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Abstract

Chloride is the principal anion of the extracellular fluid and vital for both serum
electroneutrality and acid-base homeostasis. The aim of this review is to investigate
the relevance of dyschloremia in the critically ill.
An extensive literature research was conducted on www.pubmed.org. In addition,
the references of included articles were searched for further possible investigation
regarding chloride.
Articles investigating the relevance of dyschloremia in the critically ill were included.
All articles were screened in regard to dyschloremia in the critically ill.
Chloride is essential for blood pressure control, decarboxylation/gas transport, renal
function, and gastrointestinal homeostasis. “Dyschloremia,” i.e., serum chloride levels
not within the limits of normal, may commonly be observed on ICUs and appear
mainly induced by iatrogenic measures (i.e., infusion of chloride-rich fluids). Hypo-
and hyperchloremia appear linked to increased mortality in defined ICU populations,
but evidence is sparse. Data show that hyperchloremia may not only be linked to
hyperchloremic metabolic acidosis, but also to increased hemodynamic instability
and vasopressor need (e.g., in patients after major surgery). Nevertheless, it is
currently unknown whether such effects would be directly or indirectly mediated.
Moreover, recent evidence points to an increased incidence of acute kidney injury
and need for renal replacement therapy in patients with advanced hyperchloremia.
Current knowledge on chloride is largely limited by heterogeneous trial design and
mostly abundant data on specific fluid replacement strategies. The aim of this review
is to summarize key consequences of chloride in critical illness and to discuss
implications for daily clinical practice and future research.

Keywords: Renal function, Intensive care, Electrolytes, Mortality, Acid-base disorder

Review
The chloride ion (Cl−, molar mass 35.45 g/mol) is the principal extracellular anion in

humans [1–3]. Intra- and extracellular chloride concentrations range from 2 to 5 mmol/L

(skeletal muscles) to about 90 mmol/L (erythrocytes), and 97–107 mmol/L (plasma).

Chloride is vital for maintenance of serum electroneutrality, acid-base balance, fluid

homeostasis, osmotic pressure, hydrochloric acid (HCl) production in the gastrointestinal

tract, renal function, and for electrical activity in general, e.g., in muscular activity [1, 2].

Hyperchloremia has a high prevalence in critically ill patients with data showing that

it may be observed in about 25–45% of ICU patients; however, this seems not acknowl-

edged by previous research or textbooks. Data from a recent prospective observational
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investigation demonstrate that temporary hyperchloremia may even occur in 75% of

ICU patients during the first 24 h of ICU stay [4]. However, despite a rather high preva-

lence in critically ill patients, few outcome-related data regarding systemic chloride

levels exist. The available data indicate that in general, increased disease severity is as-

sociated with abnormal chloride levels (reviewed in [1]). This review aims to provide an

overview on chloride physiology and to reflect outcome-relevant effects of chloride in

critically ill patients.

Physiological functions of chloride—a quick overview

In humans, dietary salt intake is the primary Cl− source (about 6–12 g, respectively

100–200 mmol Cl−) [1, 5]. Cl− is vital for several key physiological functions discussed

below (Fig. 1).

Acid-base equilibrium

Cl− is the major extracellular strong ion and is key to maintenance of acid-base homeo-

stasis [1, 6, 7]. Cl− levels are inversely related to bicarbonate [1], which acts as the

major acid-base buffer in humans [1]. Cl− was identified as the primary factor

influencing the occurrence of metabolic alkalosis and non-anion gap metabolic acidosis

in critical illness [6].

The influence of Cl− acid base homeostasis can be explained by the “Stewart

approach” (Fig. 2), where the potential proton concentration of a given solute is

determined by changes in any of three independent variables: (1) difference in so-called

Fig. 1 The principal physiological functions of chloride in the human body
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strong ions (SID) where Cl− plays a major role, (2) carbon dioxide partial pressure,

and (3) non-volatile weak acid concentration [7, 8]. In addition, Cl− levels are

significantly influenced by compensatory factors, urine electrolyte, and bicarbonate

concentrations and water homeostasis. The influence of Cl− on acid-base homeo-

stasis is provided in Fig. 3.

