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Abstract
The response of a neuronal population over a space of inputs depends on the intrinsic prop-

erties of its constituent neurons. Two main modes of single neuron dynamics–integration

and resonance–have been distinguished. While resonator cell types exist in a variety of

brain areas, few models incorporate this feature and fewer have investigated its effects. To

understand better how a resonator’s frequency preference emerges from its intrinsic

dynamics and contributes to its local area’s population firing rate dynamics, we analyze the

dynamic gain of an analytically solvable two-degree of freedom neuron model. In the Fok-

ker-Planck approach, the dynamic gain is intractable. The alternative Gauss-Rice approach

lifts the resetting of the voltage after a spike. This allows us to derive a complete expression

for the dynamic gain of a resonator neuron model in terms of a cascade of filters on the

input. We find six distinct response types and use them to fully characterize the routes to

resonance across all values of the relevant timescales. We find that resonance arises pri-

marily due to slow adaptation with an intrinsic frequency acting to sharpen and adjust the

location of the resonant peak. We determine the parameter regions for the existence of an

intrinsic frequency and for subthreshold and spiking resonance, finding all possible intersec-

tions of the three. The expressions and analysis presented here provide an account of how

intrinsic neuron dynamics shape dynamic population response properties and can facilitate

the construction of an exact theory of correlations and stability of population activity in net-

works containing populations of resonator neurons.

Author Summary

Dynamic gain, the amount by which features at specific frequencies in the input to a neu-
ron are amplified or attenuated in its output spiking, is fundamental for the encoding of
information by neural populations. Most studies of dynamic gain have focused on neurons
without intrinsic degrees of freedom exhibiting integrator-type subthreshold dynamics.
Many neuron types in the brain, however, exhibit complex subthreshold dynamics such as
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resonance, found for instance in cortical interneurons, stellate cells, and mitral cells. A res-
onator neuron has at least two degrees of freedom for which the classical Fokker-Planck
approach to calculating the dynamic gain is largely intractable. Here, we lift the voltage-
reset rule after a spike, allowing us to derive a complete expression of the dynamic gain of
a resonator neuron model. We find the gain can exhibit only six shapes. The resonant ones
have peaks that become large due to intrinsic adaptation and become sharp due to an
intrinsic frequency. A resonance can nevertheless result from either property. The analysis
presented here helps explain how intrinsic neuron dynamics shape population-level
response properties and provides a powerful tool for developing theories of inter-neuron
correlations and dynamic responses of neural populations.

Introduction
Integration and resonance are two operational modes of the spiking dynamics of single neu-
rons. These two modes can be distinguished from each other by observing the neuron’s signal
transfer properties: how features in its input current transfer to features in its output spiking.
The traditional approach to investigating neuronal transfer properties is to measure the sta-
tionary response: the time-averaged rate of firing of spikes as a function of the mean input cur-
rent, or fI-curve. In Hodgkin’s classification [1], Type Imembranes can fire at arbitrarily low
rates, while the onset of firing in Type IImembranes occurs only at a finite rate. This distinction
arises naturally from the topology of the bifurcations that a neuron can undergo from resting
to repetitive spiking [2]. In many central neurons, it is fluctuations rather than the mean input
current that drive spiking, putting them in the so-called fluctuation-driven regime [3]. Many
dynamical phenomena are nevertheless tightly linked to excitability type. For example, Type II
neurons exhibit rebound spikes, subthreshold oscillations and spiking resonance (e.g. mitral
cells, [4–6], respectively). The qualitative explanation for these phenomena is that the dynam-
ical interplay of somatic conductances endow some neurons with a voltage frequency prefer-
ence, i.e. a subthreshold resonance. This preference can contribute to a superthreshold
resonance in the modulation of their output spiking [7]. How dynamic response properties of
spiking dynamics such as resonance emerge can be directly assessed by considering the neu-
ron’s dynamic gain.

Dynamic gain, first treated by Knight [8], quantifies the amount by which features at spe-
cific frequencies in the input current to a neuron are amplified or attenuated in its output spik-
ing. It can accurately distinguish functional types and unveil a large diversity of phenomena
shaping the response to dynamic stimuli [9–18]. Dynamic gain and response are also essential
ingredients for theoretical studies of network dynamics in recurrent circuits [8, 12, 13, 18–49].
First, they determine the stability of the population firing rate dynamics [21, 25, 26]. Second,
they determine how input correlations between a pair of cells are transferred to output correla-
tions [28, 42, 44–49], from which self-consistent relations for correlations in recurrent circuits
can be obtained.

Experimental studies have started over the past years to use dynamic gain measurements to
investigate the encoding properties of cortical neuron populations [9–18]. Although theoretical
studies have investigated many neuron models, very few models are known for which dynam-
ical response can be explicitly calculated. One basic reason for this lies in the fact that Fokker-
Planck equations for neuron models with two or more degrees of freedom are not solvable in
general [50]. For Type II neuron models that require at least two degrees of freedom, no solv-
able model is known.
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The simplest model capable of subthreshold resonance was introduced by Young [51] in the
early theories of excitability. Later, Izhikevich formulated a structurally similar neuron [52].
Richardson and coworkers performed the first calculation of the linear response function of a
neuron model capable of resonance, the Generalized Integrate-and-Fire (GIF) neuron [22, 29].
Only in the limit of relatively slow intrinsic current time constant can analytical expressions
for the GIF response be obtained, however. The distinct transfer properties of resonant vs.
non-resonant dynamics leads to different information transfer properties. While this has been
demonstrated in the mean-driven regime [53, 54], no such results exist for the fluctuation-
driven regime, in part due to a lack of exact analytical expressions for even the linear dynamic
gain. Type II excitability and dynamic response thus are representative of the more general
challenge posed by response properties of neurons with complex intrinsic dynamics.

In the current study, we derive and analyze the linear response function in the fluctuation-
driven regime of a neuron model capable of resonance. We express it as a filter cascade from
current to voltage to spiking. It is valid across all relevant input frequencies and over all rele-
vant values of the intrinsic parameters. In particular, we apply to the GIF neuron model the
Gauss-Rice approach in which the voltage reset after a spike is omitted. The methods generalize
to additional intrinsic currents and to the full nonlinear response with spike generation. To
understand how subthreshold features interact to determine a neuron’s filter characteristics,
including resonance, we provide a two-dimensional representation of the response properties
that completely characterizes all possible filter types. For this idealized model, we determine
analytically and numerically a wide and biologically-relevant regime of validity of the derived
expression.

The paper begins with the definition of the model and its numerical implementation. We
then derive a general expression for the linear response in the mean channel of a Gauss-Rice
neuron. In the next section, the analytical results for the response properties of the Gauss-Rice
GIF neuron model are obtained. The final section then presents an analysis of the expression.
For the sake of mathematical clarity, most calculations appear in the main text; the rest, includ-
ing an exposition of model assumptions, are contained in the Methods.

Results

Definitions and methods for a population of Gauss-Rice GIF neurons
We consider the most simple hard-threshold, no-reset, GIF-type neuron capable of exhibiting
resonator dynamics, whose response properties have been partially studied in [25]. A reset ver-
sion of this model is treated in [29], where the population spiking response properties were cal-
culated assuming large intrinsic time constant. In the Methods, we present a more detailed
exposition of the model assumptions, and justify an additional simplification of the voltage
reset after a spike. The feature that distinguishes the GIF model from the classical Leaky Inte-
grate-and-Fire (LIF) model is that the dynamics of the voltage, V, is coupled to an intrinsic
activity variable, w,

tV _V ¼ �V � gwþ Isyn

tw _w ¼ V � w ;
ð1Þ

where g is a relative conductance and τV and τw are the respective time constants of the dynam-
ics. The notation _x denotes the derivative with respect to time of the variable x. Spikes are emit-
ted at upward crossings of a threshold, θ. Synaptic current modeled by Isyn drives the model
whose dynamics are kept stable by keeping g> −1. When g< 0, w is depolarizing. When
g> 0, it is hyperpolarizing and can lead to resonant voltage dynamics.
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Intrinsic parameters, g and τw, shape the phase diagram of the intrinsic dynamics.
Here we present analysis of the phase diagram of the intrinsic dynamics of the model, which is
a reparametrization of Fig. 1 from [29]. Beyond that work, here we analyze the O-contour den-
sity and scaling behavior. For a fixed, constant value of Isyn, and with time in units of τV, the
structure of the phase space of the single neuron dynamics described by Eq (1) is determined
by a point in the τw/τV vs. g plane, the two parameters defining the intrinsic current, w (see
Fig 1). For τw � τV, w speeds up or slows down V depending on whether g is hyperpolarizing
(g> 0) or depolarizing (g< 0) characterized by an effective time constant

teff ¼
tV

1þ g
: ð2Þ

While the dissipative voltage term stabilizes the voltage dynamics, the dynamics can be effec-
tively unstable for g< −1, and we exclude this case. For depolarizing intrinsic current, there is
a region where the two eigenvalues of the voltage solution, λ±, are complex and the model
exhibits an intrinsic frequency, O = 2πfint, that varies as

O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � gcrit
twtV

r
ð3Þ

where gcrit = (τw − τV)
2/4τwτV (see Methods for details). For a fixed g> 0, a given value of O

can be achieved at both a high and a low value of τw. For fast τw, the O-contour density is high
and the model exhibits high parameter sensitivity, while for large τw the contour density is low
and the model is relatively insensitive to local parameter variation. Taking the respective limits,
the set of isofrequency curves are linear for large τw with slope/ O2 and/ t�1

w with a slope
independent of O for small τw.

Furthermore, there is a minimum relative conductance, gmin ¼ 1
2

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4O2

p� �
for

which a given O can be achieved. The minimum shifts to increasingly short τw with O. To

Fig 1. The type ofw-current depends on the values of the intrinsic parameters. (a) Intrinsic parameter phase diagram in (τw/τV, g).w can be
depolarizing (g < 0) or hyperpolarizing (g > 0).w contributes an intrinsic frequency to the model in the colored region. The dynamics are unstable if g < −1.

Iso-Ω lines are shown in white (g ¼ ðtVOÞ2 þ 1
4

� �
tw=tV for large τw and g ¼ 1

2

tV
2tw

� 1
� �

for small τw). (b) When l� 2 C, the phase diagram can be cast in (τw/τV,

ΩτV)-space. Iso-g lines are shown in white. (See [29] for a similar plot).

doi:10.1371/journal.pcbi.1004636.g001
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emphasize the timescale of the intrinsic frequency when it exists, we reparametrize the model
by replacing g with O using Eq (3), and arrive at the implicit representation shown in Table 1)
(see Methods for more details). The statistical structure of the relative timings of the output
spikes of the model will be affected by O.

Population firing rate dynamics. Given a population of N neurons indexed by k, in a
time window, T, each one produces a spike train,

skðtÞ ¼
Xnk

s

dðt � tks Þ ; ð4Þ

with nk spikes labeled as tks . The average firing rate across the population in this window is

nðt;TÞ ¼ 1

N

XN

k¼1

1

T

ZtþT

t

skðt0Þdt0: ð5Þ

For stationary input, this becomes the stationary population averaged firing rate, independent
of t, in the limit T!1,

n0 ¼ lim
T!1

nðt;TÞ : ð6Þ

In the other limit, taking T! 0 while keeping NT constant, such that there is a statistically
invariant number of spikes in the time window, the integrand of Eq (5) is a well-defined time-
dependent ensemble average, the instantaneous population firing rate,

nðtÞ ¼ lim
T!0

1

T

ZtþT

t

1

N

XN
k¼1

skðt0Þdt0

¼ skðtÞk
nðtÞ ¼ �sðtÞ ;

ð7Þ

where �x ¼ hxkik � 1
N

XN

k¼1
xk denotes the population average of a single neuron quantity, x.

Note that this population firing rate can exhibit time dependence on arbitrarily fast timescales.

Table 1. Parameter groups for each dynamics.

Neuron model Intrinsic Input Voltage Voltage filter Spiking filter

tV

g

tw
g Explicit Rep:

tr

O

tw
g Implicit Rep: ðl�Þ

τI σV oL

QL ¼ oL tr =2

to
g Filter Rep:

ν0

σI s _V τc

ω ts ¼ sV=s _V νωL
= ν1(ωL)/ν1(0)

θ τeff ≔ τV/(g+1) A σ = σV/θ Vlow :¼ ~�V ð0Þ ν1 = ν1(1)/ν1(0)

Table notes: There are three equivalent representations of the parameter space of the voltage dynamics based on the explicit parameters of the model,

the implicit timescales of the model, and the filter parameters of the mean voltage filter, respectively.

