane levels of RBCs

derived from elderly people as compared to the young subjects

(p,0.05, Fig. 3). This finding clearly indicated that during in vivo

organismal aging, a condition of increased oxidative stress and

accelerated or disturbed RBCs senescence [4,29], the RBCs

membrane sCLU content is reduced.

Since prolonged intense smoking is thought to be a source of

continuous, acute oxidative stress, we then investigated the

membrane levels of sCLU in the RBCs of heavy middle-aged

cigarette smokers. By using immunoblotting analysis, we showed

that the membrane levels of sCLU in the RBCs derived from

cigarette smokers (N = 8, 39.462.4 years old) were significantly

reduced (by ,34%, p,0.05) compared to age-matched non-

smoking subjects (N = 8, 39.961.8 years old, Figs 4A, 4B1). To

examine whether sCLU reduced levels in smokers’ RBCs correlate

with increased levels of oxidative stress we assayed the membrane

proteome carbonylation index (PCI) as well as the ROS levels in

RBCs from non-smoking and smoking subjects. Compared to the

non-smokers’ RBCs, the PCI and the ROS levels increased by

,20% in the smokers’ samples (Fig. 4B1). Moreover, as shown in

Fig. 4B2 the RBCs of smoking donors were more susceptible to

exogenous oxidants. Specifically, addition of tBHP increased their

cellular oxidative load by almost 5.8-fold (induction in control

Figure 1. sCLU is a structural component of human RBCs plasma membrane and cytosol. (A) CLSM immunofluorescence or (B) TEM
immunogold localization of sCLU in RBCs derived from healthy donors (representative of preparations in 3 or 2 subjects, respectively). Solid (A) or
dashed (A and B) arrows indicate sCLU localization at the periphery of RBCs or intracellularly, respectively. Bars, CLSM, 3 mm; TEM, 100 nm. (C)
Representative immunoblot analysis of isolated plasma (5 mg of total protein per lane), membrane (20 mg), cytoskeleton (20 mg) and cytosol (200 mg)
purified RBCs fractions probed with an anti-sCLU antibody. Band 3 probing was used to demonstrate fraction purity and equal protein loading;
numbers 1 to 4 denote different subjects (out of the 18 tested). Molecular weight markers are shown to the right of the blots.
doi:10.1371/journal.pone.0026032.g001

CLU Involvement in RBCs Senescence and Stress
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RBCs was ,4.8-fold on average). Thus, under in vivo conditions, the

RBCs of the smoking donors are under sustained increased oxidative

stress. Notably, a negative correlation between sCLU membrane levels

and ROS accumulation was observed (2-tailed Spearman’s rho

correlation coefficient r = -0.800, p,0.010). Finally, by means of

immunoblotting analysis the amount of two membrane proteins with

unambiguous role in RBCs senescence and vesiculation, namely Band 3

and stomatin [2], was also found to be significantly reduced in the

membrane of cigarette smokers (Fig. 4C); as for the sCLU, the RBCs

membrane stomatin levels correlated negatively with the endogenous

ROS levels (r = -0.802, p,0.010). These observations clearly suggested

an accelerated aging and/or membrane vesiculation rate in the

oxidized RBCs of the smoking donors.

Decreased sCLU protein levels in the oxidized RBCs
membrane of patients with hemolytic anemia

The delineated functional role of sCLU in RBCs senescence was

further investigated at conditions of in vivo endogenously stressed

RBCs. Therefore, we obtained RBCs from patients with

congenital hemolytic anemia; a pathological condition being

characterized by accelerated senescence, severe oxidative stress

[30] and increased vesiculation rate of erythrocytes [2,5]. As

shown in Fig 5 all patients examined [except for HS-1

(splenectomized)] exhibited decreased levels of the RBCs-mem-

brane-associated sCLU (relative percentage range 63-79%, N = 9,

p = 0.032 vs. controls) compared to an equal number of age-

matched healthy controls. sCLU membrane levels in the case of

splenectomised patient HS-1 (offspring of HS-4, Fig. 5A2 and

Fig. 5B) were close to normal (,97.1% of the controls). We then

examined the correlation of sCLU levels with a number of well-

established RBCs aging membrane markers. As it is clear from

Figure 5, the aging-related modifications of Band 3 and spectrin,

namely Band 3 partial proteolysis and spectrin/Hb complex

formation [7,9,29] were exclusively detected in the patients and

not in healthy controls (Figs 5A, 5B). Immunoblot analysis (Fig. 5)