Influence of chloride on renal function and blood pressure

Cl− undergoes free glomerular filtration with 99% being reabsorbed and about

180 mmol of Cl− excreted per day [1, 9]. Cl− reabsorption occurs in the proximal renal

tubule (~ 60%) and partly in intercalated cells of the distal nephron. In the ascending part

of Henle’s loop, another 25% of Cl− is reabsorbed [1, 9–11]. In euvolemia, Cl− levels

Fig. 2 Acid-base physiology according to the Stewart’s approach

Fig. 3 Influence of chloride on acid-base homeostasis
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regulate active sodium-potassium and Cl− reabsorption [1] by tubular-glomerular feed-

back with Cl− sensing in the macula densa. This feedback may induce renal afferent

vasoconstriction and reduced glomerular filtration [11–14]. Moreover, Cl− levels affect

renin secretion and Cl− concentrations at the macula densa and are inversely related to

renin-angiotensin-aldosterone system (RAAS) activation [1, 12]. Several preclinical studies

showed that Cl− depletion induced stimulation of renin secretion resulting in increased

systemic blood pressure [15]. In addition, Cl− concentrations may exert direct effects on

smooth muscle cells resulting in vasoconstriction [5].

Gastrointestinal function of chloride

Cl− has two distinct functions in the gastrointestinal (GI) tract: first, it is secreted in

form of HCL and is required for protein digestion, microorganism homeostasis, and

absorption of nutrients (e.g., calcium, zinc, iron, vitamins, folic acid) [1]. Second, it is

responsible for maintenance of the GI osmotic gradient and fluid secretion [1]. The

role of Cl− in splanchnic perfusion is discussed controversially with few animal data

indicating that increased Cl− levels lead to impaired gastric-pyloric motility, nausea,

and vomiting [16].

Effects of chloride on oxygen transport and gas exchange

Intracellular Cl− are lower than extracellular Cl− levels [1]. The extracellular vs.

intracellular Cl− distribution mainly depends on cell membrane potentials that are

established by transmembrane electrolyte transport [1]. Erythrocytes have low

membrane potentials allowing for almost free transmembrane Cl− passage [1] and

anion exchange mainly occurs via an Cl−/HCO3
− antiport. The underlying physiological

mechanism (Cl−/HCO3
−exchange) is referred to as “Hamburger shift” and seems key to

understanding carbon dioxide (CO2) transport. In fact, when blood passes through the

venous system with high CO2 pressures, a chloride efflux and concurrent bicarbonate

influx (derived from CO2; CO2 uptake) occurs which is diffused while respective blood

is arterialized in the pulmonary system [17, 18]. This Cl− shift plays a role in oxygen

(O2) unloading also [17, 18]. Nevertheless, the clinical significance of this effect needs

confirmation in subsequent investigations.

Clinical conditions associated with “dyschloremia” on the ICU

Definition of “dyschloremia”

Hypochoremia is usually defined as serum chloride levels below 96–101 mmol/l, while

hyperchloremia normally is defined as serum chloride levels higher than 106–111 mmol/l

[19–21]. The definition varies depending on the local laboratory. Chloride levels do

closely interact with the body’s water contact and are highly susceptible to either plasma

contraction or dilution (also see below).

Hypochloremia

Hypochloremia in critically ill patients can be caused by active Cl− loss, e.g., through the

GI tract (e.g., vomiting, diarrhea), via inadequate renal Cl− reabsorption or via dilution

following infusion of hypotonic fluids [1, 9]. Additionally, Cl− can be lost via the kidneys

in cases of increased bicarbonate reabsorption in either chronic respiratory acidosis or

hyper-aldosteronism. High-volume bicarbonate infusion may result in Cl− being

exchanged for bicarbonate in order to maintain electroneutrality [1]. Key to

understanding of hypochloremia thus is assessment of potential iatrogenic effects and/or
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related use of diuretics [3]. Especially, the use of furosemide is clearly associated with the

occurrence of metabolic alkalosis [22]. Plasma contraction further aggravates

hypochloremic metabolic alkalosis especially in patients who lose high quantities of

chloride-rich fluids (e.g., vomiting) [23].