Parameter notation: τV, membrane time constant; g, relative conductance; τw, w time constant; θ, voltage threshold; τr, relaxation time of voltage

dynamics; Ω, intrinsic frequency; λ±, eigenvalues, when ωLτr > 1, λ± = r ± iΩ, with real part, r ¼ �t�1
r ; τeff, effective membrane time constant; τI, input noise

correlation time; σI, input noise standard deviation; ω, input signal frequency; A, input signal amplitude; σV, standard deviation of voltage; s _V , standard

deviation of voltage time derivative; τs, differential correlation time; σ, relative standard deviation of voltage; ωL and QL, center frequency and Q-value,

respectively, of low pass component of current-to-voltage filter; Vlow, low frequency voltage response; ν0, stationary firing rate; τc, characteristic time of

voltage-to-spiking filter; νωL
≔ ν1(ωL)/ν1(0), spiking response at ωL; ν1 ≔ ν1(1)/ν1(0), high frequency spiking response.

doi:10.1371/journal.pcbi.1004636.t001
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Populations of fluctuation-driven neurons. The input to the neuron, Isyn, from Eq (1)
arrives from many, weak synapses. The total drive will thus resemble a continuous stochastic
process. The system can then be solved under this assumption by directly simulating the corre-
sponding stochastic differential system of Eq (1),

tV _V ¼ �V � gwþ �IðtÞ þ dIðtÞ
tw _w ¼ V � w

ð8Þ

where �IðtÞ is the time-dependent mean input and δI(t) is a zero-mean noise process. Solutions
give the output spike times, which averaged over an ensemble give the population firing rate, ν
(t). Under the diffusion approximation, discussed in more detail in the Methods, the stochastic
drive, δI(t), can be taken as an zero-mean Ornstein-Uhlenbeck process with variance s2

I and
correlation time τI. The resulting stochastic dynamics were simulated by numerical integration
via a Runge-Kutta scheme (see ref. [55] for details).

To illustrate the dynamic ensemble response, we show in Fig 2 an example of input, intrin-
sic, and output variable time series produced by the model for two choices of signal in the
mean channel, �IðtÞ: a weak oscillation of amplitude A and frequency ω and, separately, a step
of height Δ. In addition, we show the corresponding population firing rate dynamics obtained
from a histogram of the spike times of the sample ensemble produced by the two inputs. Code
to produce this plot can be found in the supplemental material. The input modulation struc-
tures the spike times produced by the ensemble relative to the stationary response in a way that
only becomes salient at this population level. We motivate consideration of the analytical
expressions for the linear response function (Eq (41)) and the step response function (Eq (63)),

Fig 2. From input to ensemble response: numerics and prediction.Model output for the default parameter set: τI = 1ms, σI = 1, τV = 10ms, θ = 1, τw =
20ms, fint = 20Hz (g = 3.15). Left: in in the case of an oscillation of amplitude A = 0.05 and input frequencyω = (2π)20 rad/s. Right: in the case of a step of
height A = 0.1. The example realization shown is the one with the maximum number of spikes from the sample ensemble. The red line is the response
calculated using the analytical expressions for the oscillation and step response, Eqs (41) and (63), respectively.

doi:10.1371/journal.pcbi.1004636.g002
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obtained later in this paper, by plotting their curves, which accurately overlie the profile of the
two respective measured histograms. While the input oscillation produces modulation in the
output spiking at only one frequency, the step input produces a response that has power across
a broad band of frequencies.

Approaches to obtaining the population response
Response theory captures the population response to input signals with arbitrary frequency
content and so we now turn to it, and linear response theory in particular, in the pursuit of
understanding the population firing rate dynamics of the GIF neuron model.

The formal, implicit definition of the linear response function, ν1(ω), arises from a weak
oscillatory modulation of amplitude A and frequency ω in the mean input, and an expansion of
the response, ν(t), in powers of A,

nðtÞ ¼ n0 þ n1ðoÞAeiot þOðA2Þ ; ð9Þ

where ν0 is the stationary response, Eq (6). In the Methods, we restate how the linear response
can be obtained (Eq (59)) directly from the spike times using the complex response vector,
rðoÞ≔he�iotmim. Below, we show the classic formulation that shows that it can also be obtained
from the voltage dynamics.

Obtaining the response from the statistics of the voltage dynamics. To obtain ν1(ω) ana-
lytically, we go back to the definition of ν(t) containing sk(t), Eq (7). sk(t) can be rewritten as

skðtÞ ¼
X

j

dðt � tkj Þ

¼ dðVkðtÞ � yÞYð _VkðtÞÞj _VkðtÞj ;
where Θ is the Heaviside theta function defined as Θ(x) = 0 for x< 1 and Θ(x) = 1 for x> 0.

Yð _V Þ appears since spikes are only generated at upward threshold crossings of the voltage.
The factor j _V ðtÞj results from the coordinate change in the argument of the δ-function. When

combined withYð _V Þ, the absolute value can be omitted. For a population of such neurons, we
can then obtain the population-averaged firing rate as the rate of upward threshold crossings
known as Rice’s formula [56],

nðtÞ ¼ �sðtÞ ¼ hdðVkðtÞ � yÞYð _VkðtÞÞ _VkðtÞik: ð10Þ

The underlying ensemble of the population is captured by the distribution of voltages and volt-

age time derivatives at a given time, pðV ; _V jtÞ. When each neuron’s state is identically and
independently distributed, the average over k neurons is an average over this distribution at
fixed t,

nðtÞ ¼ hdðV � yÞYð _V Þ _Vi
V ; _V

ð11Þ

¼
Z 1

0

_VpðV ; _V jtÞj
V¼y

d _V : ð12Þ

This time-varying expectation value over the statistics of the voltage dynamics in the popula-
tion is the central time-domain quantity in the response theory for neuronal populations. It is
in general analytically intractable.

Subthreshold dynamics can be approximately linear and the many, weak inputs to each neu-
ron can permit a diffusion approximation to a Gaussian process input. In this situation, a
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model of voltage dynamics that omits the nonlinear voltage reset gives a voltage statistics that
is also Gaussian and can be treated analytically. This is the Gauss-Rice approach, to our knowl-
edge first published by Jung [57], where it was used to calculate correlation functions. The first
application of the approach to dynamic gain appears in Supplementary Note 3 of ref. [37].
Note that the lack of a voltage reset required for this approach restricts its range of applicability
(see Methods and Discussion).

Dynamic gain for the mean channel of a population of Gauss-Rice neurons. Here, we
derive the dynamic gain using the Gauss-Rice approach, similar to [19, 37, 42]. The emphasis
of the derivation here differs in that, first, we go directly to the linear response by linearizing
around the mean voltage, and second we express the results in terms of the voltage transfer
function to emphasize the additional filtering of the voltage dynamics by the spike threshold.
The resulting expression, Eq (22), applying to a generic population of neurons specified only
by the Gaussian statistics and frequency response of their mean voltage dynamics, simply adds
a first-order highpass filter to the frequency response of the voltage. In units of the differential
correlation time, τs, the characteristic time, τc, of this high pass depends only on the stationary
firing rate, ν0.

Because at zero-lag the voltage and its time derivative are uncorrelated for a stationary vari-

ance channel, hdVd _V i ¼ h1
2
d
dt
dV2i ¼ 1

2
d
dt
hdV2i ¼ 0, the Gaussian probability density function

of the voltage dynamics factorizes over V and _V ,

pðV ; _V jtÞ ¼ 1

2psVs _V

e
� ðV� �V ðtÞÞ2

2s2
V

� ð _V� �_V ðtÞÞ2
2s2

_V ð13Þ

where s2
V and s2

_V are the respective variances. Substituting this expression into Eq (12), we

obtain

nðtÞ ¼
Z 1

�1
_V

1

2psVs _V

e
� ðV� �V ðtÞÞ2

2s2
V

� ð _V� �_V ðtÞÞ2
2s2

_V

 !�����
V¼y

d _V : ð14Þ

This expression can be computed in terms of error functions to obtain the full nonlinear
dynamic response, e.g. for the Gauss-Rice LIF neuron model [19, 37, 42].

For a transparent analytical treatment of the mean channel in the fluctuation-driven regime
we consider the linear response. That is, for case of weak mean input we expand, for each time
t, this expression in terms of the resulting weak deviations to the ensemble mean voltage �V ðtÞ
and to its derivative �_V ðtÞ. To linear order,

nðtÞ �
Z 1

0

_V
1

2psVs _V
e
�
V2

2s2
V

�
_V 2

2s2
_V 1þ

�V ðtÞV
s2
V

;þ
�_V ðtÞ _V
s2

_V

 !0
BB@

1
CCA
��������V¼y

d _V : ð15Þ

Solving the integral, one obtains the linear response in the mean signal channel,

nðtÞ � n0 1þ y
sV

�
�V ðtÞ
sV

þ
ffiffiffi
p
2

r
�
�_V ðtÞ
s _V

 !
; ð16Þ

where ν0 is the stationary firing rate attained in the absence of modulation around the mean
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input current, I0,

n0≔
1

2psV=s _V

e
�
ðy� I0Þ2
2s2

V :
ð17Þ

h�V ðtÞit is offset by I0 and since I0 � θ in the fluctuation-driven regime we set I0 to 0 without
loss of generality, so that h �V ðtÞit ¼ 0. This expression can then be rewritten using only two
quantities: the differential correlation time ts≔sV=s _V , and the size of voltage fluctuations rela-
tive to threshold, σ: = σV/θ,

n0ts ¼
1

2p
e
�

1

2s2 : ð18Þ

τs is the width of the quadratic approximation to the correlation function around zero delay. It
serves as the summary timescale determined by the joint effects of all intrinsic timescales and
we study in detail this dependence for the GIF model in a later section. τs thus provides a natu-
ral time unit by which to measure the rate of output spikes, ν0, as a function of the relative volt-
age fluctuations, σ. ν0τs is then interpreted as the number of spikes in a correlated window of
voltage trajectory, and according to Eq (18) rises with σ, saturating for large σ at (2π)−1 < 1.
Fluctuation strength is less than the voltage difference between resting and threshold for most

physiological conditions, s≲1, in which case the useful bound, n0ts≲ð2p
ffiffi
e

p Þ�1 � 1, holds.
(Large output firing rates can nonetheless be achieved so long as the voltage correlation win-
dow, τs, is short enough to maintain ν0τs � 1.) Spike-generating voltage excursions are thus on
average well-separated in time so that the produced spiking exhibits low temporal correlations.

According to Eq (16), we can then identify ν1(ω) as the finite frequency component of its
Fourier transform,

n1ðoÞ ¼ n0
y
sV

�
�V ðoÞ
sV

þ
ffiffiffi
p
2

r
�
�_V ðoÞ
s _V

 !
; ð19Þ

where we note that our definition of ν1(ω), Eq (16), that has the amplitude of the input modula-
tion, A, factored out implies that A has been factored out of the voltage response. All response
quantities are implicitly defined as these A-independent versions. This expression can be sim-
plified further by pulling out the time-derivative operator. In the Fourier domain, this is just
multiplication by iω so that the �V ðoÞ factors out and calculation of ν1(ω) requires only the first
two voltage moments, as any statistic derived from a stationary Gaussian process should. �V ðoÞ
is the mean voltage response and the variances, s2

V ¼ CVð0Þ and s2
_V ¼ �C

@

Vð0Þ, are computed
from the correlation function of the stationary unperturbed voltage correlation function,

CVðtÞ ¼ F
�1½jdVðoÞj2�, obtained from the voltage noise spectrum δV(ω). The latter provides

only the variances, and so in the space of correlation functions, only directions along which
these quantities change affect the rate response [43]. The relative response can then be written

n1ðoÞ
n0

¼ y
s2
V

þ io

ffiffiffi
p
2

r
1

s _V

� 	
�V ðoÞ : ð20Þ

We can re-express it using τs and σ,

n1ðoÞ
n0

¼ 1þ io

ffiffiffi
p
2

r
sts

� 	
1

s2

�V ðoÞ
y

: ð21Þ
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The ensemble response of a population of Gauss-Rice neurons to a small modulation in the
mean input is thus simply a first-order high pass filter of the ensemble mean voltage response
with characteristic frequency 1/τc, with τc defined as

tc≔
ffiffiffi
p
2

r
sts ¼

ffiffiffi
p
2

r
tsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log
1

2pn0tsð Þ2
s :

where we have removed σ with s�2 ¼ p
2

t2s
t2c
, obtained from Eq (18).

The relative linear rate response is then

n1ðoÞ
n0

¼ p
2

t2s
t2c

1þ iotcð Þ
�V ðoÞ
y

; ð22Þ

where the dependence on ν0τs is concealed in the definition of τc. Thus, in units of τs, the high
pass filter resulting from crossing the spike threshold is proportional to ð1þ iotcÞ=t2c , with

t2c / t2s log n0tsð Þ�2 þ const:
� ��1

:

From Eq (22), we see that the characteristic frequency, 1/τc, shifts to lower values for larger out-
put firing rates, as the prefactor, t�2

c , further attenuates the low frequency response. One conse-
quence is that the effect of the low pass voltage characteristics are made negligible by the
differentiating action of the spike at high firing rate.

