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Abstract

Background: The current SARS-CoV-2 pandemic has emphasized the utility of viral whole-genome sequencing in the
surveillance and control of the pathogen. An unprecedented ongoing global initiative is producing hundreds of thousands
of sequences worldwide. However, the complex circumstances in which viruses are sequenced, along with the demand of
urgent results, causes a high rate of incomplete and, therefore, useless sequences. Viral sequences evolve in the context of
a complex phylogeny and different positions along the genome are in linkage disequilibrium. Therefore, an imputation
method would be able to predict missing positions from the available sequencing data. Results: We have developed the
impuSARS application, which takes advantage of the enormous number of SARS-CoV-2 genomes available, using a
reference panel containing 239,301 sequences, to produce missing data imputation in viral genomes. ImpuSARS was tested
in a wide range of conditions (continuous fragments, amplicons or sparse individual positions missing), showing great
fidelity when reconstructing the original sequences, recovering the lineage with a 100% precision for almost all the
lineages, even in very poorly covered genomes (<20%). Conclusions: Imputation can improve the pace of SARS-CoV-2
sequencing production by recovering many incomplete or low-quality sequences that would be otherwise discarded.
ImpuSARS can be incorporated in any primary data processing pipeline for SARS-CoV-2 whole-genome sequencing.

Background

SARS-CoV-2 is a 30-kb single-stranded RNA non-fragmented
virus. It is classified, together with HCoV-OC43, HCoV-HKU1,
SARS-CoV-1, and MERS-CoV, into the β coronaviridae. SARS-

CoV-2 was first described in Wuhan, China, in December 2019
and is responsible for COVID-19, which was declared a pandemic
by the World Health Organization (WHO) in March 2020 [1].
Whole-genome sequencing (WGS) has been successfully used
for classification [2], studying transmission dynamics [3], and
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evaluating global and regional patterns of pandemic spread [4].
WGS also has the potential to study reinfections, which have
been described in a number of patients [5], and has recently
gained prominence to characterize viral variants that may es-
cape the neutralizing activity of the antibodies produced by vac-
cines [6]. Unfortunately, WGS results, especially in complex sce-
narios like this pandemic, are often imperfect, rendering incom-
plete viral sequences, with significant regions of the genome
poorly covered [7]. In fact, current systems for viral lineage iden-
tification, a highly relevant step for the control of potentially
harmful strains, fail to provide a lineage assignment if a per-
centage (typically >50%) of the viral sequences is missing [8].
Given the short response times required in clinics, resequenc-
ing low-quality results is frequently not an option. Therefore,
alternatives to improve sequencing results, used in other fields,
such as genotype imputation, would be extremely useful in this
scenario as well. Genotype imputation has traditionally been a
crucial component of genome-wide association studies, by in-
creasing the power of the findings, helping in their interpreta-
tion, and facilitating further meta-analysis [9]. Genotype impu-
tation relies on the existing correlation between genetic varia-
tions or mutations at sites across the genome of an organism
[10]. Using this correlation, imputation methods accurately as-
sign genotypes at untyped markers, improving genome cover-
age [10–14]. The accuracy of this imputation process improves as
the number of haplotypes in the reference panel of sequenced
genomes increases [15, 16], especially for mutations present at
low frequencies (minor allele frequency <0.5%). The accuracy
can also be increased with large reference panels. In the case
of human genomes, the Haplotype Reference Consortium, com-
posed of ∼32,000 individuals, is considered a large panel, able
to reach an accurate imputation for mutations with frequencies
of ≤0.1–0.5% [14]. In the case of SARS-CoV-2, the outstanding in-
ternational effort of sequencing has generated in a short time
span a genomic database 10 times larger. In spite of the interest
in WGS viral studies and the fact that typically the sequences are
imperfect, with positions and regions missing, the imputation,
with a few exceptions [17, 18], has scarcely been used in the viral
realm, probably because resequencing them resulted in a more
practical solution. However, in scenarios in which sampling is
logistically complex or takes place under emergency conditions,
like the SARS-CoV-2 pandemic, imputation may play a relevant
role.

In addition, because WGS may not be routinely available
for clinical laboratories, protocols for partial sequencing of the
SARS-CoV-2 genome, or even partial sequencing of the spike,
where most of the determinants for variant characterization
are located, are becoming available [19]. Given the importance
of sequencing viral whole genomes for epidemiologic surveil-
lance purposes, as stressed by the WHO [20] and the European
Parliament [21], a tool for genotype imputation in SARS-CoV-2
would increase the sequencing throughput by recovering many
sequences discarded for low quality that still contain valid in-
formation for lineage or clade assignment. Similarly, sequenc-
ing kits that only cover some key stretches already miss (or will
miss future) relevant mutations. Imputation may predict the ex-
istence of these variants of interest (VOI) or variants of concern
(VOC) because of their linkage disequilibrium (LD) with resolved
parts of the viral genome. Here a fully tested, highly accurate ref-
erence panel and tool for the imputation of SARS-CoV-2 whole-
genome sequences from incomplete or partial sequences is pre-
sented.

