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Abstract

Background: At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping
assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of
this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk
production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI).

Methods: Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of
1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected
SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to
evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were
used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients.
Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for
each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for AS|,
APR or minor allele frequency within intervals of approximately equal length.

Results: RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays
and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher
heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in
accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common
set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than
90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay
for young bulls.

Conclusions: Accurate genomic evaluation of the broader bull and cow population can be achieved with a single

genotyping assays containing ~ 3,000 to 5,000 evenly spaced SNP.

Background

In genomic selection (GS), selection decisions are made on
genomic breeding values predicted from high-density sin-
gle nucleotide polymorphic (SNP) markers. In dairy cattle,
GS has the potential to double the rate of genetic gain to
that of traditional breeding schemes due to a substantial
reduction in generation intervals and increased selection
intensities [1,2]. Significant additional gains in GS schemes
could be made if cows to breed sires and cows to breed
cows were selected on genomic breeding values [1].
Another benefit of genotyping cows may be lower rates of
inbreeding: according to Daetwyler et al. [3], the use of GS
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can be expected to decrease the rate of inbreeding relative
to conventional selection using BLUP breeding values, this
effect will be greatest when larger numbers of both cows
and potential sires are genotyped [4].

At the current price, high-density SNP genotyping
assays are limited to applications involving elite sires and
dams. An alternative is to use a more cost-effective low-
density assay for genotyping more animals from the popu-
lation. As shown for a single trait by Weigel et al. [5],
a low-density assay comprising selected SNP can deliver a
substantial portion of the gain of a high-density assay, pos-
sibly for a fraction of the price. However, the use of such a
low-density array may still be limited if multiple traits
require so many SNP that their genotyping cost is similar
to the cost of a high-density chip.
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The utility of low-density arrays will depend in part
on the genetic architecture of the target trait. In GS,
prediction equations are derived from a training set,
where animals are phenotyped and genotyped to pre-
dict breeding values based only on the genotype infor-
mation of evaluation animals. This requires that the
markers are in sufficient LD with the QTL and simula-
tion studies have shown that accuracy of genomic pre-
dictions increases as LD increases [6-10]. In the ideal
case where every QTL is in perfect LD with a single
marker and where a limited number of QTL with large
effects account for the genetic variation, the maximum
accuracy could be obtained with very few markers.
However, there is increasing evidence that most com-
plex traits are affected by very many QTL with a small
effect (e.g. height in humans, [11-14]). This would
imply that the training population would need to be
genotyped with a high-density SNP panel in order to
capture the effects of all QTL. Selecting individual
SNP from high-density genotype data is complicated
because the multicollinearity between SNP, i.e. two or
more SNP in high but not complete LD, makes it diffi-
cult to identify ‘important’ SNP, as each SNP masks a
part of the effect of other SNP and a single marker
might be in LD with several QTL.

Utility of SNP subsets will also be affected by the
relationship of the selection candidates to the training
set. Although genomic predictions rely on LD between
SNP and QTL, this LD can operate or be interpreted
at a number of levels. In addition to population level
LD, simulation studies and empirical data have demon-
strated that the accuracy of prediction depends on the
relatedness between animals in the training and eva-
luation populations [10,15,16]. At the extreme, even in
the absence of LD between markers and QTL, markers
can predict family relationships between animals. If
animals in the training and evaluation data share DNA
segments from a small number of ancestors, relatively
few markers are required to trace the segments shared
between related animals separated by only a few gen-
erations. A low-density assay of evenly spaced SNP
might then provide sufficient accuracies of prediction
of evaluation animals, as long as the information con-
tent of the subset of SNP is sufficient to estimate
effects of distinct haplotypes.

The objective of this study was to evaluate the use of
low-density SNP genotyping assays to predict the direct
genomic value (DGV) of bulls and cows for commer-
cially important traits in Holstein-Friesian dairy cattle.
The impact of two analysis methods, the number of
SNP needed for accurate DGV prediction, as well as
strategies for SNP selection were explored.
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Methods

Phenotype and genotype data

Phenotype and genotype data were available on 2,144
Holstein-Friesian bulls and 510 Holstein-Friesian cows.
The traits analysed included milk production traits (milk
yield, fat yield, protein yield, fat percentage and protein
percentage), an overall confirmation trait (overall type),
survival index, Australian Profit Ranking (APR) and Aus-
tralian Selection index (ASI). The ASI is an index given by
(3.8 x protein ABV) + (0.9 x fat ABV) - (0.048 x milk
ABV), APR is given by (3.8 x protein ABV) + (0.9 x
fat ABV) - (0.048 x milk ABV) + (1.2 x milking speed
ABV) + (2.0 x temperament ABV) + (3.9 x survival ABV)
+ (0.34 x cell count ABV) - (0.26 x live weight ABV) +
(3.0 x daughter fertility), whereas survival is given by
(0.5 x likeability) + (1.8 x overall type) + (3.0 x udder
depth) + (2.2 x pin set).