The dynamic gain of this complex-valued linear rate response function is its modulus,

jn1ðoÞj
n0

¼ p
2

t2s
t2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2t2c

p �V ðoÞ
y

ð23Þ

here normalized by the stationary rate, ν0. Taking out a factor of ν0 in Eq (9), we see that the
strength of the linear term and thus the quality of the linear approximation of the response is
then controlled by the size of the right hand side of Eq (23) relative to 1. The effect of this spik-
ing filter contributes a factor that scales as 1

t2c
when τc � 1 (for a bounded range of relevant

input frequencies) so the linearity assumption is better at larger values of τc, which means
larger values of ν0τs. The quality of the approximation will also depend on the size of j�V ðoÞj.
We also note that focusing on the linear response neglects boundedness features of the popula-
tion firing rate such as its non-negativity. Nevertheless, once a voltage dynamics is specified, Eq
(23) gives the explicit dependence of the dynamic gain on the underlying parameters of the sin-
gle neuron model.

Derivation of the dynamic gain of a population of Gauss-Rice GIFs
In this section, we take the general result of the previous section, Eq (23), and go through its
explicit calculation for a population of Gauss-Rice GIF neurons to obtain the result Eq (41). A
work taking a similar approach, partly inspired by this work, though with with less intermedi-
ate analysis has recently appeared [25]. Our novel findings arise from an exhaustive characteri-
zation of the parameter dependence across the phase diagram of the voltage response, Fig 3.
We calculate the current-to-voltage filter, expressing it in each of the three representations
listed in Table 1, Eqs (25, 26 and 27) respectively. We show (Fig 4) how the low pass compo-
nent of the filter undergoes a qualitative change from second-order low pass to first-order low
pass to resonant as QL is increased. We find the voltage resonance condition,
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oLtw >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q�2

L � 1
p

, where the resonance has a contribution from slow adaptation and from

the frequency, O. Either can exist without the other (Fig 5). We then compute the voltage cor-
relation function, Eq (37)), whose envelope depends on the relaxation time, τr (Fig 6). From
this, the variances are calculated and an expression for the differential correlation time, τs, Eq
(39) is obtained. We show a characteristic dependence on the ratio τw/τI (Fig 7). Finally, we
show in Fig 8 how the stationary firing rate has unimodal dependence on the time constants,
τV and τI, monotonic rise with input variance, s2

I , and monotonic decay with intrinsic fre-
quency, O.

Fig 3. Regimes of the current-to-voltage transfer function. (a) Phase diagram of the transfer function. The region of depolarizingw (low frequency
amplifying, Vlow > 1) is shown in purple and voltage resonance in green. The filter is unstable in the blue region. An intrinsic frequency exists above the dotted
line,QL = 1/2. Note that there is a region withQL > 1/2 and no voltage resonance, and vice versa. The star and circle denote the example values of (ωLτw,QL)
used in (b) and (c), respectively. (b) An example of the current-to-voltage filter in the case of resonance with no intrinsic frequency (τV = 10, τw = 100, g = 1.2).
(c) An example of the current-to-voltage filter in the case of no voltage resonance despite the existence of an intrinsic frequency (τV = 10, τw = 5, g = 0.5). The
rising and falling dashed lines in (b) and (c) denote the contributions of the high pass, 1þ iotw, and the low pass, ð1� o2=o2

L þ io=QLoLÞ�1, respectively.
Their combination forms the current-to-voltage filter, which are shown as solid lines.

doi:10.1371/journal.pcbi.1004636.g003

Fig 4. The qualitative shape of voltage response depends onQL. Here we classify the current-to-voltage filter shapes shown as colored solid lines in (a),
(b), and (c), which show the threeQL-regimes with respective examples forQL = 0.1, 0.75, 10. In each plot, the high pass component of the voltage response
is shown as the colored dashed lines, one for each of three representative values of its characteristic frequency,ωLτw = 102 > γ(blue),ωLτw = 1(green), and
ωLτw = 10−2 < γ−1(red). The solid black line is the low pass component of the voltage response. For the regime shown in (a), the green case can not be
achieved whenw is hyperpolarizing (g > 0) and the example red case cannot be achieved because it violates the stability conditionQL <ωLτw.

doi:10.1371/journal.pcbi.1004636.g004
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Fig 5. A resonance frequency emerges in the voltage response in one of two ways depending on the intrinsic timescale. For slow intrinsic current
(oLtw >

ffiffiffi
2

p
), a response exhibiting a maximum atωmax already exists atΩ = 0. For fast intrinsic current (oLtw <

ffiffiffi
2

p
), a resonance emerges at finite Ω, whose

value converges for vanishingωLτw.

doi:10.1371/journal.pcbi.1004636.g005

Fig 6. Emergence of oscillatory behavior in the voltage dynamics and a consequent ringing appears in the voltage correlation functions. (a) The
frequency of the ringing increases with the strength of the intrinsic current (g = 0, 1, 5 shown; τ in units of τV). (b) The envelope of the ringing widens with τr

(dashed lines are�e�jtj
tr ;ωLτr = 1, 2, 5 shown and τ in units of o�1

L ). Lines are Eq (37); dots are numerics.

doi:10.1371/journal.pcbi.1004636.g006
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Voltage solution. For arbitrary input, I(t), the system in the Fourier domain is

ð1þ iotVÞVðoÞ ¼ �gwðoÞ þ IðoÞ
ð1þ iotwÞwðoÞ ¼ VðoÞ:

Multiplying the first equation by (1 + iωτw) and eliminating w(ω) one obtains

ð1þ iotwÞð1þ iotVÞVðoÞ ¼ �gVðoÞ þ ð1þ iotwÞIðoÞ ; ð24Þ

so that the solution for any g> −1 is, with respect to the representation of the model by its
explicit parameters (g, τV, τw),

V oð Þ ¼ ð1þ iotwÞ
g þ ð1þ iotwÞð1þ iotVÞ

IðoÞ : ð25Þ

Fig 7. Differential correlation time depends on intrinsic parameters. (a)τs increases (not always monotonically) with τw. For the sake of comparison, we
show τs normalized by its small-τw limiting value,

ffiffiffiffiffiffiffiffiffi
tefftI

p
, vs.τw/τI across τV/τI = 100, 101, 102, 103 104 (from blue to red) with g adjusted so their large-τw

limiting value, τV/τeff = 1 + g = 102. Shapes are sigmoidal for τeff/τI > 1 (e.g. green to red) and include an initial dip for τeff/τI < 1 (blue to green). The dot-dashed
line denotes

ffiffiffiffiffiffiffiffi
twtI

p
. (b) τs follows the relaxation time, τr, (the dashed line is τs = τr) and saturates atΩ−1. Colors indicate the value of τw/τI on a logarithmic scale

from 10−1(red) to 101(purple). (c) General shape of τs vs. ν0. Values in the blue region are forbidden due the maximum rate achievable in a Gauss neuron.
The thick black line denotes the boundary between high and low pass.

doi:10.1371/journal.pcbi.1004636.g007
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When the neuron exhibits an intrinsic frequency, O, we can use jl�j2 ¼ 1þg
twtV

and the defini-

tion of the complex eigenvalues by their real and imaginary parts, |λ±|
2 � r2 + O2 (see Meth-

ods), to substitute O into the denominator of Eq (25) after expanding:

g þ ð1þ iotwÞð1þ iotVÞ ¼ tVtw O2 þ r � ioð Þ2
 �
;

with r ¼ � 1
2
ðt�1

V þ t�1
w Þ and O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg
tV tw

� r2
q

. r defines the relaxation time of the dynamics, τr

= −r−1. Thus, in the representation of the model based on the implicit time scales, (O, τr, τw),

Fig 8. Effect of model parameters on the fluctuation-driven stationary response. The stationary firing rate, Eq (18) for I0* 0 (a) increases
monotonically with the strength of input fluctuations and (d) decreases monotonically with the intrinsic frequency. Across each of τI and τw ((b) and (c)
respectively), the rate exhibits a maximum. Insets are the mean input dependent expression for the stationary response, Eq (17), valid in the regime I0� 1.
Inset color refers to the value of the parameter (σI, τI, τw andΩ) at the location of the colored dots in the main plots. Parameters were otherwise set to their
default values.

doi:10.1371/journal.pcbi.1004636.g008
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the solution is expressed as

VðoÞ ¼ t2r
tVtw

� 1þ iotw
O2t2r þ 1� iotrð Þ2 IðoÞ : ð26Þ

A third convenient representation consists of effective parameters, (ωL, QL, τw), determining
the shape of the filter

VðoÞ
Vlow

¼ 1þ iotw
1� o2=o2

L þ io=QLoL

IðoÞ ; ð27Þ

where the second order low pass filter has been re-expressed using its center frequency,

oL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�2
r þ O2

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
tVtw

r

at which its contribution to the gain is its quality factor,

QL ¼ oLtr
2

(with QL ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ O2t2r

q
when l� 2 CÞ, and we have pulled out the broadband voltage

response, Vlow, attained in the limit ω! 0, which gives

Vlow ¼ 1

o2
LtVtw

¼ 1

1þ g
:

The stability constraint, g> −1 is naturally satisfied by ωL > 0 and keeps Vlow finite. With
dependence on τV removed in the shape representation, we must explicitly add the stability
constraint, τV > 0, which is expressed using the definition of τV in this representation,

oLtV ¼ oLtw
oLtw
QL

� 1
; ð28Þ

so that the stable regime corresponds to QL < ωLτw.Vlow is expressed in this shape representa-
tion as

Vlow ¼
oLtw
QL

� 1

o2
Lt2w

ð29Þ

so that Vlow > 0 is satisfied by the stability constraint.
Each of the three expressions for the voltage response filter, Eqs (25, 26 and 27), is instruc-

tive in understanding the dependence on the contained parameters. To motivate this analysis
in the context of population response, we first specify the input, I(ω). An input oscillation of
frequency ω0 will produce an oscillation in the mean input expressed as �IðtÞ ¼ Aeio0t . In the
frequency domain, the spectrum of the mean input, �IðtÞ, and power spectral density of the
noise, δI(t), is, respectively, ffiffiffiffiffiffi

2p
p

�IðoÞ ¼ dðo� o0Þ ð30Þ

2pjdIðoÞj2 ¼ 2D
1þ o2t2I

; ð31Þ
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with noise strength, D ¼ tIs
2
I , in the latter. Because of the linearity of the dynamics, we can

solve the system for mean and fluctuating input separately. In the next paragraph, we employ
Eq (30) to obtain the mean voltage response, and in the following paragraph we employ Eq
(31) to obtain the voltage correlation function.

Mean voltage response function. The population mean voltage response, �V ðoÞ, required
for Eq (20) is obtained by inserting the expression for the mean input, Eq (30), into the voltage
solution. For the remainder of the paper, we omit the factor δ(ω − ω0) and denote the fre-
quency of the mean input by ω. The mean response in the three representations is then Eqs
(25, 26 and 27), respectively, with the I(ω) factor dropped and with an additional a factor offfiffiffiffiffiffi
2p

p
.

The mean voltage response is given in the filter shape representation, (τV, τw, g), by

ffiffiffiffiffiffi
2p

p �V ðoÞ
Vlow

¼ 1þ iotw
1� o2=o2

L þ io=QLoL

: ð32Þ

We now go through the analysis of this response using this representation. Using the gain,

ffiffiffiffiffi
2π

p j �V ðωÞj
Vlow

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2τ2w

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

ω2
L

� 	2

þ ω2

Q2
Lω

2
L

s
ð33Þ

we constructed a diagram of its qualitative features in QL vs.ωLτw (see Fig 3).
The model exhibits low frequency voltage gain amplification (Vlow > 1) or attenuation (Vlow

< 1) depending on whether w is depolarizing (g< 0) or hyperpolarizing (g> 0), respectively.

ωL = 0 at g = −1 and grows with g as
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
. QL = ωLτr/2 also grows with g, generating three

parameter regions of qualitatively distinct low pass filter gain shapes: ωLτr < 1, 1< ωLτr < 2
and ωLτr > 2. Indeed, in units of ωL, the shape of the current-to-voltage filter depends only on
τr and τw, and so in the next paragraphs and with reference to Fig 4, we describe this 2D param-
eter space completely by considering qualitative differences in the full filter shape across ωLτw
in each of three distinct regimes of ωLτr. Note that relatively slow and fast intrinsic dynamics is
obtained when QL is less than or greater than oLtw

2
, respectively.