Materials and Methods
SARS-CoV-2 Imputation

SARS-CoV-2 sequences’ imputation (impuSARS) was performed
by using the Minimac software (Minimac, RRID:SCR 009292) [14].
Although Minimac was originally designed for human sam-
ples with diploid genotypes, the tool allows imputing haploid
genomes as SARS-COV-2 because it supports imputation for
non-pseudoautosomal regions at human males’ chromosome X.
The reference panel was built with Minimac3 whereas Minimac4
was used for imputation. Minimac4 provides imputation quali-
ties comparable to those of Minimac3, but it reduces memory
usage and computational costs. The impuSARS tool accepts ei-
ther FASTA sequence or variation (VCF) inputs. Note that FASTA
sequence can include missing regions (which can be absent or
tagged as N), which will be then imputed. FASTA input is aligned
to reference with Muscle [22] to retrieve mutation positions.
Also, VCF input should include both mutant and reference geno-
types when available.

The initial reference panel was created with the available
SARS-CoV-2 sequences from Global Initiative on Sharing All In-
fluenza Data (GISAID) [23, 24] (downloaded on 7 January 2021).
Only sequences including >29 kb and <1% missing bases were
kept (“complete” and “high coverage” tags in GISAID, respec-
tively). Also, sequences were converted to a multi-sample VCF
format to only compute mutation positions. As defined by GI-
SAID, the hCoV-19/Wuhan/WIV04/2019 sequence (accession No.
EPI ISL 402 124) was considered the official reference sequence.
From this multi-sample VCF, unique mutations, i.e., private mu-
tations for each sequence, were discarded. Therefore, the fi-
nal reference panel contained 239,301 sequences. The param-
eter estimation for the reference panel had already been pre-
computed with Minimac (version 3) to speed up the imputa-
tion process (reference panel provided in M3VCF format). This
reference panel is periodically updated to allow the collection
of novel variants, especially VOIs and VOCs. The last reference
panel (v3.0) was generated by July 2021 including >900,000 se-
quences and expanding it to other mutation types such as small
indels.

Once the imputation is performed using the reference panel,
impuSARS will retrieve the imputed consensus sequence pro-
vided by bcftools consensus v1.11 [25]. Also, the associated lin-
eage for each imputed consensus sequence will be obtained with
PANGOLIN v1.10.2 [8]. PANGOLIN assigns a detailed lineage iden-
tifier to each sequence on the basis of a multinomial logistic re-
gression model [26]. PANGOLIN classifies sequences along a hi-
erarchical tree reflecting evolutionary events. Each level of the
hierarchical tree gathers a group of sequences with common ev-
idence associated with an epidemiological event (usually related
to new variations), which could produce an emerging edge of the
pandemic [26]. Lineages becoming important in the lowest lev-
els of the phylogeny are retagged with aliases to avoid infinite
spread across the hierarchical tree, thus keeping it compacted
in 4 levels at most.

Finally, although impuSARS was originally designed for
SARS-CoV-2 imputation, note that the tool is adapted to im-
pute any other viral genomes if required. For this purpose, im-
puSARS includes a complementary tool for users to create their
customized reference panel from a set of sequences. Custom ref-
erence panels can then be used by impuSARS for other partial
genome imputations. In that case, PANGOLIN lineages will be
disabled because they are focused on SARS-CoV-2 lineages.

https://scicrunch.org/resolver/RRID:SCR_009292
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Code availability

The imputation tool impuSARS has been encapsulated in a
Docker container for interoperability and easy distribution pur-
poses [27], and it is freely available on GitHub [28]. Addition-
ally, the impuSARS tool has been registered in bio.tools and Sci-
Crunch repositories under the identifiers biotools:impusars and
RRID:SCR 021707, respectively.