revealed that all patients (except for HS-1) exhibited pathologically

increased (p,0.010 vs. controls) membrane PCI. The observed

carbonylation levels were inversely correlated to the sCLU

membrane levels (N = 10, 2-tailed Spearman’s rho correlation

coefficient r = -0.699, p = 0.024). Moreover, sCLU variation

correlated positively with that of the antigenic marker CD47

(N = 10, 2-tailed Spearman’s rho correlation coefficient r = 0.736,

p = 0.015) and negatively with the significantly increased IgGs

(N = 10, p,0.05 vs. controls) as well as the Hsp70 and Band 3

proteolytic fragments; those correlations were not statistically

significant (p,0.08), probably due to the small number of the

patients examined. In conclusion, decreased in vivo membrane

levels of sCLU in RBCs of patients with congenital hemolytic

anemia correlated with membrane proteome carbonylation,

erythrophagocytosis marks and RBCs aging-related modifications.

In vivo senescence of RBCs results in significant loss of
sCLU from plasma membrane

As we had previously established a critical role for sCLU in the

cellular senescence of many human cell types [16] we investigated

Figure 2. RBCs sCLU localizes at both extra- and intracellular
sides of the plasma membrane. (A) Representative immunoblot
analysis of purified membrane and cytosol fractions of untreated RBCs (-);
RBCs treated with NP-40 (NP-40) or RBCs digested with proteinase K in
the absence (PrK) or presence of NP-40 (PrK/NP-40). Samples (N = 3) were
probed with specific anti-sCLU and anti-Band 3 antibodies. (B)
Immunobloting of streptavidin, sCLU and Band 3 in purified membrane
and cytosolic fractions of control (Co) or biotinylated (BIO) RBCs (N = 3).
Molecular weight markers are shown to the right of the blots.
doi:10.1371/journal.pone.0026032.g002

Figure 3. RBCs sCLU membrane levels are decreased during in
vivo organismal aging. Representative immunoblot analysis and
collective densitometry of sCLU relative levels at the membrane of RBCs
derived from young (N = 13) or old (N = 10) non-smoking healthy
subjects. Probing with anti-4.1R protein was used as reference for equal
protein loading. Densitometric data were normalized against the sCLU
values of the young donors. Error bars, 6s.d; asterisk, significance at
p,0.05.
doi:10.1371/journal.pone.0026032.g003

CLU Involvement in RBCs Senescence and Stress
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a probable similar implication in the cellular senescence of mature