For ωLτr < 1 (see Fig 4a), the low-pass gain contribution can be factored into a contribution
arising from two first order low pass filters,

1þ 2ð 1

2Q2
L

� 1Þo
2

o2
L

þ o4

o4
L

¼ ð1þ o2

g2o2
L

Þð1þ g2o2

o2
L

Þ ;

where γ = γ(QL)	1 is the solution to QL = γ/(γ2 + 1). The low pass gain thus begins falling as
ω−2 after ωL/γ and then as ω−4 after γωL. The intermediate region, ω/ωL 2 (γ−1, γ), is given by
the inequality QL < γ/(γ2 + 1) and disappears as QL approaches 1/2 where γ and ωLτr approach
1. The region of depolarizing w (g< 0) shown in Fig 3 satisfies QL < oLtw=ðo2

Lt
2
w þ 1Þ in this

representation, whose solution in ωLτw is also the range (γ−1, γ). Thus, response shapes in this
intermediate region (see Fig 4b) are only achievable by depolarizing w, and wmust be depolar-
izing for any response exhibiting such shapes. Consequently, the three qualitatively distinct
shapes of the current-to-voltage filter for ωLτr < 1 are determined by the location of ωLτw rela-
tive to 1/γ and γ, with the middle regime, (γ−1, γ), only achievable for depolarizing w. For ωLτw
> γ, the filter first rises with ω after 1/τw, is flattened at ωL/γ, and then falls after γωL. The result
is an intermediate, raised plateau of width (γ − γ−1)ωL. The condition for this voltage resonance
is o2

Lt
2
w > g2 þ g�2 or in terms of QL, QL > (2 + ωLτw)

−1/2. For 1/γ< ωLτw < γ, the response
attenuates first and so the plateau is now an intermediate, downward step of width (γ − 1)ωL.
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For ωLτw < 1/γ, there is only low pass behavior and the high pass only acts to pull up the ω−4-
falloff up to a ω−2-falloff. As ωLτr approaches 1 from below, γ also approaches 1, and the quali-
tatively distinct region between ωL/γ and γωL shrinks as the two roots coalesce into one and the
low pass expression forms a perfect square. In the case that ωLτw > γ, this leave a well-defined
maximum located just before ωL. The slight offset arises simply because the second order low
pass begins falling significantly before ωL at ωLτr = 1.

For 1< ωLτr < 2 (see Fig 4b), the impact of the high-pass on the shape of the filter is deter-
mined simply by whether its characteristic frequency is above or below ωL. For ωLτw > 1, the
plateau existing for ωLτr < 1 becomes a flat-topped peak in the gain with a maximum again
slightly lower than ωL. Otherwise, the behavior is low pass. Note that ωLτr > 1 is also where the
intrinsic frequency exists. However, this property does not contribute to a resonance until ωLτr
> 2. Indeed, the resonance here, as in the regime ωLτr < 1, arises solely from a high pass atten-
uation of low frequencies sculpting a peak from a low pass, and comes alongside a region, QL <

(2 + ωLτw)
−1/2, that lacks resonance. This latter region is upperbounded in general by

QL ¼ 1=
ffiffiffi
2

p
, and specifically for stable filters by QL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p � 1
p

so that above these values of
QL all filters are voltage resonant.

For ωLτr > 2 (see Fig 4c), by definition a resonant peak emerges in the low pass filter. If
ωLτw < 1, this contributes a de novo resonance in the current-to-voltage filter located near ωL.
Otherwise, it simply acts to sharpen the existing resonance that appears progressively over 0<
ωLτr < 1, and again with a peak slightly to the left of ωL.

Of the two mechanisms for resonance just described, the contribution of the first ‘sculpting’
mechanism leads to a linear increase in the response height and input frequency range of ele-
vated response with τw, i.e. with the slowness of the intrinsic dynamics, for the reason that the
low frequency amplification continues over a broader range the further ωL/γ and 1/τw are
apart. This amplification in the relative response is actually over-compensated by a broadband
attenuation with τw, so that the actual effect is the carving out of a resonant peak using adapta-
tion, i.e. a low frequency attenuation of an otherwise low pass filter.

The second low-pass resonance mechanism emerges in the expression when the low pass fil-
ter exhibits a maximum, which itself emerges when the two low pass characteristic times of the
low pass coalesce. From the point of the view of the voltage dynamics, this occurs from a suffi-
ciently strong and negative feedback interaction between v and w, whose timescales are suffi-
ciently similar so that the delayed feedback is constructive. In the time domain voltage
solution, this occurs when the two eigenvectors align. The height of the resonant response
grows linearly with τr (with range of elevated response fixed) because there is less dissipation.

These two resonance mechanisms contribute to the height of the response at ωL,

�V ðoLÞ ¼ Vlow

oLtr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2

Lt2w
p

; ð34Þ

which is resonant by definition if it is greater than Vlow. The condition for voltage resonance is

thus oLtw >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q�2

L � 1
p

and the relative ratio of their contributions is 1
2
oLtr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2

Lt2w
p 
 1

so that at a given ωLτw the sculpting mechanism always contributes more gain than the intrin-
sic frequency mechanism. Indeed, this sculpting can exist in the absence of an intrinsic fre-
quency (ωLτr < 1), so long as the intrinsic dynamics is slow enough. Conversely, even with an
intrinsic frequency (ωLτr > 1), the response can lack a resonance if in addition ωLτw < 2, dem-
onstrating that an intrinsic frequency is not a sufficient condition for resonance. These two
cases become apparent in a plot of the resonance frequency as a function of the intrinsic fre-
quency (Fig 5), where we observe x- and y-intercepts because of the preexisting or absent reso-

nance, respectively. The location of the maximum converges to oL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ O2

p
for ωLτw � 1,
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which itself converges to O for Oτr � 1. For smaller values of ωLτw, the location converges to a
value slightly larger than ωL.

We will make use of the representation of the current-to-voltage filter in terms of (ωL, τw,
QL) to understand the full response. What is left to calculate, however, is the voltage correlation
function.

Voltage correlation function and the variances, s2
V and s2�V . For the correlation function

of V, we perform the calculation in the implicit representation and add Eq (31) to the modulus
squared of Eq (26),

2pjdVðoÞj2 ¼ 1þ o2t2w
1þ o2t2I

� 4tIs
2
I

t2Vt2w ðr2 � O2 þ o2Þ2 þ ð2OrÞ2
 � : ð35Þ

The auto-correlation thus requires computing an inverse Fourier transform integral of the
form

1ffiffiffiffiffi
2p

p
Zþ1

�1

a2 þ o2

b2 þ o2

c2eiot

r2 � O2 þ o2
� �2 þ ð2OrÞ2

do: ð36Þ

The result is

CVðtÞ ¼
t3I ð1� t2w=t

2
I Þ

1� l�j j2t2I
� �2þt2I lþ � l�

� �2 e� tj j
tI

� 4

l2þ � l2�
� � 1� l2þt

2
w

lþ 1þ lþtw
� �

1� lþtw
� �

 
elþ tj j � 1� l2�t

2
w

l� 1þ l�twð Þ 1� l�twð Þ e
l� tj jÞ

	
ð37Þ

where λ± are the eigenvalues of the voltage dynamics, Eq (57), and the units are [Time3]. The
correlation has two components, one decaying with τI and the other with τr. The first compo-
nent is strongly suppressed for τr/τI � 1. The second component exhibits damped oscillations
within the exponential envelope with frequency O. Examples are shown in Fig 6. for increasing
g and τr. Note that variation in g affects the width of the function around 0-delay while it is
fixed over a variation in τr. These results were checked against numerical autocorrelation func-
tions computed from the voltage time series output of the numerically implemented model.
The correspondence is excellent.

In the model representation, the variance of the voltage and that of the time derivative of
the voltage are given by

s2
V ¼ CVð0Þ ¼ teff

tV

s2
I

tV
tI

þ 1

1þ aw
tw
tI

aI þ
tw
tI

s2
_V ¼ �C@Vð0Þ ¼ 1

tItV

s2
I

tV
tI

þ 1

1þ aw
tI
tw

1þ aI
tI
tw

;

where, for notational convenience, we have defined

aw ¼ 1þ tw=teff
1þ tw=tV

; aI ¼
1þ tI=teff
1þ tI=tV

; ð38Þ

and τeff = τV/(1 + g) (Eq (2)) is the maximum speed over τw of the voltage kinetics, approached
when τw � τV by the tonic conductance change induced by w. For the LIF (g = 0), τeff = τV, αI
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= αw = 1 and the variances simplify to

s2
V ¼ s2

I
tV
tI

þ 1

s2
_V ¼ s2

v

tItV
;

from which the differential correlation time τs for the LIF can be read off as
ts ¼ sV=s _V ¼ ffiffiffiffiffiffiffiffi

tItV
p

. We consider this quantity more generally in the next paragraph. In the

intrinsic representation, the variances can be written as

s2
V ¼ � J2s2

I tI
2rt2Vt2w

1� 2rtI þ jl�j2t2w
jl�j2 1� 2rtI þ jl�j2t2I

� �

s2
_V ¼ � J2s2

I tI
2rt2Vt2w

1� 2rtI
tw
tI

� 	2

þ jl�j2t2w
1� 2rtI þ jl�j2t2I

where |λ±|
2 = r2 + O2, and r< 0 ensures that the values are positive. Note that the only differ-

ence between the expression for the two variances is a factor of tw
tI

� �2

and a factor of 1/|λ±|
2. In

all representations, the influence of intrinsic kinetics set by τw is negligible when τw is near the
input timescale, τI. Even then, w affects the variances via g or O.

The differential correlation time and the stationary response. From the correlation
function providing the variances, the differential correlation time is calculated with
ts ¼ sV=s _V . The Gauss-Rice GIF differential correlation time for the model representation is

ts
ts;fast

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aw

tw
tI

aw þ
tw
tI

vuuuut ; ð39Þ

where the limiting value of τs for τw smaller (larger) than all other timescales is, respectively

ts;fast ¼ lim
tw!0

ts ¼
ffiffiffiffiffiffiffiffiffi
tIteff

p
;

ts;slow ¼ lim
tw!1

ts ¼
ffiffiffiffiffiffiffiffi
tItV

p
:

The ratio of slow and fast limiting values is ts;slow=ts;fast ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tV=teff

q
¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ g
p 	 1, so that τs

increases over the full range of τw/τI. In particular, the curves of Eq (39) have a characteristic
shape for the non-trivial (g 6¼ 0) cases. We focus on the hyperpolarizing case. In the left panels
of Fig 7, we plot some example shapes of τs/τI vs. τw/τI over a range of τeff < τV. Referring to
that figure, for τeff< τI, the curves monotonically interpolate between the limiting values, with
the abscissa value at half-maximum increasing linearly with τV/τI. With τw/τI increasing from
0, τs first drops from

ffiffiffiffiffiffiffiffiffitIteff
p to a minimum (whose depth grows with g) and then rises into affiffiffiffiffiffiffiffi

tItw
p

-scaling regime around τw/τI = 1, where it passes through the same value as that attained

in the limitτs,fast, and then eventually saturates for τw/τI� 1 at its maximum, ts;slow ¼ ffiffiffiffiffiffiffiffi
tItV

p
.

Thus, for τw/τI !1 the g 6¼ 0 case is equivalent to the g = 0 case and we conclude that any
novel features attributable to the extra degree of freedom are washed out in this limit by the rel-
atively slow intrinsic dynamics. As discussed in the Methods, the validity of the no-reset
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approximation lies around τs/τI * 1, implying that tV≳tI . When τeff * τI, the approximation
is valid acrossτw < τI and for other τeff < τI only in ranges around the value of τw > τI for
which τs* τI. We also find for relatively slow intrinsic dynamics that tr≲ts, for τs 
 O−1.
When O exists, we can write τs as

o2
Lt

2
s ¼

o2
Lt

2
w þ 2

tI
tr
þ 1

o2
Lt2w þ 2

tI
tr

tw
tI

� 	2

þ 1

; ð40Þ

where o2
L ¼ jl�j2 ¼ t�2

r þ O2 ¼ teff tw, is the center frequency analyzed in the previous section.

In the implicit representation and as a function of τr (see Fig 7), τs grows faster and slower than
linear for τw/τI less than or greater than 1, respectively, and passes through 1=o2

L when τw/τI *
1, finally saturating at O−1. Up to this saturation level, τs > τr for τw < τI, so that the condition
ν0τs� 1 implies that ν0τr � 1 and the approximation to reset dynamics is valid. In the case τw
> τI, the range of τr over which the ν0τr � 1 validity constraint is not already covered by the
ν0τs� 1 built-in constraint is centered around τw = O−1 and grows in size with τw/τI.

Next, we compute the stationary firing rate of the neuron model Eq (1) as a function of the
two input parameters and the two intrinsic parameters. It is shown in Fig 8. We focus on the
parameter dependence at I0 = 0. The model’s stationary response to increased input noise
exhibits a cross-over from silence to linear growth around σI* θ, simply due to the higher pro-
pensity of threshold crossings. In subsequent analyses in this paper, we explore the parameter
dependence at fixed stationary output firing rate by adjusting the input variance accordingly
(see Methods for this mapping). The rate dependence at I0 is similar for both τI and τw, grow-
ing from zero at vanishing time constants to a maximum located just below the membrane
time constant. While the rate decays with increasing τI, it seems to saturate and even rise for
slowly with τw for τw > τV. The stronger the flow of the dynamics around the resting state at I0,
the more the voltage fluctuations are dampened so that the the firing rate decreases with O. As
for the I0-dependence, we see that all curves rise monotonically simply because the average
voltage moves closer to the threshold.

Expression for the complex response function. With the variances and the mean voltage
response in hand, we can write down the complex linear frequency response,

ffiffiffiffiffiffi
2p

p n1ðoÞ
n0

¼ p
2

ts
tc

� 	2

y�1 1þ iotcð Þ 1þ iotw
g þ ð1þ iotwÞð1þ iotVÞ

ð41Þ

This biquad filter is composed of a two-step cascade of a combined 1st-order high-pass and
2nd-order low-pass current-to-voltage filter followed by a first-order high-pass voltage-to-pop-
ulation firing rate filter. In the remaining part of the paper, we analyze the properties of this
filter.