Validation procedure

SARS-CoV-2 imputation was evaluated by using a 10-fold cross-
validation process. The dataset was randomly partitioned into
10 test subsets. For each test subset, the imputation panel was
computed for the remaining 9 datasets (training subsets). Ini-
tially, the loss of genomic regions was simulated by progressively
increasing the percentage of the missing genome by 10% inter-
vals. Three different strategies were used to select these missing
regions: (i) random selection of only 1 missing region (contin-
uous block), (ii) random selection of mutation positions (miss-
ing sites), and (iii) random selection of amplicon regions that
are usually independently amplified in SARS-CoV-2 sequenc-
ing (missing discontinuous blocks). Amplicon regions were de-
fined by the hCoV-2019/nCoV-2019 v3 Amplicon Set [29] recom-
mended by the ARTIC network [30]. Missing regions for ampli-
cons were simulated as percentages of amplicons completely
uncovered. The whole learning-testing procedure was repeated
3 times to reduce bias produced by the random selection. Addi-
tionally, imputation was also validated by iteratively removing
a sliding window of 3 kb (∼10% of the entire genome) by 1.5-
kb steps. This process will allow determination of those hot spot
regions in the SARS-CoV-2 genome that are harder to impute if
missed.

After validating imputation with several random selections,
2 more real scenarios were considered: (i) imputation from re-
gions covered by the genotyping assay kit DeepChek R©-8-plex
CoV-2 [31] and (ii) imputation only from mutations belonging to
the Spike protein (S) region. As above, a 10-fold cross-validation
process was implemented in both cases. The genotyping assay
covers several selected regions that represent ∼20% of the en-
tire SARS-COV-2 genome; hence imputation can provide a more
comprehensive, improved result. Alternatively, S protein is 1 of
the most commonly sequenced regions for SARS-CoV-2 given its
crucial role in the docking receptor recognition and cell mem-
brane fusion [32, 33]. Moreover, mutations in Spike have been
related to transmissibility or the ability to evade the host im-
mune response [34]. Therefore, studying the ability of imputing
the entire SAR-CoV-2 genome from the Spike region can bene-
fit subsequent lineage classification, thus being crucial for epi-
demiological surveillance.

To facilitate the interpretation of the results the precision, re-
call, and F1 scores have been computed. Because this is a heavily
unbalanced problem (much lower number of mutations against
reference positions), the Matthews correlation coefficient (MCC)
and balanced accuracy (BACC) scores, which are better suited for
handling such scenarios [35–37], have also been provided. For
these scores, positions with mutations in each real sequence
are considered positive whereas reference positions are nega-
tive. Therefore, correctly imputed mutations and reference po-
sitions are considered true-positive and true-negative results,
respectively. Otherwise, wrongly imputed mutations and ref-
erence nucleotides are computed as false-positive and false-
negative. Thus, recall determines the true-positive rate whereas
precision represents the positive predictive value. The F1-score

represents the harmonic mean of the previous 2 metrics. The
MCC measures the correlation and agreement between the truth
and the predicted labels and varies between −1 and 1, where
−1 refers to complete disagreement between the predicted and
truth labels; 0, an average random prediction; and 1, a perfect
prediction. Finally, the balanced accuracy is the arithmetic mean
of sensitivity and specificity.

Lineage classification

Imputations from simulated genotyping assay and Spike region
test subsets were also evaluated in terms of the lineage assigned
to the imputed sequences. A standard accuracy metric was cal-
culated to evaluate assigned lineages from imputed sequences
against real lineages from original GISAID sequences. Addition-
ally, 2 baseline models were implemented to evaluate the influ-
ence of known mutations against missing ones over the assign-
ment of lineages. The first baseline model simply filled missing
regions with the SARS-CoV-2 reference sequence. The second
model randomly generated the genotype to the missing muta-
tion positions of the entire test subset weighting probabilities
by the original genotype frequency in the training datasets. For
comparison purposes, lineages were also obtained for the result-
ing sequences using these 2 baseline models.

Imputation test with independent datasets

After the entire validation process, the final reference panel
including the 239,301 GISAID sequences was built. Several in-
dependent datasets were considered for this test phase using
the definitive reference panel: (i) new GISAID sequences not in-
cluded in the reference panel belonging to lineages of interest;
(ii) 8 samples sequenced at the Hospital San Cecilio (Granada,
Spain) by using both the DeepChek R©-8Plex-CoV2 genotyping ar-
ray [31] and WGS as described below; and (iii) 1 sample, assigned
to the B.1.351 (β-variant) [38] by an experimental RT-PCR kit, sub-
jected to WGS that resulted in an incomplete whole-genome se-
quence, at Hospital Virgen del Rocio (Seville, Spain).

