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Fetal heart rate (FHR) detection can be monitored using either direct fetal scalp electrode recording (invasive) or by indirect
noninvasive technique. Weeks before delivery, the invasive method poses a risk factor to the fetus, while the latter provides
accurate fetal ECG (FECG) information which can help diagnose fetal’s well-being. Our technique employs variable order linear
phase sharp transition (LPST) FIR band-pass filter which shows improved stopband attenuation at higher filter orders. The fetal
frequency fiduciary edges form the band edges of the filter characterized by varying amounts of overlap of maternal ECG
(MECG) spectrum. The one with the minimum maternal spectrum overlap was found to be optimum with no power line
interference and maximum fetal heart beats being detected. The improved filtering is reflected in the enhancement of the
performance of the fetal QRS detector (FQRS). The improvement has also occurred in fetal heart rate obtained using our
algorithm which is in close agreement with the true reference (i.e., invasive fetal scalp ECG). The performance parameters of the
FQRS detector such as sensitivity (Se), positive predictive value (PPV), and accuracy (F1) were found to improve even for lower
filter order. The same technique was extended to evaluate maternal QRS detector (MQRS) and found to yield satisfactory
maternal heart rate (MHR) results.

1. Introduction

All over the world, approximately 2.65 million stillbirths
occur during pregnancy or labour especially in developing
countries giving rise to the need for effective monitoring
techniques with regard to fetal health [1]. FHR monitoring
is important to recognize pathologic conditions, typically
asphyxia, with sufficient warning so as to enable interven-
tion by the clinician [2]. It is a screening modulus of the
fetus to detect problems in advance that could result in
irreversible neurological damage, even fetal death [3].
More than 85 percent of all live births in the United States
undergo electronic fetal monitoring [4]. Indeed, fetal
health monitoring has a significant importance in obstetri-
cal procedures and is now widely accepted as the need of
the hour.

With electronic fetal monitoring (EFM), the following
expectations came: provision of accurate FECG information,

information of value in diagnosing fetal distress, prevention
of fetal death or morbidity, and superiority over many
methods. The fetus can be monitored electronically by two
methods: direct and indirect. In the direct invasive method,
the FHR is measured by a scalp electrode which is attached
to the fetal scalp by means of a coiled electrode [5]. In the
indirect electronic monitoring method, such as using ultra-
sound Doppler principle with uterine contractions, FHR
can be monitored but not as precisely as the direct invasive
FECG [2]. However, the invasive procedure has a risk of
infection to the fetus. The ultrasound transducer with the
coupling gel is applied to the mother’s abdomen where fetal
heart response is best detected. During this measurement,
the pulsations of the maternal aorta could be detected and
erroneously considered as FHR [6]. The noninvasive FECG
(NIFECG) by indirect method can therefore be used to over-
come all these limitations by placing the surface electrodes
such as the 12 lead ECG electrodes over the maternal
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abdomen [7]. The maternal thoracic ECG can also be taken
as a reference signal along with the abdominal ECG (aECG).
A study was conducted during labour of about 75 pregnant
mothers, to check the accuracy and reliability of the NIFECG
[8]. It was found that the NIFECG recordings were more
accurate than the conventional external methods in compar-
ison with the direct fetal scalp recordings. Therefore with
EFM, using NIFECG recordings is the most suitable for
long-term ambulatory use [9].

1.1. Fetal Physiology. Fetal distress and fetal asphyxia are too
broad and vague to be applied with any precision to clinical
situations. Uncertainty regarding the diagnosis based on
interpretation of FHR patterns has given rise to reassuring
and nonreassuring patterns [6]. Reassuring FHR patterns
include the normal baseline FHR, moderate accelerations,
and variability with fetal movement assuring the well-
being of the fetus, whereas nonreassuring FHR patterns
include tachycardia (FHR baseline more than 160 bpm),
bradycardia (FHR baseline is less than 110 bpm) [10], pro-
longed decelerations, and so on. The severe and prolonged
hypoxia induces a prolonged fall in FHR [11]. Some causes
of fetal bradycardia include congenital heart block [12]. The
baseline fetal heart rate is greater than 160 bpm. It is
reported that the fetal body movements affect variability
[13], while the baseline variability increases with advancing
gestation [14]. It is also reported that reduced variability
with decelerations is associated with fetal acidemia [15].
An FHR who has a consistently flat baseline with no vari-
ability and without decelerations within the normal base-
line rate limit range may reflect a neurological damage in
the fetus [16]. It is important that we understand the
parameters of the fetal ECG signal which further aids the
analysis of the fetal status and the EFM, during pregnancy
or labour [1].