Phenotype information was provided by the Australian
Dairy Herd Improvement Scheme (ADHIS, http://www.
adhis.com.au). The phenotypes used were deregressed
breeding values (DRBV) for protein percentage, fat per-
centage, ASI, APR and survival, and daughter trait
deviations (DTD) for protein yield, fat yield, milk yield
and overall type. The deregression procedure removed
the contribution of relatives other than daughters to the
breeding values, as detailed in [17]. For cows, trait
deviations (TD) were available for protein yield, fat
yield, milk yield and overall type, but no DRBV informa-
tion was available for the other traits.

SNP genotypes were derived from the Illumina Bovi-
neSNP50 BeadChip (Illumina Inc., San Diego, USA).
After quality control [18] and omitting SNP located on
the sex chromosomes a total of 42,576 markers
remained for the analysis.

Training and validation sets and accuracy of DGV

The 2,144 bulls were divided in a training data set of
1,847 bulls born between 1955 and 2004 and a valida-
tion set of 297 young bulls born between 2001 and
2004, which represented progeny test teams for 2007,
2008 and 2009. A second validation set included 510
cows born between 1992 and 2004. Table 1 gives the
number of animals in training and test sets and the
number of records contributing to the phenotypes per
animal. Of the 297 young bulls in the bull validation set,
240 (80.8%) were sired by bulls in the training set,
whereas 473 (92.7%) of the cows had their sire in the
training set. The correlation coefficient between pre-
dicted DGV and realized DRBV, DTD or TD was used
as the measure of accuracy of DGV prediction. The dis-
tribution of traits in the training and validation set is
shown in Figure 1.
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Table 1 Number of animals in training and validation sets and median number of records contributing to the
phenotype per animal

Training set Validation sets
Trait Phenotype® Bulls Records® Bulls Records® Cows Records®
Protein, Fat, Milk DTD, TD 1845 107 (82, 165) 297 71 (59, 87) 510 5 3,6
Overall Type DTD, TD 1314 35 (23, 57) 89 36 (29, 46) 313 1 (1,1
Protein%, Fat%, ASI DRBV 1845 107 (82, 165) 297 71 (59, 87)
APR DRBV 1828 73 (54, 106) 295 32 (27, 49)
Survival DRBV 1847 39 (29, 58) 227 4 4, 29)

@ DTD: daughter trait deviations for bulls; TD: trait deviations for cows; DRBV: deregressed breeding value.
® Median number of phenotyped daughters per bull, 25" and 75 percentile in parentheses.
€ Median number of lactations per cow, 25" and 75™ percentile in parentheses.
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Figure 1 Density plots of phenotypes in the training set and the validation sets.
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Calculation of DGV

Prediction equations for each trait were derived from the
training set by either ridge regression [19,20] or partial
least squares regression [9,20,21] and then combined
with the genotype data to predict DGV for the validation
animals:

DGV = Xb,

where DGV is the vector of direct genomic values
estimated with the marker genotypes, X is an incidence

matrix that relates genotypes to individuals, and p is

the vector of SNP effects which is estimated by either
one of the two methods described below.

Ridge regression (RR)
Regression coefficients are obtained from the solution of
the mixed model equations

N -1
Al | N 1/X 1y
b| [x/1 x/x+10| [X/y]|

where N is the number of training animals, y is a vector
of phenotypes, [ is an unknown constant, X is a (N x p)
matrix of genotypes encoded as 0 (homozygote), 1 (hetero-

zygote) or 2 (other homozygote), b/ = [ﬁlr..., Bp] is a

vector of SNP effects, and I is a p x p identity matrix. The
penalty term A, which is the same for all SNP, overcomes
the problem of ill-conditioning when multicollinearity
among columns in X causes X’X to be singular, or nearly
so. The system of equations was solved iteratively by the
preconditioned conjugate gradient method [22]. The 10-
fold cross-validation procedure described in Moser et al.
[20], with golden segment search [23], was used to locate
the optimal A within a given range. RR is equivalent to the
BLUP method of Meuwissen et al. [6] and Habier et al.
[15], which assumes that regression coefficients are inde-
pendent random draws from a common normal distribu-
tion. Under the BLUP model, 1 = 62, /czg, where 67, is
the residual variance and ng the genetic variance.