In the first test, new GISAID sequences from highly rele-
vant lineages like B.1.1.7 (α-variant) [39] and B.1.351 (β-variant)
[38] were selected: 64,398 and 970 sequences, respectively (se-
quences downloaded by 23 February 2021). As in the previous
validation phase, these sequences were also tested by iteratively
removing a 3-kb window sliding by 1.5-kb steps in the entire
genome. In this way the importance of specific regions to im-
pute relevant lineages could be evaluated. In the second test the
variations obtained by the genotyping array were used to im-
pute the entire genome and the assigned lineages are compared
against whole-genome results. Finally, the imputation tool was
used in a third test to solve a real case in which an experimen-
tal research use only (RUO) test warned of a potential VOC but
the confirmatory WGS was of poor quality in a scenario where
a quick informed decision was required. Then, the poor-quality
sequence was used to impute the whole-genome sequence and
lineage. The resolution of this case proves the level of resolution
and accuracy of the imputation procedure presented here.

RT-PCR detection of variants SARS-CoV-2 B.1.1.7,
B.1.351, and B.1.1.28.1

An alternative experimental detection of variants SARS-CoV-2
B.1.1.7, B.1.351, and B.1.1.28.1 was performed by RT-PCR using an
RUO kit (SARS-CoV-2 variants RT-PCR, Vitro SA, Sevilla, Spain) to

https://scicrunch.org/resolver/RRID:SCR_021707
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detect the presence and/or absence of specific targets in ORF1ab
gen (deletion SGF 3675–3677) and Spike gen (deletion HV 69–70).

Genotyping array and whole-genome sequencing of
viral samples

Eight SARS-CoV-2 nasopharyngeal samples were sequenced fol-
lowing the manufacturer DeepChek R©-8Plex-CoV2 genotyping
array protocol [31]. WGS of the same samples was carried out
following the ARTIC protocol [30] with the hCoV-2019/nCoV-2019
v3 Amplicon Set [29]. Whole-genome samples were sequenced
in a NextSeq 500 sequencer by Illumina with 150-bp paired-end
reads and a total coverage of ∼500,000 reads per sample.

Sequence data preprocessing

Sequencing data (150 bp ×2) were analyzed using in-house
scripts and the nf-core/viralrecon pipeline software [40]. Briefly,
after read quality filtering, sequences for each sample were
aligned to the SARS-CoV-2 isolate Wuhan-Hu-1 reference
genome (MN908947.3) using bowtie 2 algorithm (Bowtie, RRID:
SCR 005476) [41], followed by primer sequence removal and du-
plicate read marking using iVar [42] and Picard (Picard, RRID:SC
R 006525) [43] tools, respectively. Genomic mutations are iden-
tified through iVar software, using a minimum allele frequency
threshold of 0.25 for calling mutations and a filtering step to keep
mutations with a minimum allele frequency threshold of 0.75.
Using the set of high-confidence mutations and the MN908947.3
genome, a consensus genome per sample is finally built using
iVar.

Results and Discussion
Imputation of randomly simulated missing regions

Each of the 10 test subsets in the 10-fold cross-validation was
reduced by randomly simulating missing regions in increas-
ing percentages (10–90%). This process was repeated 3 times
for each missing percentage. Classification metrics (MCC, BACC,
and F1-score) were obtained for each reduced test dataset as
shown in Fig. 1A for 1 random region (missing continuous
blocks), Fig. 1B for randomly selected mutations (missing sites),
and Fig. 1C for randomly selected amplicons (missing discontin-
uous blocks). In all cases, imputation performance metrics mean
values were >0.65 even for the worst scenario (imputing only
from 10% of the genome). Imputation progressively improves
when known sequence percentages are increasing, reaching
mean values >0.95 for those tests with 90% known genomes.
Interestingly, the performance metrics presented a higher dis-
persion (including some lower outliers) when imputing only 10%
of the genome in 1 continuous block (Fig. 1A) whereas this dis-
persion is more marked at the opposite end of the range of val-
ues, for 90% missing regions for missing mutations and discon-
tinuous blocks (Fig. 1B and C). This behavior might be related
to the fact that leaving only 1 small random block to impute
can involve regions where mutations are rare and harder to im-
pute, even with the remaining 90% known ones. The imputa-
tion by missing sliding windows proposed in the next section
will help to confirm that hypothesis. Finally, even for extremely
high missing percentages like the genotyping assays (∼80%) or
only Spike regions used below, the obtained metrics suggest a
reasonably accurate imputation.