1.2. Previous Methods to Extract NIFECG from aECG.
Researchers in the biomedical field in the areas of fetal
extraction and fetal analysis have done extensive work in
the last two decades. A large number of detection and
extraction techniques are used to separate the FECG from
the maternal ECG. Independent Component Analysis
(ICA) is a statistical technique, and its accuracy is based on
using a large number of noise-free maternal abdominal
input channels. For ICA to function correctly, certain condi-
tions such as (i) the number of measured signals should be
equal to or greater than the number of input sources, (ii) it
should possess an instantaneous linear time invariant mix-
ing matrix, and (iii) the input sources should be statistically
independent [17]. In our application, the first two do not
fully satisfy because the artifacts increase the number of
sources and fetal movement leads to a noninvariant mixing
matrix [18]. ANFIS is an adaptive noise cancellation system
which requires an additional maternal thoracic ECG signal
as reference signal for adaptive cancellation of the maternal
ECG. This method depends on how well one trains the
ANFIS structure to compute the estimated output FECG sig-
nal [19, 20]. Subtraction method is a simple technique, but
the major challenge is that the amplitude of the thoracic

MECG rarely matches the scale of the MECG present in
the aECG signal [21]. As a result, correct FECG is hardly
ever obtained. Wavelet transform method can be used for
preprocessing stage to suppress noise, and maternal cancel-
lation can be done by template subtraction [22]. Correlation
techniques are not very efficient and effective in the detec-
tion of nonstationary signals like ECG [23]. As IIR filtering
being a nonlinear method [24], our technique of using linear
phase sharp transition FIR filter is less complex and does not
involve many iterations as the filter response is specified pre-
cisely over the entire band. With the knowledge of the fidu-
ciary edges and the fair estimate of the spectral overlap of
maternal and fetal ECG, accurate FHR and maternal heart
rate can be obtained. Our technique being single channel
lead makes it very convenient and comfortable for a mater-
nal home care for long-term monitoring.

The amplitude of MECG is at least 10 times larger than
that of FECG, and the signal-to-noise ratio (SNR) of the
MECG is less than unity [25]. The separation of these two
ECG signals becomes even more complex as the maternal
and fetal ECG overlap both in time and frequency domain
[3]. The aECG signal is further affected with the low fre-
quency noise of 0.5Hz [26] due to baseline wandering where
the amplitude of the ECG signal also varies by about 15%
with respiration [2]. The other noise which affect the aECG
are 50/60Hz power line interference (PLI) [27], electromyo-
graphic noise in the uterus and the muscles of the abdomen,
and other motion artefacts [28].

1.3. Linear Phase Sharp Transition Band-Pass Filters. The
location of the passband and its width are critical factors that
affect the design implementation of the filter. Usually sharp
transition BPF are realised by the composite filters of high-
pass and low-pass filters as done in [29]. The interpolated
FIR technique was used wherein, every time the centre fre-
quency of the BPF was changed, the two composite filters
had to be redesigned. Approximate expressions for the value
of interpolating factor and filter hardware required are
derived which minimizes the total arithmetic hardware used
which is the overall band-pass realization. The two-branch
structure realization is more efficient than the conventional
direct form realization with an increase in the number of
delays [30]. Another technique of symmetric BPF is given
in [31]. The filter is implemented by two parallel, quadrature
filter branches with each branch derived from a complex
modulation of a low-pass-interpolated FIR filter by complex
exponentials. The input signal is modulated with a sine/
cosine sequence in order to achieve the desired frequency
shift in the frequency response.