Analysis of the dynamic gain function of a GIF ensemble
In this section, we characterize the qualitative features of the response function, Eq (41), again
with a focus on completeness. We first show that the high and low input frequency limits of
the response constrain the parameter sets that can achieve high and low pass behavior and we
give an expression, Eq (45), of the critical stationary rate separating these two regions in terms
of the other parameters. We then reparametrize the expression for the response, Eq (47), using
the height of the response at its center frequency, νωL

and high frequency limit, ν1, both rela-
tive to its low frequency limit. The two-dimensional shape parameter space give responses with
a peak, dip or step at ωL whose width varies with QL. The additional high or low pass nature of
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the filter give six classes of filter shape. The constraint of stable voltage dynamics restricts the
area accessible to the model to νωL

	 QL(1 + ν1).
The ω! 0 and ω!1 limits simply determine a high/low pass criterion. The matched

order between the high and low pass filter components of Eq (41) implies that there are finite
limiting values of the dynamic gain at low and high input frequencies,

ffiffiffiffiffiffi
2p

p
nlow≔ lim

o!0

ffiffiffiffiffiffi
2p

p
jn1ðoÞj ¼ n0y

�1 p
2

teff
tV

t2s
t2c

ð42Þ

ffiffiffiffiffiffi
2p

p
nhigh≔ lim

o!1

ffiffiffiffiffiffi
2p

p
jn1ðoÞj ¼ n0y

�1 p
2

t2s
tVtc

ð43Þ

with the size of νhigh relative to νlow, n1≔
nhigh
nlow

¼ tc
teff

¼ o2
Ltwtc. We note that both νlow and νhigh

can be written without explicit dependence on the intrinsic timescale, it influences the limiting
values only by setting the value of τs in the way demonstrated in the previous section.

νlow scales the above filter shapes up or down and itself scales down linearly with τeff/τV and
thus with g. The boundary in the parameter space between low and high pass is defined implic-
itly by ν1 = 1 providing the simple criterion for low or high pass behavior as whether τc is
below or above τeff respectively. The high pass behaviour for large g or QL is not due to an
increase in νhigh (in which g does not appear) but in fact a consequence of the low frequency
attenuation. Recalling that the approximation to a hard threshold keeps the response flat to
arbitrarily high frequencies, while in fact it eventually decays (beyond flimit, as discussed in the
Methods section), the high pass case here implies a large elevated high frequency band up to
this cut-off, while the low pass condition implies a large intermediate downward step. The low/

high pass criterion implies a critical relative variance s�2
crit ¼ 2

p
t2s
t2
eff
, and in turn the critical output

firing rate,

ncrit0 ¼ 1

2pts
exp ½� 2

p
t2s
t2eff

� ð44Þ

at which the response changes from low to high pass. Both of these values are intrinsic proper-
ties of this model whose dependence on the input relies only on the units of time taken. For τs
� τeff, ncrit0 diverges as t�1

s . For τs � τeff, it falls off as e�t2s . In Fig 7c, we plot τs as a function of
ν0. One can now use the plot in this figure to determine the high or low pass behavior for a
given τw/τI and ν0. For example, when τs < τeff (attained for instance with small τw and large
τV/τeff), there is only low-pass behavior due to the divergence of 1/2πτs. The high pass region
nevertheless grows quickly with τs > τeff.

The low and high input frequency limits become independent of τs when time is expressed
in those units. Nevertheless, we can still write the critical condition independent of τs when
expressing time in units of τI by combining Eqs (42) and (43) and eliminating τs altogether by
substituting in the expression for t2s =t

2
eff (cf. Eq (44)) to get the high-low pass condition explic-

itly and solely in terms of the four timescales: τw, τeff, τV, and 1/ν0 (the latter value chosen by
setting σI appropriately using Eq (60)). Setting any three of these determines the critical value
of the remaining one above, across which the model changes from high to low pass behavior.
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For example, when time is measured in units of τI, we have

ncrit0 ¼
exp ½� 2

p
1

teff
� 1þ awtw
aw þ tw

�

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
teff �

1þ awtw
aw þ tw

r ð45Þ

For g = 0, we have αw = 1 and τeff = τV and this reduces simply to ncrit0 ¼ exp ½�2
p
1
tV

�
2p
ffiffiffiffi
tV

p , the expres-

sion presumably underlying results for the LIF in [42].
As for the limiting behavior of the phase response, F(ω), the model gives zero delay for both

high and low frequencies. At low frequencies, this is because the input changes slowly so that
the model dynamics can directly follow the oscillation. At high frequencies, the return of the
lag to 0, just like the flat high-frequency gain, is an artifact associated with the hard threshold.

There are six qualitatively distinct filter shapes. When g = 0 (LIF), the filter, Eq (41),
simply reduces to single order. The intermediate behavior is then only the respective mono-
tonic decay or rise beginning and ending around the smaller and larger of the two characteristic
frequencies.

For g 6¼ 0, the voltage modulation by the current, w, comes into play. To analyze the effect
of the high pass voltage-to-spiking filter on the current-to-voltage filter we employ a similar
exhaustive characterization as was done above in the analysis of the current-to-voltage filter,
i.e. by going through all the cases arising from distinct orderings of the characteristic times of
the components of the combined filter. The ordering can give simple information about the fil-
ter shape. For instance, any contribution of the voltage-to-spiking filter to the qualitative
behavior of the complete filter beyond just low or high pass requires that 1/τc be no larger than
either ωL or 1/τw. Otherwise, the only effect of the spiking is to flatten the high frequency
response beyond 1/τc. In general, however, there are many possible shapes. To further facilitate
the classification of these shapes, we present a single parameter space representation in which
they are all simply mapped.

For this general case, we can introduce the relative quality factor for the full filter, νωL
: = |

ν1(ωL)|/νlow. The response then depends on the five shape features, νlow, νhigh, ωL, QL, and νωL
.

Denoting ξ = τw/τc, so that
nhigh
x ¼ o2

Lt
2
c and xnhigh ¼ o2

Lt
2
w, we can re-express the response func-

tion as

n1ðoÞ
nlow

¼
1þ i

ffiffiffiffiffiffi
n1
x

r
o
oL

� 	
1þ i

ffiffiffiffiffiffiffiffi
xn1

p o
oL

� 	
1� o2=o2

L þ io=QLoL

ð46Þ

with dynamic gain

jnm;1ðoÞj
nlow

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n1

x
o2

o2
L

� 	
1þ xn1

o2

o2
L

� 	

1� o2

o2
L

� 	2

þ o2

Q2
Lo2

L

vuuuuuut : ð47Þ

When ω = ωL, noL
¼ QL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n1

x

� �
ð1þ xn1Þ

r
	 QLð1þ n1Þ, which implicitly defines ξ in

terms of νωL
, QL and νhigh and closes the representation. Indeed, with time in units of o�1

L and
gain values relative to νlow, the shape of the filter depends only on this triplet: each of the six
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regions in (ν1, νωL
)-space defined by the boundaries ν1 = 1, νωL

= 1, and ν1 = νωL
provides fil-

ters of a qualitatively similar class (see Fig 9).
In particular, depending on the region there is a peak, dip or step at ωL whose width varies

with QL. The additional high or low pass nature of the filter gives the six classes of filter shape.
While the possible shapes are simply represented in this space, the constraints are no longer

represented in a plane since they depend additionally on QL. We now dissect the effects of the
stability and voltage resonance constraint on determining which filter shapes are allowed
where. A main conclusion that can be drawn is that a lower bound for accessible filters is νωL

=
QL(1 + ν1) (which for different QL are shown as the colored lines in Fig 9).

With reference to Fig 10, the stability constraint, QL < ωLτw, translates into Q2
L < xn1 with

the correct root of ξ given by the values of QL, ν1, νlow, and ωL.
Which root can also be checked by which of τw and τc is larger. This constraint breaks into

branches when combined with the other constraints.
For ξ< 1 so that the intrinsic dynamics is faster than the spiking dynamics, the region

exhibiting stable filters is constrained to a sliver, QLð1þ n1Þ 
 noL

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðQ2

L þ n21Þð1þ Q2
LÞ

p
,

with an additional constraint on the lower bound, noL
> QLð1þ Q2

LÞ, so that stable filters only
exist for n1 	 Q2

L and noL
	 QLð1þ Q2

LÞ. For values of ν1 and νωL
increasing from this lower

bound point, the accessible region forms a band whose vertical thickness grows with ν1 and it
extends out parallel with the line νωL

= ν1 for large ν1. For increasing QL, the accessible region
shifts right and up so that the band is eventually contained in νωL

> ν1 and νωL
> 1 region, i.e.

only high pass, resonating filters are allowed.
For ξ> 1 so that the spiking is faster than the intrinsic dynamics, the region exhibiting sta-

ble filters has no upper bound in νωL
. The lower bound is νωL

> QL(1 + ν1) when noL
>

QLð1þ Q2
LÞ and noL

>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðQ2

L þ n21Þð1þ Q2
LÞ

p
when noL


 QLð1þ Q2
LÞ. The latter bound differs

significantly from QL(1 + ν1) when QL > 1/2.
The voltage resonance condition can also be mapped to this space by replacing ωLτw byffiffiffiffiffiffiffiffi
xn1

p
giving Q�2

L < xn1 þ 2. For both roots of ξ, all stable filters are voltage resonant when

QL > 1=
ffiffiffi
2

p
.

For ξ< 1, and 1=2 < QL < 1=
ffiffiffi
2

p
the voltage resonant filters exist at large ν1 only for νωL

<

ν1, i.e. only for non-spiking resonant filters, possible because the high pass limit is brought up
by the additional high pass filter above the peak of the resonance, e.g. Fig 11. Conversely, the
spiking resonant filters here lack a voltage resonance because the spiking resonance arises not
from the voltage resonance but from the lower frequency amplification due to the high pass
spiking filter.

For ξ> 1, and QL decreasing from 1=
ffiffiffi
2

p
, the lower bound to the voltage resonance region

interpolates across ν1 from the line noL
¼ 1� Q2

L, which rapidly approaches νωL
= 1 as QL is

increased, to the lower bound of the region of stable filters, νωL
= QL(1 + ν1). Thus, stable filters

exhibit a voltage resonance when νωL
1, independent of QL. The absence of a spiking resonance,

νωL
< ν1, however holds over a large sub region of these stable, ξ> 1, and voltage-resonant fil-

ters, for same reason as in ξ< 1 that the high pass limit is brought up by the additional high
pass filter above the peak of the resonance, thus covering it.

For QL < 1/2, the depolarization condition, γ−2 < ξνhigh < γ2, also excludes some regions for
hyperpolarizing w (see Fig 9).

The phase response across this representation is shown in Fig 9f. We find 0 lag when ω = ωL

so that the input and the response are synchronous. For the spiking resonance region, we
always find a delay for slower and an advance for faster input frequencies. For non-resonant
cases, it is possible to observe delays or advances for both faster and slower input frequencies.
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Fig 9. The 6 distinct filter shapes in (νωL
, ν1)-space. (c, f) Region 1–6 denote the regions exhibiting qualitatively similar filter shapes. E.g. spiking

resonance is by definition region 1 and 2. Not all of these six regions are accessible for a givenQL. Colored lines (blue to red) represent theQL-dependent
boundary below which filter shapes are forbidden because of unstable dynamics. We note that νωL, ν1 ! 0 =QL. An intrinsic frequency exists in region above
theQL = 1/2 boundary. A voltage resonance exists in the region above theQL = 1 boundary. We show the accessible subset of corresponding filter shapes at

representative positions within the regions (located at 10�
0:7
2 ; 10�0:7

� �
and 10�0:7; 10�

0:7
2

� �
) and at the border between regions (located at νωL

, ν1 = 10−1.5, 100,

101.5). (f) Same type of plot as (c), but for the phase response. π/2 and −π/2 are shown as top and bottom bounding dashed lines for the set of phase
responses at each location. The gain and phase for the position denoted by the circle are shown in (a) and (c), and for the star in (b) and (e), respectively.

doi:10.1371/journal.pcbi.1004636.g009
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Discussion
A neuron’s dynamic gain constrains its signal processing capabilities. Our analysis provides the
first complete analysis of an expression for dynamic gain of a resonator neuron model. The
level-crossing approach used here has been previously applied to 1D models to study correla-
tion gain [23, 42, 44, 57], dynamic response [19, 37, 42], and Spike-Triggered Averaged stimu-
lus and variance [23, 42]. Consistent with conditions for the validity of the approach [19],
experiments have directly demonstrated that Gauss-Rice neurons can provide a surprisingly
accurate description of cortical neurons [44, 58]. We find that the space of gain functions con-
tains six types, two of which are resonant. The height of a resonant response is strictly domi-
nated by intrinsic adaptation, while its sharpness is controlled by the strength of the
subthreshold resonance. In particular, sharper peaks arise for higher intrinsic frequencies. We
determined the parameter region where an intrinsic frequency exists and where subthreshold
and spiking resonance are exhibited. We find that all possible combinations of the presence or
absence of these three features have finite volume in parameter space. We expect profitable
applications of our results to the study of the connection between intrinsic properties and pop-
ulation oscillations.