RBCs. Thus, we studied the membrane levels of sCLU in young

and senescent RBCs. Cell preparations [N = 6, middle-aged

(39.164.3 years old), non-smoking subjects] were obtained by

fractionation of RBCs according to their density; this is a physical

method that yields cellular fractions enriched with old (higher

density) or younger (lower density) RBCs. The fractionation of the

erythrocyte suspensions was demonstrated by density-related

changes in the erythrocyte indexes MCV and MCHC (MCV

96.5612.5fL to 84.165.4fL and MCHC 29.661.6 g/dL to

34.562.4 g/dL for young and senescent RBCs, respectively). To

further validate the fractionation, the derived young and senescent

preparations were examined for the presence of well-established

proteome aging markers in the RBCs membrane, such as the

formation of spectrin-Hb complexes and the proteolysis of Band 3

(Fig. 6A and 6B2). Indeed, compared to the young cells, the

senescent RBCs exhibited increased expression of both aging-

related markers (Fig. 6) (p = 0.009 for the spectrin-Hb complexes

and p = 0.049 for the Band 3 proteolysis). All of the senescent

RBCs preparations examined were characterized by an average

decrease of ,2062.2% in their membrane sCLU content

(p = 0.004 compared to young RBCs) (Figs 6A, 6B1). Previous

studies have suggested that erythrocyte senescence is accompanied

by a decrease in the antioxidant response [31]. In support, we

detected an increase in the intracellular ROS levels (165624% in

senescent vs. 10068 in young cells; p = 0.031) during in vivo RBCs

senescence. Moreover, we found a substantial increase in both the

membrane-bound oxidized/denatured Hb species (171628% in

senescent vs. 10069 in young cells) and PCI (152660% in

senescent vs. 100622 in young cells) (Fig. 6); only the former

variation was significant (p = 0.014). Conclusively, RBCs in vivo

senescence is accompanied with significant losses in the membrane

sCLU content. This decrease parallels an enhanced expression of

aging and oxidation markers.

Discussion

Despite the fact that sCLU [15] as well as apolipoprotein E [32]

have been previously implicated in erythroid differentiation, the

role of apolipoproteins in erythrocytes physiology, maturation and

senescence remains largely unknown. Our results corroborated

previous preliminary studies suggesting that sCLU is a component

of mature human RBCs [21,33]. Following our thorough

examination we report that sCLU is a structural component of

both the extra- and (non-cytoskeletal) intracellular sides of RBCs

membrane and it also localizes at the cytosol. We and others have

previously reported that although sCLU is primarily considered a

secreted protein it might also act intracellularly having a vital role

in the maintenance of cellular homeostasis and proteome stability

of human cells [21,34-36]. Thus, sCLU may represent the only

known chaperone exerting both an extra- and intracellular

function. Our reported findings in RBCs provide additional

evidence for sCLU localization and probable function in cytosolic

Figure 4. Decreased sCLU membrane levels in the RBCs of
(otherwise healthy) smokers. (A) Representative immunoblot
analysis of sCLU membrane levels in RBCs derived from healthy
middle-aged cigarette smoking (N = 8) or non-smoking (N = 8) subjects
(upper panel). 4.1R protein probing (lower panel) was used as reference
for equal protein loading. (B1) Collective densitometric analysis of sCLU
relative membrane content; PCI (data from not shown immunoblots)
and endogenous cellular ROS from the smoking and non-smoking
subjects. (B2) ROS measurement in RBCs from smokers and non-
smokers challenged with exogenous tBHP (100 mM). (C) Densitometric

analyses of Band 3 and stomatin relative membrane levels (data from
not shown immunoblots). Presented data for sCLU, Band 3 and
stomatin are mean values of each protein relative proportion against a
reference membrane protein (4.1R) followed by normalization to
samples derived from controls (non-smokers). ROS values represent
the mean 6 s.d. of dichlorofluorescein (DCF) fluorescence levels of two
independent experiments (done in triplicates) following normalization
to a standard protein quantity. Values represent the relative percentage
to either the non-smokers (control) (Fig. B1) or to the endogenous ROS
(Fig. B2) measurements. Error bars, 6s.d.; asterisks, significance at
p,0.05.
doi:10.1371/journal.pone.0026032.g004
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cellular compartments. Considering that human erythrocytes are

incapable of protein synthesis, intracellular membrane and

cytosolic sCLU is most probably inherited from precursor

erythroid cells. On the other hand, the sCLU molecules that bind

to extracellular sides of RBCs membrane may originate either

from the plasma circulating sCLU that binds to the RBCs IgGs or

Figure 5. Reduced sCLU membrane levels in hemolytic anemia correlate to markers of RBCs senescence, redox imbalance and
erythrophagocytosis. (A1) Representative immunoblots of RBCs plasma membrane preparations from a healthy subject (Control-1) and two
patients with hereditary spherocytosis (HS-2 and HS-4) exhibiting decreased sCLU membrane levels. (A2) Representative immunoblot analysis of a
RBCs membrane preparation from the splenectomized patient HS-1; sCLU membrane levels are similar to controls. Immunoblots were also probed
with antibodies against Band 3, Hb, dinitrophenylhydrazone (DNP) residues (oxyblot analysis), CD47, Hsp70, IgGs and actin (used as loading control);
in some cases compositions of different blots is shown. Molecular weight markers are indicated at the right of each blot. (B) Densitometric analyses of
sCLU and cellular senescence or oxidative stress markers in respective immunoblots. Shown data are the mean values of the proteins’ relative
proportion against a reference membrane protein followed by normalization to the controls (N = 10, non-smoking, age-matched subjects). Error bars,
6s.d.; single or double asterisks, difference of patients vs. controls at significance level of p,0.05 or p,0.01, respectively.
doi:10.1371/journal.pone.0026032.g005
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from endogenous sources during RBCs maturation. The increased