Effects of missing specific locations

As previously noted, imputation performance is strongly as-
sociated with the region missing coverage in the SARS-CoV-2
genome. Therefore, the importance of selecting adequate re-
gions when sequencing SARS-CoV-2 samples and its influence
in a subsequent imputation of the remaining regions is analyzed
here. For this purpose, a 3-kb window was iteratively removed
and imputed from the entire genome, repeating the process by
1.5-kb steps. For the sake of clarity, only key metrics such as pre-
cision, recall, and MCC of each imputed window along the entire
genome are shown in Fig. 2. Additional metrics BACC and F1-
Score are available in Supplementary Fig. S1. Several hot spots
(4 regions) have been identified as critical positions where mu-
tations are harder to impute when the block around is missing.
More specifically, uncovered regions in positions around 3k, 12k,
16.5k (orf1ab protein, replicase polyprotein 1ab), and 24k (S pro-
tein, Spike glycoprotein) would slightly reduce imputation abil-
ity. As previously suggested, note that those identified hot spots
are strongly associated with regions where mutations are less
frequent in the reference panel (dashed green line). Recall val-
ues tend to be lower than precision because of the private mu-
tations in the variants, which are virtually impossible to impute
because of the lack of information on LD with other mutations.
This is not a problem of impuSARS but a general drawback of
any imputation method or strategy.

Imputation from genotyping assay and spike regions

Once the robustness of the imputation in different missing re-
gion scenarios has been validated, the focus is set on the vali-
dation of the imputation of genomes using only data from the
genotyping assay regions previously described or from the Spike
protein region. Table 1 shows imputation performance metrics
for both cases per test subset. Also, these metrics were calcu-
lated against the frequency of imputed mutations in the refer-
ence panel (Fig. 3). In both cases, only the representative met-
rics precision, recall, and MCC were kept. Detailed results for the
other mentioned metrics (BACC and F1-score) can be found in
Supplementary Table S1 and Supplementary Fig. S2. As shown
in Table 1, the imputation performance surpasses 0.81 in the
3 averaged metrics, precision being the highest with >0.96 for
both regions while recall remains at 0.86 and 0.81 for genotyp-
ing assay and Spike regions, respectively. Regarding Fig. 3, muta-
tion imputation quickly increases to >0.96 in the 3 performance
metrics (recall, precision, and MCC) for mutations with frequen-
cies >0.01 and >0.03 for the genotyping array and Spike region
imputations, respectively. The imputation from genotyping ar-
ray sequences reaches its maximum values (>0.996) from fre-
quencies >0.33 for precision and recall metrics, whereas MCC
slightly decreases to 0.895 after the same frequency thresh-
old. For imputation from the Spike region, an improvement is
also observed from mutation frequencies >0.33 reaching perfor-
mance values of 0.998 and 0.969 for recall and precision, respec-
tively, but a more drastic decrease is observed in MCC. This MCC
decrease is correlated in both cases with the decrease in the
number of mutations (green line). When mutation frequency in-
creases, a smaller number of mutations are found but datasets
are inversely unbalanced (more mutant than reference posi-
tions), which metric-wise is better captured by the MCC. Never-
theless, imputing positive cases (mutations) in those situations
is more relevant, so results in recall and precision metrics are
more informative.

https://scicrunch.org/resolver/RRID:SCR_005476
https://scicrunch.org/resolver/RRID:SCR_006525
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Figure 1: Imputation performance metrics (precision, recall, F1-score, MCC, and BACC) depending on missing genome percentage. (A) One random continuous block

of the genome; (B) random selection of missing variants; (C) random selection of missing amplicons. In the Boxplot the box contains the two quartiles around the
median, represented by the horizontal line in the box, and the wiskers represent the maximum and minimum value. Dots outside these limits are outlayers.

Figure 2: Imputation performance metrics (precision, recall, and MCC) based on the position of a missing 3-kb window along the SARS-CoV-2 genome. Left y-axis

values represent variant frequencies (dashed green line). SARS-CoV-2 protein regions are represented by colored background and names specified at the top.

Lineage classification

The previously imputed mutations for the simulated genotyp-
ing arrays and Spike region subsets are used to rebuild the con-

sensus whole-genome sequences and assign their correspond-
ing lineages with PANGOLIN. The quality of the imputed lineage
has been measured by the accuracy metric against real lineages
and compared to 2 baseline models (Fig. 4). Briefly, these 2 mod-
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Table 1: Performance metrics (recall, precision, and MCC)

Subset
Imputation from genotyping assay kit Imputation from Spike region

Recall Precision MCC Recall Precision MCC

1 0.8595 0.9612 0.9088 0.8129 0.9618 0.8841
2 0.8578 0.9597 0.9072 0.8121 0.9620 0.8838
3 0.8562 0.9614 0.9072 0.8100 0.9625 0.8829
4 0.8609 0.9622 0.9101 0.8106 0.9616 0.8828
5 0.8589 0.9603 0.9081 0.8109 0.9619 0.8831
6 0.8593 0.9602 0.9083 0.8106 0.9608 0.8824
7 0.8586 0.9600 0.9078 0.8126 0.9613 0.8837
8 0.8597 0.9614 0.9091 0.8106 0.9624 0.8831
9 0.8579 0.9605 0.9077 0.8115 0.9622 0.8835
10 0.8574 0.9609 0.9076 0.8121 0.9629 0.8842
Mean ± SD 0.8586 ± 0.0013 0.9608 ± 0.0008 0.9082 ± 0.0009 0.8114 ± 0.0010 0.9619 ± 0.0006 0.8834 ± 0.0006

Metrics obtained for 10-fold cross-validation subsets imputing from the genotyping assay and Spike protein regions. Values are calculated for the entire test subset

imputation.