Fig 10. The accessible region of filter shapes depends onQL and the relative speed of spiking to intrinsic dynamics ξ = τw/τc. The purple region
marks the region of voltage resonant filters. This region is contained in the red region of stable filters, whose lower bound moves to larger νωL

withQL. For
relatively slow intrinsic spiking (a, b, c), there are regions of non-spiking resonant(ν1 > νωL

), but voltage resonant filters. Filters for relatively fast intrinsic
dynamics (d, e, f) only exist as high pass resonant filters for largeQL. (Left to right:QL ¼ 0:3;

ffiffiffi
2

p
, 1.1. Top row: ξ = 10. Bottom row: ξ = 0.1).

doi:10.1371/journal.pcbi.1004636.g010
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Model limitations
Neuron models with hard-thresholds, such as the LIF and GIF, have been unexpectedly suc-
cessful in modeling cortical neurons [58]. They are obtained from more complex models by a
series of reductions.

In Methods, we gave a rationale for the reduction to a no-reset, hard-threshold model,
where we state the additional limitations imposed by lifting the voltage reset. First, these mod-
els do not apply to mean-driven situations and so do not cover phenomena such as the mask-
ing of a subthreshold resonance by a resonance at the firing rate [29]. Second, to avoid
extremely bursty spike patterns, we extend previous work [19] and argue that the correlation
time of the input, τI, and the correlation time of the voltage statistics, τs, can not be too differ-
ent. This precludes analysis involving white current noise but implies that satisfaction depends
additionally on intrinsic parameters through their dependence on τs. For example, since τs 

τV, the rough validity condition 1* τs/τI≲ τV/τI so that the timescale of the input fluctuations,
τI, should not be much slower than the membrane time constant, τV. Third, for correspondence
with threshold models the voltage relaxation time, τr, should fall within the average inter-spike
interval, ν0τr � 1. Last, these models should only be considered in the irregular firing regime,
ν0τs� 1. We found that τr 
 τs for τw > τI, so that this last constraint is in fact implied by the
combination of the second and third.

To verify the validity of the no-reset model within the prescribed range, we made a direct,
quantitative comparison to a canonical model with an active-spike generating mechanism. The
dynamic gain of the two models coincides up to the high frequency limit, flimit, beyond which
the low pass effect of the finite action potential rapidness dominates. Thus, all of the 6 distinct
types of response shapes are altered by additional low pass behavior at high frequencies. For a
previously used value of the rapidness, the intermediate frequency behavior is affected, while
for a higher, and perhaps more accurate value it is not, and the artificially flat high frequency
response is brought down by the realistic finite onset rapidness. In summary, these results
show that the simplification to a no-reset, hard threshold is an adequate approximation when
response features are slower than the speed of action potential onset.

Fig 11. An example of filter shaping: attenuation at high frequencies uncovers an amplified band of intermediate frequencies. (a) The shape space
representation showing the region of accessible filters (white) forQL = 0.1. The blue regions exhibit unstable filters. Filters obtained from points above the
thick black line are spiking resonant. Filters obtained from points above the black dashed line are voltage resonant. The arrow illustrates a path in shape
space along which ν1 is decreased. (b) and (c) show the beginning and end filters along the path in (a). For (b) and (c), blue dashed lines are the high and low
pass components of the current-to-voltage filter, which itself is shown in solid blue. Shown in red is the voltage-to-spiking filter which combined with the
current-to-voltage filter gives the full filter, shown in black.

doi:10.1371/journal.pcbi.1004636.g011
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A topic of related future work regards the possibility of accelerated kinetics of auxiliary cur-
rents during a spike [59]. To study such a scenario, one could numerically compute the gain
for a model where the auxiliary current, w, undergoes a jump at spike times.

In this study of the Gauss-Rice GIF neuron and a previous on the Gauss-Rice LIF [42],
exponentially-correlated Gaussian noise was used as an example of a Gaussian input statistics
with non-trivial temporal correlations. These input statistics will not in general produce self-
consistent firing statistics. It is therefore important to note that the approach to the linear
response taken here admits arbitrary temporal correlations in the input, so long as their effect
on the short-delay features of the temporal correlation of the voltage can be calculated, since
that is what determines τs and thus the effect of temporal correlations on the response proper-
ties. We also note that since the voltage correlation affects the response properties only through
τs, there is an equivalence class structure over the space of input correlation functions based on
how they influence τs.

Relation to previous work on Type II membrane excitability
Excitable membranes are classified by the type of bifurcation that they undergo from resting to
spiking, with Type I and II referring to super and sub critical Hopf bifurcation, respectively.
The respective set of eigenvalues around the resting state are real and complex, with the imagi-
nary part of the latter providing an intrinsic frequency. In this case, the voltage impulse
response exhibits decaying oscillations and the voltage response function can exhibit a resonant
peak near the intrinsic frequency. The mean-driven stationary spiking response rises continu-
ously from 0 for Type I while firing in Type II neurons begins only at a finite frequency. The
dynamic gain of the spiking response of Type II neurons can exhibit a superthreshold reso-
nance arising from such subthrehsold resonance.

Frequency-sweeping ZAP input currents have revealed resonant responses from neurons in
the inferior olive [60, 61], thalamus [62], hippocampus [63], and cortex [64]. Consistent with
the type classification, these cells often display Type II membrane excitability properties such
as subthreshold oscillations with power at similar frequencies as the spiking resonance (for a
review, see ref. [7]). Type II stationary spiking responses have been measured in cortical inter-
neurons [65]. Direct measurements of the dynamic gain of resonator neurons are lacking, how-
ever. Moreover, these existing measurements used the mean input to drive the neurons to
spike. Resonator response properties in the in vivo fluctuation-driven regime remain
unmeasured.

Numerical simulations of resonator models containing the minimally required currents can
nevertheless reproduce the peaked voltage and ZAP response and bimodal ISI distributions in
both mean and fluctuation-driven regimes [66–68]. Inspired in part by the research presented
here, Tchumatchenko and Clopath [25] used similar methods as those used here on excitatory
and inhibitory GIF networks where they investigated the role of subthreshold resonance and
electrical synapses on the emergence of network oscillations for a particular choice of model
parameters, in which they also confirm the correspondence between the response properties
with and without voltage reset. The remaining few analytical results for the stationary and lin-
ear response have so far been restricted to the long intrinsic time constant limit, τw � 1 [22,
29]. In this paper, we are able to obtain exact results for the stationary and linear response for
all values of τw, something not possible in ref. [22] due to the difficulty of the analytics of the
Fokker-Planck approach used there. For large τw and the fluctuation-driven regime, our results
qualitatively match their high noise results, where σI * 0.1 − 1. Since Gauss-Rice models apply
only to the fluctuation-driven regime, there is no meaningful mean-driven, deterministic limit
attained in the limit of vanishing noise strength with which to compare to the mean-driven

Firing-Rate Response of Neurons with Complex Intrinsic Dynamics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004636 December 31, 2015 27 / 43



results of [22], such as the shift in the resonant frequency with increasing, small amounts of
noise. Their phase diagram of subthreshold behavior is essentially the same as ours, up to
reparametrization. We also note that the low frequency limit will differ slightly between the
models due to the slightly differing slopes of their fI-curves. These small quantitative discrep-
ancies between idealized models should not, however, be emphasized over their ability to pro-
vide a qualitative explanation of the phenomena. Finally, we note the GIF Spike-Triggered
Averaged can be obtained from our expression for dynamic gain. It has also been computed
through other methods [69].

Uses of the dynamical response in the theory of recurrent networks
Explicit expressions for the linear response, such as Eq (41) obtained above, are essential ingre-
dients for the analysis of the collective states in recurrent networks. First, they are the key quan-
tity in the evaluation of population stability [21]. The dynamics of the population firing rate
linearized around one of its fixed points is defined by the linear response function. Second,
knowledge of the response function additionally reveals the correlation gain in the mapping of
input current correlations to output spiking correlations. Recurrent networks exhibiting such
gain will generate self-consistent patterns of inter-neuron correlations [47, 49, 70]. In the
Gauss-Rice approach used here, the linear response providing the population stability and cor-
relation gain is tractable for arbitrary Gaussian input current. Many networks generate such
input statistics, most prominently balanced networks [71, 72]. We expect that the correlation
gain and population firing rate stability of these networks can be theoretically investigated
using the expressions for the linear response derived here.

One target application area is in understanding the connection between circuit oscillations
and single cell excitability. Subthreshold resonance is often neglected in modeling studies of
the PING and ING mechanisms for population oscillations [73]. This is despite the ample sug-
gestive evidence of phase locking between subthreshold oscillations and gamma band popula-
tion oscillations [7]. This connection has been studied in the olfactory bulb where mitral cells
display a host of resonator properties such as subthreshold oscillations [5, 6], rebound spikes
[74], and Type II phase resetting curves [75]. The role of this resonance in sustaining the popu-
lation oscillation has not been directly assessed in detailed network models of resonating mitral
cells [76], though it should play a role in either of two existing hypotheses for the origin of the
oscillations [77]. Combining subthreshold and PING mechanisms has been studied in other
contexts [78].

The demonstrated subthreshold resonance in inhibitory interneurons in cortex likely also
contributes to the population oscillation observed there (as suggested by the numerical results
of [79] and [78]) and could be investigated using the expression for dynamic gain that we pro-
vide. A first of such studies inspired by an unpublished version of the work presented here has
already appeared [25], where the Gauss-Rice GIF response gain was also derived.

Finally, an ad hoc dynamic response filter of the same form as the one derived here [80] has
been successful in modeling responses of cortical neurons (personal communication O. Shriki).
The explicit dependence in our derived expression on the parameters of an underlying neuron
model can be used to extend those studies, in particular, by inferring from the fitted values the
properties of the intrinsic dynamics of the measured cells.

Response properties depend on the differential correlation time
The differential correlation time, τs, was used in a variety of ways throughout this paper.

First, it appeared in expressions for other important quantities in the theory. It appears
most prominently in our expression for the fluctuation-driven voltage autocorrelation function
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for exponentially-correlated Gaussian input current. The result for a Type II GIF, Eq (37),
gives exponentially enveloped, oscillatory decay, with a decay constant equal to the relaxation
time of the model and oscillation frequency given by the intrinsic frequency, O. Despite these
oscillations, we find that the dynamic gain depends only on the initial falloff behavior away
from 0-delay, a feature that can be shown to define, τs. From the perspective of the response
then, voltage correlation functions differ only insofar as they exhibit different τs. The character-
istic time, τc, and thus also the attenuation of the spiking filter scales linearly with τs, influenc-
ing the high or low pass nature of the filter accordingly.

Second, τs appears in the validity conditions for the model. Namely, the range of valid firing
rates for all Gauss-Rice neurons must lie below t�1

s .
Third, model parameters such as the intrinsic time scale, τw, have an effect on dynamic

response features, such as the high and low frequency limits, only through τs. The analysis of
their effect on τs provides insight as to their role in sculpting the response properties. In Fig 7c
for example, τs grows with τw, and for large τw saturates at τs,GIF ! τs,LIF = τV, so that τs can
only be made shorter, not longer, than the membrane time constant, τV, by intrinsic and synap-
tic current parameters.

The central role of τs could be tested by applying a variety of input correlation functions
with significant differences only away from the fall-off at 0-delay so that they provide the same
τs. Our model predicts no significant change in the response properties. Such a large number of
experiments could be performed by methods of high-throughput electrophysiology currently
under development.

The six filter types of the Gauss-Rice GIF
We re-expressed the response expression, Eq (20), using the center and high frequency
response relative to the low frequency response, νωL

and ν1 respectively. We find six qualita-
tively distinct filter shapes distributed around (1, 1) in the (ν1, νωL

) plane, with the value of QL

determining which of the six are accessible. Depending on the region there is a peak, dip or
step at ωL whose width is determined by QL. We summarize below the constraints on the acces-
sible shapes set by QL. For QL < 1/2, all six filters shapes are possible for fast relative spiking (τc
< τw). There are no high pass resonating shapes in the limit of vanishing QL for slow relative

spiking (τc> τw). For QL >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1þ ffiffiffi

5
p Þ=2

q
� 0:7 all accessible shapes have elevated response

at the center frequency, νωL
> 1. For QL > 1, all allowed filter shapes are resonating, that is νωL

> ν1. There are no low pass resonating filters for slow relative spiking and so a sharp reso-
nance, i.e. a high QL, is only possible when the overall filter is high pass.