In RR, the contribution of each bull can be weighted
according to the number of daughters contributing to
the phenotype. However, reliabilities of the phenotypes
expressed as ‘equivalent daughter contributions’ were
uniformly high, with small differences between the
majority of training bulls, and weighting the contribu-
tions of bulls had no impact on the accuracy of DGV
for method RR (results not shown).

Partial least squares regression (PLSR)
The main idea of PLSR is to build orthogonal components
(called ‘latent components’) from the original genotype
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matrix X. A PLSR component £ = Xw is a linear combina-
tion of the SNP that have maximal covariance with the
response vector, under the additional assumption that
components are mutually orthogonal [24]. Subsequently,
y is regressed on the linear combinations of markers.
Different algorithms to extract the latent components

and to obtain regression coefficients [, exist. We imple-

mented PLSR using an algorithm described in [25]. The
optimal model complexity (i.e. number of latent compo-
nents), was estimated by ten fold cross-validation [20].
Note that the PLSR regression coefficients differ from
the ordinary least squares regression coefficients and the
RR regression coefficients. The magnitude of the PLSR
regression coefficients can be used to determine the
relative influence of each SNP on the model and to
select relevant SNP [26].

SNP selection

The absolute magnitude of the regression coefficients
was used to determine which SNP are most influential
in the training data set. To select subsets of markers, all

42,576 SNP were ranked by their absolute value of .

The ranking of SNP was derived using a backward elim-
ination procedure. The process started with a model
including the complete set of 42,576 SNP. Subsequently
in each step, a fraction of SNP with the smallest abso-
lute value of the regression coefficients was dropped
from the SNP list and the regression coefficients were
recomputed. This re-computation is important as the
regression coefficient of an individual SNP can strongly
depend on other SNP that are in LD with the SNP of
interest. The optimal model complexity (i.e. number of
latent components) for PLSR and the value of A for RR
was estimated at each step by cross-validation.

In detail, we first fitted models including all 42,576
SNP. In the first iteration 40,000 SNP with the highest
absolute value of the regression coefficient were retained
in the SNP list. The number of SNP subsequently
dropped in each iteration was 2,000 for subsets of up to
10,000 SNP, 500 SNP for subsets of up to 1,000 SNP,
100 SNP for subsets of up to 300 SNP and 20 SNP for
subsets of up to 100 SNP.

Four alternative strategies of SNP subset selection were
compared. Under strategy 1, separate subsets including
the highest ranked SNP for each individual trait were cre-
ated. Strategies 2-4 used a single subset of evenly spaced
SNP. To select a subset of n evenly spaced SNP, we
divided the total length of the autosomes into # intervals
flanked by two markers to give segments of approxi-
mately equal length. Chromosome lengths and SNP posi-
tions were based on the physical map of cattle genome
assembly Btau 4.0. Subsequently, the highest ranked SNP
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for ASI (strategy 2), APR (strategy 3) or the SNP with the
highest minor allele frequency (MAF, strategy 4) in each
segment, was added to the subset. Using the same subset
of SNP, a model was then fitted for each trait to derive
the prediction equations. Subsets of evenly spaced SNP
were generated for sets including between 100 and 5,000
SNP. The accuracy of DGV obtained using a subset of
SNP was compared to the accuracy from the analysis of
all 42,576 SNP.

Results

Accuracy of DGV using trait-dependent SNP subsets
derived with RR and PLSR

Accuracy of DGV predictions in validation sets of young
bulls and cows using all 42,576 SNP and subsets includ-
ing the highest ranked SNP for each trait are shown in
Figure 2. Accuracy of DGV was computed as the corre-
lation between DGV and the phenotype. Accuracy of
prediction for protein percentage, fat percentage, ASI,
APR and survival could not be computed for cows,
because phenotypes for these traits were not available.
Accuracy of DGV prediction from the analysis of all
42,576 SNP ranged from 0.15 to 0.64 for RR and 0.20 to
0.64 for PLSR in the validation set of bulls, and from
0.22 to 0.57 for RR and from 0.21 to 0.54 for PLSR in
the validation set of cows (Figure 2). The largest differ-
ence between the bull and cow validation sets was
obtained for the overall type trait, with the accuracy of
DGV for cows being approximately half that of bulls,
whereas for protein and milk yield the accuracies of
DGV prediction between bulls and cows were almost
identical (Figure 2).