Hyperchloremia

Hyperchloremia in critically ill patients is mainly due to (1) loss of bicarbonate through

the GI or renal tract, (2) as a consequence of “dilution” due to volume loading with

fluids with a low bicarbonate concentration, or (3) by excess infusion of Cl−-rich fluids

[1]. On the ICU, diarrhea may be the most often reason for bicarbonate loss [1].

Bicarbonate may also be lost through the renal system in renal tubular acidosis (RTA),

especially in proximal RTA type II [1, 24].

Further, plasma “dilution” may also decrease bicarbonate levels [25, 26]. This typically

results in increased Cl− levels and “dilutional acidosis”—which was also observed after

infusion of large quantities of chloride-rich fluids [12, 25, 26].

Hyperchloremia in critical illness most often results from iatrogenic chloride overload

(e.g., 0.9% NaCl infusion with 154 mmol/l CL−) [1, 12, 27–30]. Normal saline has a

theoretical SID of zero [1] and thus results in development of hyperchloremic

metabolic acidosis [1, 12]. Despite growing evidence, 0.9% NaCl is still one of the most

widely used crystalloids [12, 30–36]; however, its use is widely debated [37–43].

Importantly, the ICU physician should note that albumin-based replacement fluids may

contain rather large quantities of chloride also [44, 45]. Furthermore cases of hyper-

chloremia on the ICU may result from infusion of HCl, acetazolamide, and/or triamter-

ene therapy, or specific cortisone derivates resulting in NaCl retention [1].

Impact on clinical outcomes of critically ill patients

Hyperchloremic metabolic acidosis

Hyperchloremic metabolic acidosis results from infusion of considerable quantities of

chloride-rich fluids in critically ill patients [27–30, 33, 35, 36, 46–48]. It’s development

is dose-dependent and independent of infusion speed [13]. Importantly, hyperchloremic

metabolic acidosis may not only affect ICU patients with acute kidney injury (AKI)

[28], data also show that a total volume of 2000 ml of chloride-rich infusate may induce

hyperchloremic metabolic acidosis in healthy volunteers [13]. Hyperchloremic meta-

bolic acidosis may induce vasodilatation [49–51], altered neurotransmitter function [52,

53], decreased cardiac reactivity [52, 53], and other changes in cellular function [54], as

well as decreased endogenous catecholamine release [55].

Current literature clearly indicates that chloride-rich infusates are associated with the

temporary occurrence of hyperchloremic metabolic acidosis. However, the significance

of the latter and its influence on clinical endpoints such as the occurrence of kidney

failure or mortality is not jet clarified.

Renal function

Effects of hyperchloremia on renal function were first investigated over 30 years ago

[11, 14]. There is some animal [11, 14, 47] and human data (13) that suggest that renal

blood flow and renal cortical perfusion is diminished under chloride infusion. However,

a recently published trial [56] does not confirm these findings.
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Clinical studies, like animal experiments, showed mixed results regarding

patient-centered clinical outcomes (e.g., need for renal replacement therapy

(RRT)) in ICU patients [4, 33, 35, 37, 46, 57–62] (see, Table 1). Whereas some

clinical trials did not identify changes in serum creatinine or acute kidney injury

(AKI) rates in mixed ICU cohorts, cardiac surgery, or sepsis [37, 59, 62], other

reports demonstrate increased AKI incidence and need for renal replacement

therapy (RRT) [4, 46, 57]. However, the sensitivity analysis of one of these trials

showed that the incidence of AKI and need for renal replacement therapy were

also influenced by other unidentified confounders [57], so the issue is far from

being concluded. This is also confirmed by another recently published retrospect-

ive analysis comparing hypertonic (3%) to normal saline in patients undergoing

emergent laparotomy that showed no difference in respect to renal outcomes be-

tween the groups, even though the chloride levels were significantly higher in the

hypertonic saline group [63].

In addition, unfortunately, methodology, terminology, amount of total volume ap-

plied, and triggers for RRT differed considerably between trials. Overall, it appears that

trials with lower total amount of Cl− infusion (i.e., 1–2 L/24 h) found unaffected AKI

rates [37, 59], whereas trials with higher infusion rates showed an increased AKI

incidence and RRT need [4, 35, 46, 57] suggesting a dose-dependent effect. Despite the

enormous heterogeneity in the available literature which makes it almost incomparable,

a recently published meta-analysis [33] included randomized and non-randomized trials

concluded that use of chloride-rich fluids is associated with a higher AKI risk.