Figure 3: Principal imputation performance metrics (precision, recall, and MCC) calculated depending on imputed variant frequencies. (A) Imputation quality when

imputing from the genotyping array positions; (B) imputation quality when imputing from Spike protein positions. Left y-axis (green) represents the number of variants
for those frequency thresholds (log scale).

Figure 4: Lineage classification accuracy compared against 2 baseline models. (A) Lineage accuracy when imputing from the genotyping array positions; (B) lineage

accuracy when imputing from Spike protein region. Levels represent lineage specification.
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els, respectively, filled missing regions with random mutations
assigned by frequency (“Random fill”) or with nucleotides from
the reference sequence (“Reference fill”) (see Material and Meth-
ods section: for details). Also, accuracy was calculated for the
different levels of the hierarchical tree in PANGOLIN lineages.
As shown, the first level in the hierarchical classification of lin-
eage was almost always correctly determined (>98%), even for
the 2 baseline models. That is, the information provided by the
already known regions (genotyping array and Spike protein) was
enough to classify this first level. However, the imputed solution
becomes more relevant as a lower level has to be determined.
Hence, imputation clearly outperformed both baseline methods
when lineages were assigned at third and fourth level, achieving
77% and 68% accuracy for genotyping array and spike regions,
respectively. As expected, imputation from the genotyping ar-
ray positions comes up with higher lineage accuracies than the
solution with Spike because this kit was specifically designed
to capture relevant regions in the SARS-CoV-2 genome. Even so,
imputation still produces strong benefits in the lineage assign-
ment for the genotyping array regions, clearly improving lineage
assignments with simple baseline models.

Additionally, a detailed view of lineage classification for the
top frequent lineages (>500 sequences) is shown in Fig. 5. As
noted, there are lineages that are more commonly misclassi-
fied. For instance, several sequences are wrongly classified as
B.1.1.119 when imputing from the genotyping array regions.
Similarly, lineage B.1 is frequently assigned when sequences
truly belong to a more specific lineage (lower level in the hier-
archical tree) in the imputation from Spike. In the first case, this
misclassification is produced by the fact that lineage B.1.1.119
is partially constituted by 3 mutations in positions 28,881–3,
which are not captured by the genotyping array that was used.
This situation makes sequences from other close lineages like
B.1, B.1.1.214, or B.1.1.282 identical to B.1.1.119, from the geno-
typing array perspective. Consequently, these close lineages are
frequently imputed as B.1.1.119 (30%, 88%, and 73%, respec-
tively). Likewise, given the lack of certain regions when imputing
from Spike region, several sub-branches like B.1.1.119, B.1.1.214,
B.1.1.282, or B.1.1.284 are wrongly classified as the parent node
B.1 (80%, 75%, 87%, and 57%, respectively). Although the percent-
ages of misclassification are quite high in these cases, affected
lineages are less relevant for prospective imputation purposes
because they belong to early phases from the virus evolution,
with less informative mutations, not being classified as VOI or
VOC, and some of them almost or already extinct. Otherwise,
VOCs like α and β were more accurately classified imputing from
both the genotyping array (78.3% and 99% accuracy, respectively)
and Spike region (78.3% and 98.1%).

Imputation of new independent datasets

Previous sections have extensively validated the proposed impu-
tation system under several configurations and strategies. This
section shows several use cases and test results produced by in-
dependent datasets over the final imputation reference panel
(239,301 sequences).

First, 2 recently emerging lineages, B.1.1.7 (α-variant) and
B.1.351 (β-variant), have also been studied in this final testing
phase to evaluate the performance of the imputation in new lin-
eages. Sequences recently added to GISAID (not included in our
presference panel) under these lineages were selected: 64,398
and 970 sequences, respectively. Their percentage of cosrrectly
classified lineages after imputation when missing a 3-kb win-
dow (10%) along the entire genome are then calculated (Fig. 6).