Overall, predictions by RR were slightly more accurate
for larger SNP subsets but less accurate for smaller SNP
subsets compared to PLSR. As shown in Table 2, the dif-
ferences in accuracy between both methods, with respect
to the highest correlation obtained for an individual trait,
were negligible. The highest accuracy for PLSR was
obtained with models that contained considerably fewer
SNP than the high-density assay, whereas the RR model
with the highest accuracy included almost all SNP, with
the exception of survival and fat percentage. In the case of
PLSR, the highest accuracy for cows was achieved with
models containing more SNP compared to bulls (Table 2).
Depending on the trait, accuracies of PLSR were 2 to 12%
higher than those for RR for subsets including 5,000 or
less SNP [see Additional file 1].

The panels in Figures 2 are ordered from high to low
heritable traits (left-right, top-bottom) based on reported
heritability estimates [27,28]. Heritability of APR and
ASI was assumed to be intermediate between produc-
tion traits and survival. Figure 2 shows a strong relation-
ship between the accuracy of prediction of DGV and the
heritability of the trait. Predictions of production traits
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with a higher heritability, such as protein percentage
(h? = 0.56), fat percentage (h* = 0.52), and milk yield
(h? = 0.28), were more accurate than predictions of
traits with a lower heritability, such as overall type (h* =
0.18) and survival (h? = 0.03).

Accuracy of DGV using low-density assays depending on
the method of SNP selection

Figure 2 shows a consistent trend in the accuracy of
DGV when the SNP density decreased from 42,576 to
approximately 1,000 SNP using trait-depended subsets
of SNP. When SNP density exceeded 1,000 SNP the
accuracy of DGV reached a plateau, and increases in
accuracy with increasing number of SNP were marginal
or fluctuated around the maximum accuracy (Table. 2).
This plateau in accuracy of DGV was consistent in both
bulls and cows (Figure 2). At densities below 1,000 SNP
accuracies declined relatively rapidly, subsets of 100
SNP consistently showed the lowest accuracy within the
range examined here (Figure 2).

Results showing the accuracy of DGV using subsets of
SNP selected by each of the four strategies are restricted
to the analyses of subsets of 100, 300, 500, 1,000, 3,000
and 5,000 SNP. To limit redundancy, results from the
analyses using RR are not presented in detail, but RR
performed very similar to PLSR as shown in Figure 2.
Relative accuracies of prediction are expressed as per-
centage of the accuracies obtained with 42,467 SNP and
are shown in Figure 3 for bulls and Figure 4 for cows.

When the number of SNP in the subset was 1,000 or
larger, using trait-specific subsets gave higher accuracies
than using a common subset of SNP in both validation
sets, with the exception of overall type for both bulls
and cows (Figure 3 and 4). In addition, the rate of
decrease in accuracy, with respect to the size of the sub-
set, was much more rapid for evenly spaced SNP than
for trait-dependent SNP. The rate of decrease in accu-
racy tended to be lower for production traits, which
have a higher heritability than traits related to fitness.
Predictions based on at least 1,000 or 3,000 SNP
appeared to be very robust to how SNP were selected,
but were very sensitive when the subset included fewer
SNP.

For the overall type trait, subsets including more than
1,000 of the highest ranked SNP for the trait gave lower
accuracies than evenly spaced SNP selected for ASI and
APR, which might be due the smaller number of train-
ing records available for this trait. All subsets containing
less than 500 SNP performed poorly for survival, which
has a low heritability (h* = 0.03), particularly subsets of
SNP selected for APR and ASL

The relative accuracy of prediction using low-density
assays across the nine traits available for bulls and the
four traits available for cows is given in Table 3. Higher
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Figure 2 Accuracy of DGV of bulls and cows using subsets of the highest ranked SNP obtained by RR and PLSR.