Interestingly, increased serum Cl− levels alone, independent of i.v. fluid, were

associated with a higher AKI risk in several studies [4, 64, 65]. As to chloride levels,

studies show that only minimal and/or maximum Cl− levels during ICU stay [61] but

not ICU admission levels [64] were associated with an increased AKI incidence. An

increase of Cl− serum levels by 10 mmol/l resulted in OR 7.39 for AKI development in

one study [65]. However, the number of study focusing on chloride levels independent

of i.v. fluids is still a few.

In conclusion, despite the number of studies focusing on the development of AKI

and need for RRT in patients receiving chloride-rich infusates, the debate is far from

being decided due to the large heterogeneity in the available literature.

Cardiovascular function

Chloride-rich infusions may lead to hemodynamic instability [27, 28, 31, 47].

Hemodynamic effects of chloride-rich fluids were first described by Kellum and co-

workers in a rodent sepsis model [47]. In this model, hyperchloremia and associated

metabolic acidosis induced decreased arterial pressures [47]. This effect was confirmed

in additional studies showing decreased mean arterial blood pressures and cardiac

index in rats with abdominal sepsis [31]. In critically ill humans, patients receiving

chloride-rich infusions had a volume-dependent increased vasopressor need [27]. A

randomized controlled double-blind study by members of our group focusing on nor-

mal saline when compared to an acetate-buffered infusion solution in patients undergo-

ing major abdominal surgery even shows, that the effect is not only volume-dependent,

but also time-dependent [66]. The mechanisms behind this effect remain somewhat

elusive. Further trials comparing other infusion solutes in respect to cardiovascular sta-

bility are certainly needed before drawing definitive conclusions.
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Hypochloremia seems of particular importance in heart failure patients where low

levels of serum chloride indicate advanced disease, and are associated with decreased

left ventricular ejection fraction [38, 67–69], increased cardiac function markers (e.g.,

NT-pro-BNP) [38, 68], and circulating catecholamine levels [70]. In fact, hypochloremia

was identified as an independent predictor for adverse outcome in heart failure patients

and was recently recognized to predict mortality in affected patients [3].

The influence of chloride on the cardiovascular system may be important for clini-

cians for several reasons: first, chloride loading may contribute to catecholamine need

in critically ill patients. Second, cardiac function may be influenced by chloride levels

in a “U-shaped” response curve with both hypo- and hyperchloremia being detrimental

for cardiovascular stability (and function). Third, the effect of chloride-“loading” on

hemodynamic stability may be dose-dependent. Fourth, in preclinical models, it was

shown that simple hyperchloremia may trigger increased blood pressures. However,

only concomitant hyperchloremia with metabolic acidosis results in decreased systemic

pressures [47]. It thus seems likely that the occurrence of acidosis and not hyperchlore-

mia per se is responsible for observed adverse cardiovascular effects.

Inflammation and coagulation

In several animal models, systemic levels of inflammatory makers were increased fol-

lowing chloride-rich infusions. This was observed in both experimental sepsis [12, 39,

47, 71] and trauma models [40]. In humans, this remains controversially discussed [41,

42] as effects of chloride-rich infusions on inflammatory markers may also be attrib-

uted to sodium rather than to Cl−. However, this requires further clarification.

Preclinically, chloride-rich infusions were associated with an increased need for blood

products [35, 40, 43]. Moreover, few evidence points to the fact that hyperchloremia

may influence plasmatic coagulation cascades [40, 43, 72] and/or platelet function [12].

In humans, several trials and a recent meta-analysis demonstrate increased need for

blood product administration in patients receiving chloride-rich infusions [33, 35, 73].

Nevertheless, the effect of acidosis in this context remains uncertain.

Mortality and other patient-centered clinical outcomes

A U-shaped mortality curve was reported in respect to Cl− levels and mortality [12].