In the current work, we propose a two-stage method to
obtain noninvasive FQRS from a single lead maternal
abdominal signal by first applying the designated fiduciary
edges to the linear phase sharp transition (LPST) FIR band-
pass filter with a sharp transition width. In the second stage,
an FQRS detector is used based on Pan Tomkins QRS detec-
tor algorithm [32]. The QRS detector module consists of an
amplitude squarer, moving window integrator, moving aver-
age filter, and an adaptive threshold process which effectively
detects the fetal R-peaks.
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2. Methodology Using LPST FIR
Band-Pass Filter

Our proposed technique of integrated LPST FIR band-pass
filter has low computational complexity. Normally, the com-
posite low-pass and high-pass filters are to be redesigned for
any change in the centre frequency and pass band width for
the desired BPF. Our proposed technique for the integrated
BPF design departs from this approach completely. It elim-
inates the need for a centre frequency and the fixed pass-
band width as it is used in [33]. Our design of LPST FIR
BPF allows the user to set the cutoff frequencies for a nar-
row pass band width. It also incorporates a very linear sharp
transition width while reducing the effects due to Gibb’s
phenomenon and thereby reducing the passband ripple of
the filter [34].

2.1. LPST FIR BPF Model and Design. In this section, the
design of a LPST FIR BPF is presented. For the proposed fil-
ter model, the five regions of the filter response are modelled
using trigonometric functions of frequency. The filter model
magnitude response H(ω) is shown in Figure 1.

The frequency responses for the five regions are listed
as follows:

Region 1 H ω = −
δs
2
cos k1ω  0 ≤ ω ≤ ωs1,

Region 2 H ω = k2 ω − ωs1  ωs1 ≤ ω ≤ ωp1,

Region 3 H ω = 1 +
δp
2
sin k3 ω − ωp1  ωp1 ≤ ω ≤ ωp2,

Region 4 H ω = 1 − k4 ω − ωp2  ωp2 ≤ ω ≤ ωs2,

Region 5 H ω = −
δs
2
sin k5 ω − ωs2  ωs2 ≤ ω ≤ π

1

Using (1), the filter design parameters k1, k2, k3, k4, and k5
for the five regions of the band-pass filter are evaluated and
listed as follows:

k1 =
2πm1 + π/2

ωs1

k2 =
1

ωp1 − ωs1
,

k3 =
2m3 + 1 π

ωp2 − ωp1
,

k4 =
1

ωs2 − ωp2
,

k5 =
2πm5 + π/2

π − ωs2
,

2

where ωs1 and ωs2 are the stopband edge frequencies while
ωp1 and ωp2 are the passband edge frequencies. δs and δp
are the stopband attenuation and passband ripple, respec-
tively, while m1, m3, and m5 are integers.

The impulse response coefficients h(n) for the FIR band-
pass filter are obtained from [35]

h n =
1
π

π

0
H ω sin kω dω 3

Substituting the magnitude response H(ω) for each
region from (1) and (2) in (3), we get

h n =
δs
4π

cos k + k1 ωs1 − 1
k + k1

+
cos k − k1 ωs1 − 1

k − k1

+
k2
kπ

−ωp1 cos kωp1 + ωs1 cos kωs1

−
k2
k2π

sin kωp1 − sin kωs1

+
k2ωs1
kπ

cos kωp1 − cos kωs1

+ −
1
π

cos kωp2 − cos kωp1

k

+
δp

4π k − k3
sin k − k3 ωp2 + k3ωp1

− sin kωp1 +
−δp

4π k + k3
sin k + k3 ωp2 − k3ωp1

− sin kωp1 +
1
kπ

−cos kωs2 + cos kωp2

+
k4
kπ

ωs2 cos kωs2 − ωp2 cos kωp2

+
k4
k2π

sin kωs2 − sin kωp2

+
k4ωp2

kπ
−cos kωs2 + cos kωp2

+
−δs
4π

sin k5 − k π − k5ωs2 + sin kωs2
k5 − k

−
sin k5 + k π − k5ωs2 − sin kωs2

k5 + k
,

 where k =
N − 1
2

− n

4

Equation (4) is the expression for the band-pass filter
model impulse response h(n). We can choose the effective
pass band width (ωp2~ωp1) such that (ωs1~ωp1) = (ωs2~ωp2),
as small as possible for sharp transition of passband edge.
Once ωp1, ωp2, ωs1, and ωs2 are chosen, k1, k2, k3, k4, and k5
are determined.