As shown in Fig. 6, even when these lineages are underrep-
resented in the present reference panel (23 and 105 sequences,
respectively), the methodology has captured the LD structure
at such precision that it can accurately impute the B.1.1.7 and
B.1.351 lineages from other sequences. Specifically, both lin-
eages obtained 100% accuracy for almost any missing 3-kb re-
gion. The imputation accuracy was slightly reduced in the α-
variant (B.1.1.7) when the missing regions are located around
the center of S protein (99.5% accuracy) or at ORF8 and N pro-
teins (99% accuracy). This behavior is clearly associated with the
loss of constitutive mutations for the α-variant such as N501Y,
A570D, or P681H, among others [44]. In the case of the β-variant
(B.1.351), performance slightly decreased at the beginning of
protein S (99.5%), as well as around E and M proteins (99.8%).
Again, these small decreases are associated with important mu-
tations associated with the lineage such as Q57H or P71L [45].

Imputation for sequencing kits and low-quality
sequences

Eight SARS-CoV-2 samples were sequenced using the
DeepChek R©-8-plex CoV-2 genotyping array (see Table 2).
The partial sequences covering ∼20% of the whole viral genome
were used to impute the remaining non-covered 80% of the
genome with impuSARS. Then, the same samples were sub-
jected to WGS. The imputed whole-genome sequences and
lineages were subsequently compared against each other,
rendering a highly reliable imputation sequence and 100%
successful lineage imputation. FASTQ files as well as consensus
whole-genome sequences for both genotyping array and WGS
of these 8 samples are available for download at the European
Nucleotide Archive (ENA) under the accession ID PRJEB43882.
Also, imputation results (both imputed consensus whole-
genome sequences and lineages) are provided in the Zenodo
repository [46]. Coverage distribution from initial genotyping
array results is provided in Supplementary Fig. S3. The 3 main
quality metrics and imputed lineages are shown in Table 2. A
more detailed table including mutation counts and additional
metrics is provided (Supplementary Table S2).

To further illustrate the usefulness of the imputation system
in a real clinical scenario, a use case of the Hospital Virgen del
Rocio is described. In a routine survey a sample was analyzed
by RT-PCR using a RUO kit (see Material and Methods section
for details), which raised a warning suggesting that it may be-
long to the emerging β-variant (B.1.351), a VOC. The sample was
immediately submitted to confirmatory WGS, which resulted
in a poor-quality sequencing, with only 28.91% of SARS-CoV-2
genome covered, having 71 amplicons completely non-covered
and 3 covered at low depth (<20×). Lineage assignment with cur-
rent tools like PANGOLIN is impossible in this low-quality sce-
nario. However, it was urgent to confirm or discard the presence
of a VOC for epidemiologic surveillance and medical decision
making. Therefore, impuSARS was used on this poor-quality se-
quence and lineage imputation was carried out with PANGOLIN,
producing a B.1.1.7 lineage (α) assignment, also a VOC, but cur-
rently more extended in Spain. Detailed analysis of the pattern
of available mutations also supported this lineage assignment
(see Table 3).

Indels imputation

As shown in previous sections, impuSARS was originally de-
signed and validated for imputation of single-nucleotide poly-
morphisms (SNPs). In fact, SNPs clearly represent most muta-



8 Whole-genome imputation of SARS-CoV-2

Figure 5: Accuracy obtained for each pair of lineages (real vs imputed) for the top frequent lineages (>500 sequences). Left heat map represents the obtained values for
genotyping array imputation whereas right heat map represents accuracies for imputation from Spike protein region. Color represents the percentage of sequences
in each real lineage classified by each imputed lineage (the darker, the higher).

Figure 6: Lineage classification accuracy. Accuracy is estimated for a missed region in sliding windows of 3 kb for the recent α- and β-lineages (B.1.1.7 and B.1.351,
respectively)

Table 2: Variant imputation metrics (precision, recall, and MCC) and lineage classification

Sample Recall Precision MCC Real lineage Imputed

AND00023 0.9000 1 0.9486 B.1.1.7 B.1.1.7
AND00040 0.8571 1 0.9258 B.1.1.7 B.1.1.7
AND00065 0.8636 1 0.9293 B.1.1.7 B.1.1.7
AND00073 0.8571 1 0.9258 B.1.1.7 B.1.1.7
AND00123 0.9231 1 0.9607 B.1.1.7 B.1.1.7
AND00128 0.6000 1 0.7745 B.1.1.7 B.1.1.7
AND00132 0.8696 1 0.9324 B.1.1.7 B.1.1.7
AND00139 0.9091 1 0.9534 B.1.1.7 B.1.1.7
Mean ± SD 0.8475 ± 0.103 1.0000 ± 0 0.9188 ± 0.06 100%

Values for 8 independent samples internally sequenced with both the genotyping array and whole-genome sequencing.

tions in SARS-CoV-2 sequences with >33 SNPs per sequence
against only 3.12 deletions and almost no insertions (0.4 on aver-
age) (see frequencies in Supplementary Fig. S4). However, emerg-
ing VOCs are progressively incorporating more indels of interest,
mainly short deletions of 1–3 codons (3–12 nucleotides). This is
the case, for example, for the 2-codons deletion S:69–70del in α-
variant, the 3-codons deletion ORF1a:3675–3677del in β-variant,
or, more recently, the deletion S:157–158del in δ-variant. Conse-
quently, impuSARS has been recently updated to accept and also
impute short indels by designing a new reference panel (v3.0).