Neither voltage nor spiking resonance strictly imply the other in this model. First, there can
be voltage resonance with no spiking resonance because the spiking high pass pulls up the
response in the high input frequency range above the elevated response around the intermedi-
ate-range resonant input frequency. The high frequency limitation of the approach (e.g. Fig 12)
implies that the elevated response extends up to the speed of the action potential, leaving a
broad resonant band at high input frequencies. Second, there can be spiking resonance with no
voltage resonance because of a low frequency attenuation by the spiking high pass filter of a
low pass current-to-voltage filter.

In addition, neither voltage nor intrinsic resonance strictly imply the other. First, the exis-
tence of an intrinsic frequency does not imply voltage resonance in general because the
response at ωL where O becomes finite is QL = 1/2 and is thus still attenuated relative to the
response at low input frequencies. This response only becomes resonant at QL = 1. Second,
there can be a voltage resonance with no intrinsic resonance for the same reason that a high
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pass with low characteristic frequency (this time from relatively slow intrinsic dynamics) can
sculpt a peak from the low pass component of the full filter.

Finally, we found that the strength of the spiking resonance (*νωL
) is composed of a contri-

bution from the intrinsic timescale, τw and from the intrinsic frequency, O. Nevertheless, νωL
is

dominated by the attenuation at low input frequencies associated with the high pass effect of
large τw, while the unique effect of O is to sharpen this resonance.

The cascade representation of the dynamic response
The effect of spiking in the Gauss-Rice formulation of the response is as an explicit first-order
high pass filter of the voltage dynamics (see Eq (20)). We note that this high pass behavior asso-
ciated with spiking is distinct from that discussed in the literature as arising from sodium chan-
nel inactivation [81]. This has nothing to do with the Gauss-Rice high pass arising in this
paper. In this work, we always consider the threshold fixed. Closed form expressions are thus
obtained for the low frequency limit and characteristic time of this filter in terms of the param-
eters of the model. When the characteristic frequency is high, the filter has the effect of flatten-
ing an otherwise decaying voltage response. The flattening effect is physiologically meaningful
up to frequencies at which the spike-generator cut-off appears. It thus sculpts a plateau of con-
stant response at high frequencies that can be elevated or depressed relative to the low

Fig 12. Correspondence of response between analytical result of no-reset model (blue line) and the numerical result of its EIF version (black
circles). The correspondence holds up to a high frequency cut-off, flimit (Eq (54)), due to finite rise time of action potential controlled by ΔT = 0.35, 0.035. The
EIF-version was simulated with Vthr = 1.15, 3, and VT = 0.8, −1 (the latter was adjusted to keep ν0 = 2Hz fixed). The black dashed lines correspond to the high
frequency limit of the response of the EIF-type model (Eq (53)). The no reset model had the default parameters.

doi:10.1371/journal.pcbi.1004636.g012

Firing-Rate Response of Neurons with Complex Intrinsic Dynamics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004636 December 31, 2015 30 / 43



frequency response. On the other hand, when the characteristic frequency is low, the resulting
effect is a low frequency attenuation that carves out a resonant peak. The high pass characteris-
tics are then also dependent on the intrinsic timescales.

Methods

Reduction from conductance-based models
Here, we detail how one arrives at a model like the one used in this paper from simplifications
made to the synaptic, subthreshold, spiking, and spiking reset currents of a Hodgkin-Huxley
type neuron model for the dynamics of the somatic transmembrane voltage potential, V (here
measured in mV),

C _V ¼ Imem þ Isyn ð48Þ

where C is the membrane capacitance, Imem is the sum of all membrane currents and Isyn is the
total synaptic current arriving at the soma. Our exposition of the reductions to synaptic and
subthreshold currents is standard. To the exposition of the reductions of spiking currents we
add analysis determining the high frequency limit, flimit, below which the approximation to a
hard threshold is valid. To the exposition of the reduction of reset currents, we add more
detailed consideration of the mechanisms through which the no reset approximation breaks
down.

Synaptic current. Isyn contributes current terms of the form gsyn(t) (V − E), where E is the
reversal potential for the synapse type and gsyn(t) is the time-varying, synaptic input conduc-
tance for that class of synapse whose time course is determined by presynaptic activity. For a
neuron embedded in a large, recurrently-connected population, this presynaptic activity arises
from both the recurrent presynaptic pool of units (numbering K� 1 on average) and any
external drive. In networks with sufficient dissipation, the external drive acts to maintain ongo-
ing activity. The measured activity of networks in this regime is asynchronous and irregular

and can be achieved robustly in models by an approximate 1=
ffiffiffiffi
K

p
-scaling of the recurrent cou-

pling strength, J. This scaling choice has the effect of balancing in the temporal average the net
excitatory and inhibitory input to a cell, leaving fluctuations to drive spiking. In this fluctua-
tion-driven regime, the mean-field input to a single neuron resembles a continuous stochastic
process. In the limits of (1) many, (2) weak, and (3) at most weakly correlated inputs, a diffu-
sion approximation of Isyn(t) can be made such that it obeys a Langevin equation [82, 83].
While not yet developed for the Gauss-Rice neuron approach, analytical tools for computing
the response in the case of the shot noise resulting when (1) fails are appearing [84]. Strong
inputs do exist in the cortex where synaptic strengths can be logarithmically distributed. Never-
theless, many strengths are weak, and we treat only (2) here. Finally, an active decorrelation in
balanced networks justifies (3). Expanding Isyn to leading order in the conductance fluctuations
reduces the input to additive noise yielding the Gaussian approximation to the voltage dynam-
ics, also known as the effective time constant approximation [84, 85]. The quality of this
approximation depends on the relative difference between the reversal potential and the volt-
age. Somas receive input from two broad classes of synapse: excitatory ones for which the dif-
ference is large, and inhibitory ones for which the difference is smaller so that they are less
well-approximated. The two types can also differ in their kinetics. While both are generally low
pass, their characteristic times can be different. Their combination can thus have qualitative
effects on the response [19]. We retain only a single synapse type so as to concentrate on the
shaping of the filter properties by the intrinsic currents of the neuron model.
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In this approximation to additive Gaussian noise, the time-dependent ensemble from which
the input signal, Isyn(t), is sampled is completely described by a variance channel carrying the
dynamics of the fluctuations of the network activity, and amean channel carrying the dynamics
of the mean network activity. More complicated compound input processes described by
higher order statistics offer more channels but they are negated by the diffusion approximation
to a Gaussian process. The variance channel determines the fluctuations of Isyn(t) on which
rides a DC component described by the mean channel. We can thus write

IsynðtÞ ¼ �IðtÞ þ dIðtÞ ð49Þ

where the zero-mean Gaussian process δI(t) is characterized by the variance, s2
I , and correla-

tion time, τI, of the fluctuations, both of which can in general vary in time, and �IðtÞ is the time-
dependent population mean. The population mean of a quantity, x, will be denoted by a bar so
that �x :¼ hxkik � 1

N

P
k xk, where k indexes the neuron. For stationary input, the time average

of �IðtÞ is� Oð1= ffiffiffiffi
K

p Þ due to the balance. In this paper, we consider deterministic changes in
the mean channel, �IðtÞ, produced for example by a global and time-dependent external drive.
We compute the resulting frequency and phase response, and leave the analysis of the variance
channel to a forthcoming work. For much of the paper, we will also remove explicit depen-
dence of the model’s behavior on the input by setting σI for a desired output firing rate and
measuring time relative to τI.

Subthreshold current. In the most simple case (no longer exactly the Hodgkin-Huxley
formalism), each somatic current, Imem,i, contributes additively to Imem with a term of the form

Imem;i ¼ g
i
ðVÞðV � EiÞ: ð50Þ

where gi(V) is a voltage-dependent conductance, whose effect on the voltage dynamics depends
on the driving force, V − Ei, the difference of the voltage and the reversal potential, Ei. gi obeys
kinetic equations based on channel activation whose specification is often made ad hoc to fit
the data since the details of the conformational states and transitions of a neuron’s ion channels
is often unknown or at least not yet well understood. Nevertheless, for voltages below the
threshold for action potential initiation the voltage dynamics can be well-approximated by
neglecting spike-generating currents and linearizing the dynamics of the subthreshold gating
variables around the resting potential, V. Following ref. [29], the resulting subthreshold
dynamics is then given by

CM _v ¼ �gMv �
X

i

giwi � IsynðtÞ

ti _wi ¼ v � wi; i ¼ 1; . . .

ð51Þ

where v = V − V and wi ¼ ðxi � xi;1jV¼V Þ= dImem
dV

jV¼V
� �

are the linearized variables for the

voltage and subthreshold gating variable, xi, respectively; gM ¼ dImem
dV

jV¼V
� �

and gi ¼
dImem
dxi

jV¼V

� �
dxi;1
dV

jV¼V

� �
are the effective membrane conductances for the leak and for xi,

respectively; and τi = τi(V) is the time constant of the dynamics of wi. CM is the capacitance of
the membrane. The w variables have dimensions of voltage. Activation and inactivation gating
variables have gi> 0 and gi< 0, respectively. We denote the linearized voltage by V instead of
v throughout the paper to better distinguish it from the firing rate, ν.

With the addition of a hard (i.e. sharp and fixed) voltage threshold and a reset rule to define
the spiking dynamics, this defines the GIF class of models [29]. Among the models considered
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in ref. [29], the simplest has only one additional degree of freedom,

CM
_V ¼ �gMV � gww� Isyn

tw _w ¼ V � w

with spikes occurring at upward crossings of the threshold, θ. With time in units of τw the
authors multiply the voltage equation by τw/CM and analyze the behavior as a function of two
dimensionless model parameters, α = gMτw/CM and β = gwτw/CM, upon which the qualitative
shape of the current-to-voltage filter for white noise input depends.

We consider correlated noise input that introduces an additional time scale which serves as a
more natural time unit. We are also interested in the explicit dependence on τw. Thus, we retain
both of the timescales of the neuron model, τV and τw. We then parametrize our model using
the relative conductance g = β/α = gw/gM, the relative membrane time constant τV/τI = α−1 =
CM/τI gM, and the relative w timescale, τw/τI = β/τI g. Input variance is independently fixed in
order to achieve a desired firing rate. We thus make a slight alteration to the model in ref. [29],

tV _V ¼ �V � gwþ Isyn

tw _w ¼ V � w :
ð52Þ

We have absorbed the 1/gM factor into the units of Isyn so that all dynamic quantities are in
dimensions of voltage. We keep τV> 0 by setting gM> 0, that together with g> −1, this gives
stable voltage dynamics. This model is the same as the one stated at the beginning of the Results
section, Eq (1).

The approximation to a hard threshold from a set of spike-generating currents that are in
principle contained in Imem but are not considered explicitly in [29] involves some assumptions
and approximations that have since been nicely formalized in [24] and so we include them in
the following section.

Spike-activating current. The formulation of spike-activating currents can be simplified
using the fact that all the information that the neuron provides to downstream neurons is con-
tained in the times of its action potentials and not their shape. Only the voltage dynamics con-
tributing to this time is retained in the model; namely, the summed rise of voltage-gated
activation of the spike-generating xi, summed into a single function, ψ(V), dependent only on
the voltage when its dynamics is relatively fast [24]. ψ(V) then appears as a term in the voltage
dynamics and, when supralinear in V, acts as the spike-generating instability that, in the
absence of superthreshold, hyperpolarizing currents, causes the voltage to diverge in finite
time. These latter currents are simply omitted and the time at which the voltage has diverged is
used in these models as the spike time. The socalled spike slope factor [24], ΔT, is the inverse
curvature of the I-V curve near threshold and sets the slope of the rise of the action potential,
with smaller values giving steeper rise. Its value should be measured at the site of action poten-
tial initiation, the precise location of which is not yet known in general. An upper bound on the
realistic range of ΔT is, however, likely smaller than that achievable by conventional Hodgkin-
Huxley-like models, even with multiple compartments [37, 39], and this speed has motivated
neuron models with fast action potential onset rapidness [86].

The time between the crossing of a fixed threshold voltage, VT, defined implicitly by
dImemðVT Þ

dV
¼ 0, and the spike time vanishes quickly with 1=D2

T / c00ðVTÞ, so that the further
approximation to a hard threshold, i.e. for omitting ψ(V) altogether by setting the spike time at
VT, becomes good for ΔT ! 0. However, the instantaneous rise in voltage in this limiting
approximation introduces artefactually fast population responses at high input frequencies,

denoted by f, raising the scaling behavior to 1=
ffiffiffi
f

p
and constant for white and colored noise,
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respectively [20]. Nevertheless, since the discrepancy begins above some flimit depending on ΔT,
the artefact can be safely ignored by considering the shape of the response only for f< flimit.
Conveniently, an upper bound on realistic values of ΔT given by the surprisingly quick rise of
real action potentials leads to a value of flimit well beyond the range of input frequencies over
which realistic filtering timescales act. As a result, the approximation to a hard threshold does
not alter the sub-spiking timescale response properties of the full model.

For concreteness, a popular choice for ψ(V) is ψ(V) = exp[(V − VT)/ΔT], the family of so-
called exponential integrate-and-fire (EIF) models [87] for which the difference between the

threshold crossing and the spike time vanishes very fast as exp ½�D�1

T �. Its high frequency

response falls off as 1/f, with a high frequency cut-off/ D�1

T . We consider an EIF version of

our model defined having an additional, superlinear term in the _V -equation, cðVÞ ¼ tVe
V�VT
DT .