This is depicted in Fig. 4. Several large-scale clinical trials in critically ill patients found

increased mortality rates in patients treated with chloride-rich infusions [2, 29, 33, 35,

46, 48, 58, 74, 75]. However, this effect was not confirmed in four other large-scale

multi-center trials and a recent meta-analysis [4, 33, 37, 46, 76]. Even when a very high

Cl− load fluid (hypertonic saline, 3%) was compared to normal Cl− load fluid (0.9%

saline), there was no difference in respect to mortality between these groups [76].

Hyperchloremia itself (at 72 h after ICU admission) or rise in Cl− levels of > 5 mEq/l

was associated with increased in-hospital mortality [2]. Interestingly, two large studies

in SIRS patients [29, 48] found that mortality remained lowest in patients with only

minimal serum Cl− variation during total hospital stay [29]. In-hospital mortality grad-

ually increased with each 10 mmol/l of serum Cl− level increase [29]. This association

was independent of total fluid volume administered, but linked to volume-adjusted

chloride-load [29]. Another study in critically ill patients investigating the prognostic

potency of acid-base variables to reflect in-hospital mortality identified hyperchloremia

and hypoalbuminemia as the only independent factors after adjustment [77].
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In conclusion, even though literature points towards increased mortality rates in pa-

tients with hyperchloremia, it remains unclear whether potential effects of Cl− levels on

mortality are due to direct or indirect (e.g., acidosis) effects.

Hypochloremia was also linked to mortality in several studies [38, 67, 68, 70, 75, 78]

and may be of special importance in patients with heart failure. An inverse relationship

of Cl− levels with mortality in patients with compensated and non-compensated heart

failure was shown [3, 38, 67]. Some studies showed an independent effect of hypochlor-

emia (< 100 mmol/l) on cardiovascular, non-cardiovascular, and all-cause mortality [38,

67, 79]. All-cause mortality rates were increased even after 5 years of follow-up follow-

ing initial hypochloremia [67]. Moreover, a recent editorial concludes that reduced

serum Cl− levels may be of higher prognostic importance than increased sodium levels

in heart failure patients [3].

Unlike with hyperchloremia, hypochloremia is more closely associated with increased

mortality and should certainly be considered by intensive care physicians.

Effects of chloride levels on several other patient-centered relevant clinical out-

comes were investigated. Hyperchloremia was associated with increased length of

mechanical ventilation [33], increased rates of post-operative infectious complica-

tions [35, 48], increased readmission rates [48], and increased ICU and hospital

length of stay [48, 58, 78]. However, these outcomes need to be further evaluated

before drawing any definitive conclusions.

Conclusions
Hypo- or hyperchloremia may often be observed on ICUs, but data on relevant patient-

centered clinical outcomes remain sparse. In fact, most studies investigating “dyschlore-

mia” were heterogeneous and hyperchloremia was a result of infusion of normal saline

(and thus concomitant sodium infusion). Moreover, different laboratory methods to

measure Cl−, definitions of hypo- and/or hyperchloremia, different trial design/

Fig. 4 Influence of chloride levels on mortality. *All tables and figures are propriety of the authors and have
not been published elsewhere
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methodology, and cohorts under investigation add to a considerable heterogeneity of

the available data.

“Dyschloremia,” however, may have a major impact on clinical outcomes in crit-

ical illness. Despite growing evidence favoring avoidance of chloride-rich infu-

sions, e.g., 0.9% NaCl is still one of the most widely used crystalloid and some

authors argue that despite development of hyperchloremic metabolic acidosis, its

clinical significance remains elusive. In respect to renal function, the influence of

hyperchloremia on renal function remains somewhat controversial and the avail-

able literature very heterogenic and almost incomparable. Therefore, no final con-

clusions on the topic of AKI incidence and need for RRT in respect to i.v. fluids

with elevated chloride-content can be drawn. For cardiovascular aspects, growing

evidence indicates that hyperchloremia-associated metabolic acidosis may induce

hemodynamic instability. Hyperchloremia also may also have negative effects on

coagulation cascades and increased mortality.

Interestingly, hypochloremia was much less studied than hyperchloremia although

emerging evidence shows that low chloride levels may largely affect outcome, especially

mortality in patients with heart failure.

In conclusion, “dyschloremia” significantly influences several important outcomes in

the critically ill. However, much of the discussion is subject to an ongoing debate.
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