Although it is out of the scope of this articlemputation has been
successfully validated with the most representative indels like
those previously mentioned. In fact, indel imputation has also
produced significant improvements in lineage classification.

Conclusions

Whole-genome sequence imputation from partial sequences
from commercial kits or from low-quality WGS has been demon-
strated to produce highly reliable results and be an excel-
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Table 3: Study of AND00344 variants

Mutation Found in variant Present Coverage α β γ

L18F β/γ No None ? ?
T20N γ No None ?
P26S γ No None ?
del 21765 α No None ?
D80A β No None ?
D138Y γ No None ?
del 21991 α No None ?
R190S γ No None ?
D215G β No None ?
del 22281 β No Covered No
R246I β No Covered No
K417N β/γ No None ? ?
E484K β/γ No Low No? No?
N501Y α/β/γ Yes Covered Yes? Yes? Yes?
A570D α No None ?
D614G α/β/γ No None ? ? ?
H655Y γ No Covered No
P681H α Yes Covered Yes No No
A701V β No Covered No
T716I α Yes Covered Yes No No
S982A α No None ?
T1027I γ No None ?
D1118H α No None ?
Q57H β No Covered No
P71L β No Covered No
Q27stop α Yes Covered Yes No No
T205I β No Low No?
Total Yes (most likely) No No (most likely)

Comparison of the available variation in the low-coverage sequence of vial sample AND00344 with respect to the α (B.1.1.7), β (B.1.351), and γ (P.1) VOCs.

lent tool for lineage assignment. Given the short response
times required for the identification of samples for decision
support or for epidemiological surveillance in a clinical con-
text, re-sampling and/or re-sequencing are not realistic op-
tions. Therefore, imputation constitutes an accurate and useful
tool to complement and improve SARS-CoV-2 WGS pipelines in
clinics.

Availability of Source Code and Requirements

Project name: impuSARS (SARS-CoV-2 imputation)
Project home page: https://github.com/babelomics/impuSARS
Operating system(s): Platform independent (Docker container or,
alternatively, conda environment)
Programming language: Python, Bash
Other requirements: Docker, Conda
License: MIT License
Any restrictions to use by non-academics: none
biotools:impusars
RRID:SCR 021707

Data Availability

The SARS-CoV-2 sequences used to train the impuSARS tool
were taken from GISAID [47].
The hCoV-19/Wuhan/WIV04/2019 sequence (EPI ISL 402
124) was taken from GISAID [48].
The imputation results (both imputed WGS and lineages) are
provided in the Zenodo repository [46]. Tabular data and a snap-
shot of the code are also available in the GigaDB repository [49].

The 8 SARS-CoV-2 whole-genome sequences generated
in this study are available at the European Nucleotide
Archive [50].

Additional Files

Supplementary Table S1: Supplementary imputation perfor-
mance metrics (BACC and F1)
Supplementary Table S2: Mutation counts and additional met-
rics
Supplementary Table S3: List of the originating laborato-
ries responsible for obtaining the specimens and the sub-
mitting laboratories whare the genomes were generated
amd shared via GISAID according to the GISAID policy of
acknowledgements.
Supplementary Figure S1: More imputation performance met-
rics (F1 and BACC) based on the position of a missing 3-kb win-
dow along the SARS-CoV-2 genome. Left y-axis values represent
mutation frequencies (dashed green line). SARS-CoV-2 protein
regions are represented by colored background and names spec-
ified at the top.
Supplementary Figure S2: Supplementary imputation perfor-
mance metrics (BACC and F1) calculated depending on imputed
mutation frequencies. (A) Imputation quality when imputing
from the genotyping array positions; (B) imputation quality
when imputing from spike protein positions. Left y-axis (green)
represents the number of mutations for those frequency thresh-
olds (log scale).
Supplementary Figure S3: Coverage distribution from genotyp-
ing array in the 8 samples studied.

https://github.com/babelomics/impuSARS
https://scicrunch.org/resolver/RRID:SCR_021707
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Supplementary Figure S4: Frequencies of the different types of
mutations (single-nucleotide variants, insertions, and deletions)
per SARS-CoV-2 genome.
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