2.2. Expression for Frequency Response Coefficients of a LPST
FIR Filter. Let h(n) given by (4) be the impulse response coef-
ficients of an N point linear phase FIR filter [36] where
0≤n≤N− 1 and
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k =
N − 1
2

− n , n = 0, 1, 2,… ,
N − 3
2

, forN odd

5

and

k =
N − 1
2

− n , n = 0, 1, 2,… ,
N
2
− 1 , forN even

6

In the case of antisymmetric response with N odd
[37], the frequency response of the FIR band-pass filter
is given as

Hr ω = 2 〠
N−3 /2

n=0
h n sin ω

N − 1
2

− n 7

This response is most suitable for the proposed band-
pass filter as H(0) = 0 and H(π) = 0. If we refer to (5), k is an
integer for N odd. Other constraints are as follows: (i) In
(2), k≠ k1, k≠ k3, and k≠ k5 and (ii) k1, k3, and k5 should
not be integers. However, k2 and k4 do not have any
constraints.

2.3. Fetal Frequency Spectrum. In our experiment, to
extract the QRS of the MECG and FECG from online Phy-
sionet databases [38], we used (i) Abdominal and Direct
Fetal Electrocardiogram Database (adfecgdb) which pro-
vides abdominal ECG recordings (channels 2 to 5) for 5
minutes each from five different subjects during the 38–
41-week gestation period [39, 40]. In addition, for each
subject, a simultaneously recorded scalp or direct fetal
ECG record (channel 1) is a golden reference in the evalu-
ations to be made on the respective records. (ii) The Non-
Invasive Fetal Electrocardiogram Database (nifecgdb) pro-
vides 55 records of different lengths from a single subject

taken from the 20th week of pregnancy [41]. Channels 1
and 2 represent maternal thoracic ECG signals while chan-
nels 3 to 6 are abdominal ECG recordings with only
MQRS reference annotations. The Q-R-S fiducial edges of
the thoracic MQRS and the invasive FQRS signals were
obtained for each record. The fast Fourier transform
(FFT) was obtained for the above records, an average fre-
quency range for MQRS was found to be 10–34Hz while
the average FQRS spectrum was 20–56Hz.

FHR varies with gestation age, ranges from 70 beats per
minute (bpm) at four weeks to 175 bpm at 12 weeks and fur-
ther decreases to a range of 110 to 160 bpm at full term [42].
The FECG bandwidth ranges from 0.05 to 100Hz [2] with an
average value of 140 bpm. However, in comparison, the
maternal bpm normally ranges from 50 to 210 bpm with an
average of 80 or 89 bpm [42].

We assumed the maternal beats per minute range to be
70–100 bpm (1.166min–1.666max bps) and the fetal beats per
minute range to be 110–140 bpm (1.833min–2.333max bps).
The minimum and maximum fetal-to-maternal (f/m) fre-
quency ratios are obtained to compute the average f/m fre-
quency ratio from (8) and (9).

Minimum
f
m

frequency ratio =
fetalbps

maternalbps
min

=
1 833
1 166

= 1 572,

8

Maximum
f
m

frequency ratio =
fetalbps

maternalbps
max

=
2 333
1 666

= 1 400,

9

Average
f
m

frequency ratio =
1 572 + 1 4

2
= 1 486

10

We selected the frequency spectrum for MQRS to be 18
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Figure 1: Magnitude response H(ω) of the band-pass filter.
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to 35Hz [42] to estimate the lower and higher fetal QRS fidu-
ciary edges from (10) as

FQRSlower f iduciary edge = MQRSlower f iduciary edge

× average
f
m

frequency ratio

= 18 × 1 486 ~ 27Hz,

FQRSupper f iduciary edge = MQRSupper f iduciary edge

× average
f
m

frequency ratio

= 32 × 1 486 ~ 48Hz
11

From (11), we get the lower fiduciary edge of FQRS to be
of 27Hz which will remove all the low frequency noise
including baseline wander frequencies and upper fiduciary
edge of 48Hz which will remove the 50Hz and its PLI har-
monics along with the high frequency noise [27]. The fetal
QRS frequency band spectrum can also be further narrowed
down so as to avoid the frequency band overlap of MECG
and FECG. Accordingly, the upper fiduciary edge of the fetal
QRS spectrum is chosen to be 49Hz or 98π rad/sec. The
lower fiduciary edge of the fetal spectrum is set to 35Hz or
70π rad/sec, since the upper MQRS edge is reported to be
approximately 35Hz [42]. This results in a fetal pass band
width of 14Hz or 28π rad/sec.