binding of IgGs in the RBCs of patients with hemolytic anemia

showing decreased sCLU membrane levels suggests that the

extracellular membrane association of sCLU in RBCs may depend

on factors other than IgG binding.

An important question regarding erythrocytic sCLU referred to

whether it has any functional role in those highly specialized cells

or it simply represents a non-functional vestige from erythroid

precursor cells. As previous reports in typical nucleated cells

showed sCLU functional involvement in oxidative-stress responses

and cellular senescence [16], we asked whether sCLU is actively

involved in similar processes in mature RBCs. Our findings

suggest that sCLU in human RBCs is a sensitive biosensor of both

increased oxidative stress and cellular senescence. Specifically, the

significant losses of sCLU seen in stressed or senescent RBCs

paralleled that of prominent cellular senescence markers [7,9], like

Band 3 fragmentation and formation of the spectrin-Hb

complexes. Moreover, in hemolytic cases, the membrane levels

of sCLU were positively correlated with those of CD47 protein

that is reduced in cases of hereditary anemias [37] and during in

vitro aging of human RBCs [33]. The inverse correlation of sCLU

levels with those of the pathologically increased RBCs membrane-

bound IgGs further suggests an association of sCLU presentation

with the phagocytosis rate of diseased RBCs [5,7].

The fact that RBCs membrane remodelling during organismal

aging and cellular senescence exhibit similar molecular character-

istics [2,5,38] along with the identical regulation of sCLU in RBCs

during organismal aging or in cellular senescence, indicates an

active role of sCLU in senescing RBCs. RBCs senescence, as in

many other cell types, is mainly driven by oxidative effects [31,39].

The significant decrease of sCLU at the membrane of both healthy

and defected RBCs was consistently associated with increased RBCs

susceptibility to exogenous oxidants and with measurable manifes-

tations of redox imbalance, namely, increased intracellular ROS

accumulation, membrane proteome carbonylation and binding of

oxidized/denatured Hb species to the membrane. These observa-

tions were further accentuated in the cases of healthy smokers or

patients with hemolytic anemia, where the membrane levels of

sCLU were negatively correlated with the proteome carbonylation

index (PCI) and the intracellular ROS levels, respectively.

Cigarette smoking has been associated with increased oxidation

of RBCs and plasma although it seems that, at least, in young

Figure 6. Loss of membrane sCLU during in vivo RBCs senescence. Analysis of sCLU membrane content, as well as of cellular aging and
oxidative stress markers in young and senescent RBCs. (A) Representative immunoblots of membrane preparations from young (Y) and senescent
(Sen) RBCs fractionated from the peripheral blood of two subjects (1 and 2); blots were probed with antibodies against sCLU, spectrin, Band 3, Hb,
dinitrophenylhydrazone (DNP) moiety and 4.1R protein (used as loading reference). Molecular weight markers are shown to the right of the blots. (B)
Densitometric analyses of sCLU (B1) and aging or oxidative stress markers presentation (B2) in respective immunoblots from middle-aged non-
smoking volunteers (N = 6). Presented data are mean values of each protein relative proportion against a reference membrane protein (4.1R) followed
by normalization to the young RBCs (set to 100% of RBCs membrane sCLU content). ROS values represent the mean 6 s.d. of dichlorofluorescein
(DCF) fluorescence levels of six independent experiments (done in triplicates) following normalization to a standard protein quantity. Error bars,
6s.d.; single or double asterisks indicate difference of young vs. senescent RBCs at p,0.05 or p,0.01, respectively.
doi:10.1371/journal.pone.0026032.g006
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smokers it also activates the RBCs antioxidant mechanisms as an