We note that a similar comparison is made in [25]. The approximate upper limit of input fre-
quencies, flimit, below which the no-reset approximation is valid is given implicitly by the inter-
section of the response of the simplified model computed in this paper and the analytical high
frequency response of the EIF version of the full model, computed from an expansion of the
corresponding Fokker-Planck equation in ω−1 = 1/(2πf). We choose examples where the intrin-
sic dynamics are slow relative to the cut-off so we use the high frequency limit result of the EIF
with no additional degree of freedom calculated in [24],

nEIF;highðf Þ �
n0
DT

1

2pf tV
: ð53Þ

The high frequency limit of the Gauss-Rice GIF is Eq (43). Equating these two expressions, we
obtain

flimitts ¼
ffiffiffi
2

p

p3=2

y
DT

tc
ts

; ð54Þ

where g, τc, and τs are parameters defined later. We check this condition through numerical
simulations of the EIF-version of the model. Instead of the heuristic constraints for choosing
the integration time step dt as specified in [24], we more simply obtain the f−1 fall-off by raising
the numerical voltage threshold for spiking, allowing the speed of the action potential to play a
role at higher frequencies. While this gives an artifact in the phase response (not shown), the
high frequency limit of the gain is correct. Two example gain functions are shown in Fig 12 for
a widely used value of ΔT = 3.5mV(0.35 in our units), and a value an order of magnitude
smaller, ΔT = 0.35mV(0.035 in our units). The former value gives a cut-off slow enough that it
affects the resonant feature, while the latter value gives a cut-off high enough that it does not.
The features of the filter in this case are thus well below flimit.

Notably, the LIF FP methods have been used to obtain the linear response to a piecewise lin-
ear models [33, 34]. In these works, the high frequency artifacts induced by the hard threshold
are treated explicitly and removed.

Resetting current. Models that neglect the downward part of the action potential require
the addition of, or have already built-in a reset voltage to which the voltage is reset after a
spike. The reset makes the dynamics discontinuous and a closed form expression for the fre-
quency response for more-than-1D models appear intractable. We forgo this reset rule in order
to open up the problem for deeper analysis. With this simplification, however, come three
issues that we avoid by narrowing the scope of the analysis.

First, without the reset and for the case of mean-driven activity, the mean voltage is taken
into an unrealistic, super-threshold range. Thus, only fluctuation-driven activity with low, sub-
threshold mean input is covered by this approximation, leaving out mean-driven phenomena
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such as the masking of a subthreshold resonance by a resonance at the firing rate as shown, e.g.
in ref. [29]. This is nevertheless the operating regime of cortical networks that we wish to
study. We thus set the mean input to 0.

Second, the lack of reset produces periods of artefactually high and low firing rates for respec-
tively small and large values of the input correlation time, τI, relative to the voltage correlation

time defined here as the differential correlation time, ts ¼ sV=s _V . τs is the quadratic approxima-
tion to the voltage correlation function around 0-delay (discussed in detail in the main text). This
definition precludes the use of white noise input whose correlation function is non-differentiable
around 0-delay. Indeed, the fractal nature of the voltage traces when the no-reset model is driven
by white noise endows the model with the problematic feature that every threshold crossing has
in its neighborhood infinitely many such crossings [57]. A version of this effect explains the dis-
crepancy between reset and non-reset dynamics even in the finite realm where τI/τs� 1. In the
other limit, τI/τs� 1 means that the voltage stays super threshold for long spans of time and so
must also be excluded. Badel compares the stationary response of the LIF with and without reset
across τI, finding correspondence only in a fairly tight band around the membrane time constant,
τV, from τI = 0.5τV to τI = 2τV [19]. Given that the stationary response of the LIF also deviates
frommore realistic models, in this paper we do not aim for exact correspondence with the LIF
but rather analyze the more general and less strong condition, τI/τs* 1, which reduces to a less
strong version of the one Badel used for the LIF where ts ¼ ffiffiffiffiffiffiffiffi

tVtI
p

. From the derivation of τs for

the Gauss-Rice GIF exposed in the main text, the condition τI/τs* 1 implies that the membrane
time constant is no longer required to lie within an order of magnitude of τI but that the validity
now holds around a manifold in the space of intrinsic parameters of the model.

Third, for those neurons that do exhibit reset-like dynamics, this approach can nevertheless
provide a good approximation so long as the model dynamics allow for the sample paths of the
voltage trajectory after a spike with and without reset to converge onto one another before the
next spike occurs. The formal condition for this is ν0τr � 1, where ν0 is the firing rate and τr is
the relaxation time of the deterministic dynamics of the voltage, i.e. the negative of the largest
real part of the eigenvalues of the solution to the linearized voltage dynamics. For the case of

2D linear dynamics considered in this paper, with differential matrix operator B, t�1
r ¼

�r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � detB

p
when r2 > detB and t�1

r ¼ �r when r2 < detB, where r is the real part of the
complex eigenvalue (see next paragraph for details). For relatively fast intrinsic kinetics, this
constraint limits the range of parameters and output firing rates over which the no-reset model
approximates reset dynamics to within some tolerance. However, we will show that, for rela-
tively slow intrinsic kinetics, the condition τr ≲ τs holds up to a saturation level, and this
together with ν0τs � 1 (a condition that all healthy Gauss-Rice neurons must satisfy) guaran-
tees the near equivalence of reset and no-reset dynamics, independent of the other parameters.
In other words, the approximation is valid in this regime if the relaxation time falls within a
correlated window of voltage trajectory as this is a lower bound to the time between spikes.
Indeed, for any temporally correlated dynamics, it always takes some time for the state to move
some fixed amount. In this context, that effect induces an relative refractory period in reset
dynamics as the state must move from reset to threshold again in order to spike. It is not abso-
lute because this time depends on the firing rate. The same type of refractoriness emerges in
non-reset dynamics as the voltage must fall back below threshold in order to pass it from below
again.

Parametrization of the model
When the eigenvalues of the solution to the voltage dynamics are complex, we can re-express
the denominator of Eq (25) using the intrinsic frequency, i.e. the imaginary part of the

Firing-Rate Response of Neurons with Complex Intrinsic Dynamics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004636 December 31, 2015 35 / 43



eigenvalues of the voltage solution. We first obtain the eigenvalues. For the linear matrix evolu-
tion operator

B ¼
� 1

tV
� g
tV

1

tw
� 1

tw

0
BBB@

1
CCCA ð55Þ

the eigenvalues are obtained via the identity

l� ¼ trB
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trB2 � 4detB

p ð56Þ

¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðoLtrÞ2

q
tr

: ð57Þ

where trB
2
¼ �t�1

r ¼ � 1
2

1
tV
þ 1

tw

� �
as the negative reciprocal of the harmonic mean of the two

time constants, τr, and detB ¼ o2
L ¼ 1þg

twtV
where ωL is the center frequency of the voltage filter.

When ωLτr < 1, the magnitude trjl�j ¼ j � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðoLtrÞ2

q
j. When ωLτr > 1, the eigenval-

ues are complex with r :¼ �t�1
r as the real part. We define the imaginary part that plays the

role of the intrinsic frequency, O> 0, via λ± = r ± iO, so O ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

L � r2
p

and now the magni-

tude is jl�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ O2

p
¼ oL. We can substitute the expression for ωL, obtaining the relation

between g and O, Eq (3),

tVtwO
2 ¼ g � gcrit ð58Þ

where g > gcrit ¼ ðtV�twÞ2
4twtV

is the condition for complex eigenvalues (see Fig 1).

Obtaining the response function directly from spike times
Here we rederive the linear relationship between the vector strength and the linear response.
ν1(ω) from Eq (9) can be expressed using the complex response vector,

rkðoÞ ¼ 1

nk

Xnk

j

e�iotkj

¼ 1

nk

ZT2

�
T
2

Xnk

j

dðt � tkj Þe�iotdt

� 1

n0T

ZT2

�
T
2

Xnk

j

dðt � tkj Þe�iotdt;

where in the last step we use nk � ν0T, good when T is made much larger than n�1
0 . Taking the
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ensemble average,

hrkðoÞi ¼
1

n0T
h
ZT2

�
T
2

Xnk
j

dðt � tkj Þe�iotdti

¼ 1

n0T

ZT2

�
T
2

h
Xnk

j

dðt � tkj Þie�iotdt

¼ 1

n0T

ZT2

�
T
2

nðtÞe�iotdt

� 1

n0T

ZT2

�
T
2

ðn0 þ n1ðoÞAeiotÞe�iotdt

¼ An1ðoÞ
n0

ZT2

�
T
2

dt
T

hrðoÞi ¼ An1ðoÞ
n0

:

Using the decomposition of the response into its gain and phase, ν1(ω) = |ν1(ω)|e
iF(ω), the

dynamic gain is thus obtained from the norm of the ensemble-averaged response vector, called
the vector strength,

jn1ðoÞj ¼ n0
A

heiotmim
�� ��; ð59Þ

where here we have simplified the notation by havingm run over all the spikes from the full
ensemble. We computed this expression using the spike times obtained directly from numeri-
cal simulations of the stochastic dynamics generated by the neuron model. We use the result to
confirm the validity of the analytical gain function derived below, whose utility goes far beyond
the numerical result because it provides the explicit dependence on the model parameters.
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Computing the input variance for given firing rate
Rearranging the expression for ν0 and then substituting in the σI-dependent expression for the
voltage fluctuations, σ, we have

n0 ¼ 1

2pts
e
�
1

2
s�2

s2
V ¼ � y2

2
log 2pn0tsð Þ�1

J2s2
I

tV
tI

þ 1
�

1þ aw
tw
tI

tV
teff

aI þ
tw
tI

� 	 ¼ log 2pn0tsð Þ�1

s2
I ¼ � y2

2

tV
tI

þ 1

J2
�

tV
teff

aI þ
tw
tI

� 	

1þ aw
tw
tI

� 	
log 2pn0ts

:

ð60Þ

When we study the model’s behavior we will use this relation to set the input variance for a
chosen output firing rate so that the dimensions of the parameter space to be explored are the
four time scales in the problem, (τV, τeff, τw, 1/ν0) and when O exists, (τV, 1/O, τw, 1/ν0).

Step response
The firing rate response derived in this paper allows us to compute the response to any weak
signal and we demonstrate that in this section where we derive the response to step-like input.
The time-domain version of linear frequency response, ν1(t), is the impulse response function,
which when convolved with any input times series gives the corresponding response time
series,

nðtÞ ¼ n0 þ
R
n1ðtÞIðt � t0Þdt0 ;

where n1ðtÞ ¼ F
�1½n1ðoÞ� has units of [Time]−2[Current]−1. If there is an accessible frequency

representation of the input, the interaction can be made in the frequency domain and then the
result transformed back to the time domain,

nðtÞ ¼ n0 þ F
�1½n1ðoÞIðoÞ�: ð61Þ

We used this definition to study the response to step-like input, I(t) = AΘ(t), with step height,
A, and with frequency domain expression for the Heaviside theta function,

YðoÞ ¼ pdðoÞ � i
o

: ð62Þ

Applying the inverse Fourier transform to the product of this with the linear frequency
response gives the expression for the response. The relative response is then,

nðtÞ � n0
n0

¼ A
D

sgn ðtÞ
jl�j2

þ YðtÞ
lþ � l�
�� �� X

j¼þ;�

ð1þ tcljÞð1þ twljÞ
lj

e
ðlj tÞj i

p
2

� �" #
; ð63Þ
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with D ¼ ys2
VtVtw. We can express Eq (63) in terms of r and O,

nðtÞ � n0
n0

¼ A
D

sgn ðtÞ
r2 þ O2 þ

YðtÞert
2O

Rþe
i Otþ�þþ

p
2

� �
þ R�e

�i Otþ���
p
2

� � !" #
; ð64Þ

where R� 2 R and �� 2 R depend on the parameters. Taking the limit t! 0+, the relative

instantaneous jump height is A
D
twtc ¼ A

y s
�2
V

tc
tV
¼ A

y3
p
2

t2s
t2c

tc
tV
, consistent with the notion that higher

characteristic cutoff frequencies, i.e. t�1
c , imply stronger instantaneous transmission. The expo-

nent of the subsequent decay is r ¼ �2�t�1, providing an envelope that funnels into the relative
asymptotic response, A

Djlj2, attained in the limit t!1. Since the oscillation amplitude scales as

1/O while the asymptotic response scales with 1/O2, there will be a tapering envelope for O>

1. Within this envelope the response oscillates at the intrinsic frequency and with a phase that
is explicitly dependent on the neuron parameters, as well as implicitly though τc. This function
was used to calculate the step response shown in Fig 2.

Supporting Information
S1 Code. A zipped code package is supplied with which the data shown in Fig 1 can be gen-
erated, outputted, and plotted. Details are given in the readme.txt contained in the package.
(ZIP)
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