2.4. FQRS Detector. To obtain the FQRS from the band-pass
filtered signal, we tried looking at various algorithms includ-
ing the peak-finding logic using the Hilbert transform [43].
We proposed a simple QRS detection algorithm which is
based on the Pan Tomkins algorithm [32]. The modified
FQRS detector comprises of four stages: (i) amplitude
squarer, (ii) moving window integrator, (iii) moving average
filter, and (iv) adaptive threshold. The filtered FECG signal
from the LPST FIR BPF is given to the amplitude squaring
stage wherein the signal is squared point by point. This non-
linear process enables the high frequency fetal R-peak signals
to be further enlarged and minimizes the other lower

frequency components. Further, we used a moving window
integrator with a sampling frequency (fs) of 1KHz. This inte-
grator effectively summed the area under the squared wave-
form over a fixed window interval, advanced one sample
interval at a time. The width of the moving window was set
to 75 sample interval for FQRS detection while a window of
152 samples wide was adjusted for MQRS detection. A too
large window can merge the QRS-integrated waveform and
T wave, where as if the window is too narrow, a QRS complex
could produce several peaks at the output stage [32]. Addi-
tionally, a moving average filter was also used which smooth-
ened the integrated signal and compute a single fetal R-peak.
Based on the algorithm in [44], an adaptive threshold is auto-
matically generated to adjust to float above the unwanted

Table 1: Band-pass LPST filter specifications of passband and stopband edges (type 4 fiduciary edges) along with measured magnitude
response values.

Band-pass LPST filter (filter order
(N) = 1001)

Stopband edge (ωs1)
rad/s

Passband edge (ωp1)
rad/s

Passband edge (ωp2)
rad/s

Stopband edge (ωs2)
rad/s

Design specifications 70π 72π 96π 98π

Measured specifications 64.68π 73.22π 92.3π 100.08π

Table 2: Band-pass LPST filter specifications of transition bandwidth, passband ripple, and stopband attenuation using type 4 fiduciary edges
along with measured magnitude response values.

LPST filter (filter order
(N) = 1001)

Transition bandwidth
(ωp1–ωs1) rad/s

Transition bandwidth
(ωs2–ωp2) rad/s

Max. passband loss
(dB)

Min. stopband
attenuation (dB)

Design specifications 2π 2π ±0.873 40

Measured specifications 8.54π 7.78π +0.47, −0.13 40
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Figure 2: Illustration of the true reference FHR (direct scalp ECG)
plotted with our algorithm computed FHRV for record r08 of
adfecgdb (channel four) for one-minute trace. Blue dotted lines
indicate ±10 bpm tolerance with respect to the reference FHR trace.
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noise peaks. Initially, the signal peak value is adjusted manu-
ally as per the amplitude of each record [44]. The fetal R-R
interval (Δn) is calculated as (ni+1 − ni) where ni is the time
index corresponding to the ith computed fetal R-peak at
the output of the FQRS detector (i=1, 2… where i is an inte-
ger). The FHR is computed for each record using

FHR bpm =
f s × 60
Δn 12

3. Results

3.1. Synthesis of the LPSTFIR Band-Pass Filters.The LPST FIR
band-pass filter was implemented using (7). The following
FQRS band-pass fiduciary edge cutoff frequencies (rad/sec)
were substituted as per Figure 1: ωs1 = 70π, ωp1 = 72π,

ωp2 = 96π, and ωs2 = 98π. Also stop band and passband rip-
ple δs = δp = 0 01. Equal transition width at both ends was
chosen for the pass band to be 2π rad/sec or 1Hz. The
measurement of the magnitude response of the band-pass
filters is compared in Tables 1 and 2 along with the filter
design specifications.