adaptation process to counteract the oxidant factors [40,41]. Our

findings by documenting a relatively small increase (,20%) in the

PCI and ROS accumulation in RBCs from middle aged smokers

corroborate these previous reports. Nevertheless, even this relatively

small increase imposes a sustained cellular stress as indicated by the

increased RBCs susceptibility to exogenous oxidants. Therefore,

one can postulate an accelerated rate of RBCs vesiculation in these

samples as a protective mechanism against exogenous oxidative

stress. In support to this assumption, RBCs membranes from

smokers do not retain normal Band 3 and stomatin expression

levels. The positive correlation of vesicle-associated stomatin with

sCLU suggests that both proteins are commonly affected by the

intracellular oxidative stress imposed by the cigarette smoke.

Considering, the fact that during organismal aging or at several

diseases that represent states of increased oxidative stress (e.g.

diabetes type II, atherosclerosis or Alzheimer’s disease) the sCLU

concentration in human plasma is elevated [42,43] we conclude that

the reduced sCLU membrane levels found in RBCs from smokers

or patients with hemolytic anemia (see below) are related to

endogenous RBCs-specific molecular processes.

Erythrocytes senescence and the consequent accumulation of

ROS [31] cause oxidative modifications on proteins which are

accompanied by a loss of protein function [29,44]. These modified

or damaged proteins (often termed as ‘‘client proteins’’) are in need

of assistance by chaperones and are mostly exocytosed to RBCs-

derived vesicles which have been found to contain a wide range of

damaged or potentially damaging molecules [7]. The protective

role of molecular chaperones in these processes has been

previously exemplified for Hsp70 in stressed RBCs where Hsp70

was found to stabilize the partially defected cytoskeletal proteins

[45]. RBCs vesiculation constitutes a mechanism for the removal

of erythrocyte membrane patches containing oxidative lesions or

death signalling molecules, thereby postponing the untimely

elimination of otherwise healthy erythrocytes [46]. This process

is an integral component of the normal cellular senescence and it is

accelerated during in vivo aging, organism exposure to acute

oxidative stress or in diseases like congenital hemolytic anemia

[2,7,47]. We propose that the sCLU removal from the RBCs

membrane during senescence or RBCs exposure to increased

oxidative stress takes place via the process of vesiculation.

Considering that sCLU functions as a chaperone involved in the

quality control of protein folding [13] and in the clearance of

cellular debris by non-professional phagocytes [48] we assume that

it also contributes to the scavenging of oxidized or aggregated

molecules that are selectively removed from senescent or stressed

RBCs via vesiculation. Additional confirmatory evidence comes

from the splenectomized patient HS-1. This patient exhibits

normal sCLU membrane levels while his father (patient HS-4),

who carries the same genetic defect, is severely deficient in sCLU.

The emerging beneficial influence of splenectomy in the

maintenance of normal membrane sCLU levels is probably

related to the role of spleen in facilitating the aging-associated

vesicle formation [2]. Indeed, in the absence of a functional spleen,

the normal increase of vesiculation in the second half of the

erythrocyte lifespan does not occur [2]. Apart from the

vesiculation, splenectomy further ameliorates the severity of

anemia and the clinical severity of hereditary spherocytosis by

increasing the circulatory life span of spherocytes, especially in the

cases of spectrin- or ankyrin-deficient patients [47]. Therefore, the

almost normal levels of membrane-associated sCLU in the

splenectomised patient HS-1 most probably relates to a decreased

release of sCLU-containing vesicles.

Taken together, our results provide novel evidence for an

emerging role of sCLU, a novel structural component of RBCs

plasma membrane and cytosol, in the physiology of mature human

erythrocytes. The erythrocytes sCLU content decreases signifi-

cantly in vivo in response to cellular senescence and oxidative stress.

Although the primary underlying stimulus and mechanism that

drives or mediate respectively, the decrease in sCLU levels remain

elusive, the currently reported data support the characterization of

the sCLU as a sensitive molecular biomarker of senescence and

oxidative stress in erythrocytes. Our findings are of considerable

importance especially under the light of the recently increased

focus on the signalling molecules and mechanisms operating in

mature RBCs during senescence or following exposure to

endogenous/exogenous stress stimuli.
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