3.2. Performance Analysis of the FQRS Detector. As per the
guidelines of ANSI/AAMI (ANSI/AAMI/ISO EC57 1998/
(R) 2008) [1, 45], the following classical statistics for evaluat-
ing QRS detectors were used to evaluate the FQRS detector.
Sensitivity (Se), positive predictive value (PPV), and accuracy
(F1) are shown in (13) where TP, FN, and FP are true positive
(correctly identified fetal R-peaks), false negative (missed
fetal R-peaks), and false positive (falsely identified R-peaks),
respectively. The test points assumed here are to be within
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Figure 3: (a) Magnitude response of the proposed BPF with filter order N = 1001. (b) Linear plot. (c) Magnified view of the passband. (d)
Magnitude response of the BPF LPST for various filter orders (N).
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±10 bpm of their corresponding reference measurement. The
true reference, namely, scalp fetal R-peak annotations from
each record of the Physionet database, was compared with
our experimental measured values which was implemented
using Matlab toolbox. For example, we evaluated our algo-
rithm for the adfecgdb database for the one-minute record
(r08) of channel 4 and found the TP=132, FN=1, and
FP=0. The sensitivity, PPV, and F1 were obtained to be

99.24%, 100%, and 99.61%, respectively. The average FHR
values for the true reference and algorithm FHR were
computed to be 132.09 bpm and 132.59 bpm, respectively.
Figure 2 illustrates the true reference FHR bpm plotted with
our algorithm-based fetal heart rate variability (FHRV) for
record r08. The dotted lines indicate the ±10 bpm tolerance
assumed in our case with respect to the true reference FHR
trace. It was seen that the difference between the reference

Table 3: Variations of passband loss and stopband attenuation for BPF with various filter orders (N).

Filter order (N) 201 501 1001 1501 2001 5001

Passband loss (dB) 1.5 ±0.5 ±0.13 ±0.1 ±0.04 ±0.03
Stopband attenuation (dB) 23.5 35.8 40.6 43 46 46
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FHR and algorithm FHR for most R-peaks was less than
the ±8 bpm.

Se =
TP

TP + FN
,

PPV =
TP

TP + FP
,

F1 = 2
Se ⋅ PPV
Se + PPV

13

4. Discussions

We designed a LPST FIR band-pass filter such that the mag-
nitude H(ω) in the passband and stopband are not constant
but inserted a small amount of ripple of 0.01 in the stopband
as well as passband so that Paley-Wiener criterion is not vio-
lated [46]. The FIR filter was designed for sharp transition
width (ωs − ωc) of 1Hz or 2π rad/sec. The magnitude
responses of the proposed band-pass filter are shown in
Figures 3(a)–3(c). Table 3 depicts the performance of the fil-
ter for various filter orders (N). There is a reduction of Gibb’s
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Figure 7: (a) Frequency spectrum of the narrow sharp transition band-pass filtered signal. (b) FQRS time domain signal after band-pass filtering.
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phenomenon with these filter designs. For conventional FIR
sharp transition filters, the peak passband ripple due to
Gibb’s phenomenon is about 18% [34, 46]. In our proposed
LPST FIR band-pass filters, the passband losses are quite low
as can be seen from Table 2. It can also be seen that the stop-
band attenuation surpasses the design specification at higher
orders and the passband ripple decreases for higher filter
order as seen from Table 3. The sampling rate N = 1001 is
much higher than the Nyquist rate (approximately 200Hz)
and is chosen to improve the quality of the extracted FECG.
Various filter orders (N=201, 501, 1001, 2001, and 5001)
were implemented to check the performance of the filters
as shown in Figure 3(d). These filters are unlike the classical
filters in that they possess a narrow stopband and/or pass-
band and also sharp transition regions. The magnitude
response, the linear plot, and the magnified view of the
BPF are shown in Figures 3(a)–3(c), respectively, with the
filter order N equal to 1001.

As seen from Figure 4, the average transition width
approaches the design specifications at higher orders. The
performance curves of Se, PPV, and F1 are highly linear in
the range of filter orders (N) from 2001 to 5001 as seen in
Figure 5. This improvement may be due to better filtering
at higher order.

The direct fetal scalp ECG is the standard reference
FECG signal (channel one) as shown in Figure 6(a). The

raw maternal aECG signals were taken from channel
4—record r08 of the adfecgdb database as shown in
Figure 6(b). The frequency spectrum of the signal which
passed through BPF filters (frequencies between 35Hz and
49Hz) is shown in Figure 7(a). The band-pass filtering effec-
tively gives us the required frequency spectrum of the FECG,
which can be seen in the time domain plot in Figure 7(b).

When FQRS signal is passed through an amplitude
squarer, the predefined positive peaks are prominently
amplified as shown in Figure 8(a). Figure 8(b) shows the
moving window integrator which integrates this signal with
a selected window size, effectively picking the correct fetal
R-peak indices. An illustration from Figure 8(b) shows that
the time indices (n) for the first two detected fetal R-peaks
are 3155 and 2709, respectively, which are above the adaptive
threshold value. As shown in Figure 8(c), the FHR at these
ni=1 and ni=2 are computed to be 134.52 bpm using (12).

Among the four types of fetal frequency fiduciary edges
of the BPF, type 1 (27Hz–53Hz) will absorb some of the
PLI in the ECG record, whereas type 2 (27Hz–48Hz) avoids
PLI unlike type 1 but has a partial overlap spectrum of mater-
nal ECG. Similarly, type 3 (35Hz–53Hz) will again have PLI
problem but has no maternal spectrum overlap. Finally, the
type 4 (35Hz to 48Hz) can be considered optimum since
the maternal spectrum overlap and PLI are absent. In spite
of narrowing the spectrum in this case, there are no missing
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Figure 8: Noninvasive FHR detector for N = 5001 for adfecgdb database (channel 4—record r08). (a) Amplitude squaring of fetal R-peaks.
(b) Moving window integration and adaptive threshold. (c) Fetal heart rate variability.
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Figure 9: Illustration of the true reference FHR plotted with our algorithm computed FHRV for four sets of fetal frequency fiduciary edges of
the BPF. The signal used is a one-minute trace of record r08, channel 4 of adfecgdb with filter order N = 5001 (ni is the time index
corresponding to the ith computed fetal R-peak at the output of the FQRS detector). (a) Type 1: 27Hz–53Hz. (b) Type 2: 27Hz–48Hz.
(c) Type 3: 35Hz–53Hz. (d) Type 4: 35Hz–48Hz. The dotted lines indicate the ±10 bpm tolerance assumed with respect to the reference
FHR trace.
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fetal beats. The illustration of the true reference FHR plotted
with our algorithm computed FHR for the four sets of fetal
frequency fiduciary edges of the BPF is shown in Figure 9.

The FQRS detection performance parameters, Se, PPV,
and F1, were calculated for all the four channels for each of
the 5 adfecgdb records using the type 4 fetal frequency fidu-
ciary edges as shown in Figure 10. It was observed that all
the above three parameters were 100% for channel 4 of
records r01 and r08. The missed fetal R-peaks (FN) were seen
in some channels of records r04, r07, and r10, while the
falsely identified fetal R-peaks (FP) were the least in most of
the records.

It is found that this technique can be extended to detect
maternal heart rate merely by changing the fiduciary edges
of the BPF to ωs1 = 10π and ωs2 = 40π as shown in
Figure 11. An illustration of the adfecgdb record r01 (channel
3) detected TP=89, FN=3, and FP=0 to compute Se, PPV,
and F1 to be 96.74%, 100%, and 98.34%, respectively, as
shown in Figure 11(e). Similarly, the QRS detection algo-
rithm was tested for the MHR using the Physionet nifecgdb
database for all 55 records with 3 to 4 channels each. It was
observed that the MHR for all the four aECG channels for
most records closely matched the MQRS reference annota-
tions. Abdominal signals from channels 5 and 6 of records
such as ecgca416, ecgca597, ecgca649, ecgca771, ecgca848,
and ecgca986 displayed a large percentage error difference
of computed MHR bpm value as compared with the refer-
ence MHR due to the degradation of the acquired aECG
signals as seen in Figure 12.

5. Conclusion

In this paper, we described a technique of fetal heart rate
detection performed noninvasively. This technique was
implemented using a linear phase sharp transition FIR
band-pass filter. We considered four types of fetal frequency
fiduciary edges characterized by varying amounts of overlap
with maternal ECG spectrum. Type 4 was found to be opti-
mum with no PLI, no maternal spectrum overlap, and no
fetal beats missed. It is found that increasing the filter order
has improved the average transition bandwidth, passband
ripple, and stop band attenuation of the filter. The fetal R-
peaks generated by our algorithm were compared with the

scalp fetal R-peak annotations from the Physionet databases.
The algorithm-generated fetal R-peaks were found to be in
close agreement with each other including the average FHR
values of the true reference and algorithm FHR. Similarly,
other performance indices such as Se, PPV, and F1 were
found to have promising results, even for lower filter orders.
The same technique was successfully extended to maternal
heart rate detection.
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