relative accuracies were found for cows compared to
bulls, which is partly due to the fact that production
traits with higher DGV accuracies contributed more to
the average of cows. Subsets including the highest
ranked SNP for each trait outperformed a single subset
of common SNP, which is expected as a common SNP
subset of the same size will not include the highest
ranked SNP for each trait, with exceptions for bulls for
subsets of 3,000 or 5,000 SNP selected for the index
APR or of 3,000 SNP selected for the index ASI. How-
ever, the gain in accuracy using subsets of the highest

ranked SNP over a common set of SNP was small when
at least 3,000 SNP were used. A subset containing 5,000
evenly spaced SNP selected for APR captured 92% of
the accuracy of the high-density assay in both bulls and
cows, compared to average relative accuracies of 89% in
bulls and 98% in cows, when using trait-specific subsets
with the highest ranked SNP for each trait. Irrespective
of the method of SNP selection, subsets containing
3,000 SNP provided more than 90% of the accuracy that
could be achieved with a high-density assay for cows,
and 80% for young bulls.
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Table 2 Maximum accuracy of DGV of cows and bulls derived by RR and PLSR

Bulls Cows
RR PLSR RR PLSR

Trait SNP Accuracy SNP Accuracy SNP Accuracy SNP Accuracy
Protein 42,576 0.52 9,000 0.54 38,000 0.56 36,000 0.54
Fat 42,576 0.55 9,000 0.54 42,576 043 22,000 042
Milk 36,000 0.55 4,500 0.56 40,000 0.57 18,000 0.56
Overall Type 42,576 0.52 28,000 0.54 34,000 0.23 24,000 0.23
Protein% 32,000 0.64 20,000 0.64

Fat% 3,500 0.60 900 0.62

ASI 42,576 0.52 16,000 0.52

APR 42,576 0.35 10,000 037

Survival 14,000 0.19 1,000 0.20

Figure 5 shows the percentage of SNP that were
shared between combinations of traits, with the number
of traits ranging from two to nine. The average number
of SNP shared between any two traits was 35% for sub-
sets of 10,000 SNP and dropped to under 10% for sub-
sets of 500 SNP. As the number of traits increased, the
number of SNP in common between traits decreased
rapidly. Only 0.13% of the 10,000 highest ranked were
in common among all nine traits, and no SNP was in
common for all traits for subsets of 5,000 SNP. In gen-
eral, a larger proportion of SNP was shared between
index traits and the traits included in the index (results
not shown). For example, approximately 60% of the
5,000 highest ranked SNP for ASI were also included in
the subset for APR, but less than 20% of those SNP
were included in the subsets for fat percentage and pro-
tein percentage.

Accuracy of DGV for bulls and cows with or without
genotyped sires in the training set

Accuracies of DGV predictions of validation animals
whose sires were or were not included in the training
set were computed from SNP effect estimates obtained
by PLSR. As shown in Figure 6, the distribution of addi-
tive-genetic relationship differed substantially between
validation animals whose sires were or were not repre-
sented in the training set. When validation sets were
broken up into groups of animals with or without sire
in the training data, there was substantial variation in
the accuracy of prediction between groups and between
bulls and cows (Figure 7 and 8). The number of animals
in the group without sire in the training data was small,
ranging from 16 to 57 for bulls and from 15 to 37 for
cows, depending on the trait. Using the high-density
assay, the accuracy of prediction of validation bulls with
sire in the training data was not consistently higher than
for validation bulls without sire in the training data for
all traits (Figure 7). For fat percentage, milk and protein
yield, accuracy of prediction when using fewer SNP was

consistent between the two groups of bulls, and accura-
cies varied more for the other traits. However, for cows,
the accuracy of DGV for the group whose sire was
included in the training data was substantially higher
compared to cows without sire in the training data, irre-
spective of the number of SNP (Figure 8).

Discussion

The objective of the study was to evaluate the use of
low-density SNP assays for genomic selection of dairy
cattle. As also shown by Weigel et al. [5] for a single
trait, the accuracy of DGV decreased with decreasing
number of SNP in the subsets. However, a low-density
assay comprising selected SNP can deliver a substantial
portion of the gain of a high-density assay, even if a
common set of SNP is used across traits. Our results
show small differences between RR and PLSR when
using high-density assays, but differences between the
two methods become more evident for subsets contain-
ing fewer SNP.

Recently, a number of studies have reported on the
accuracy of DGV for dairy traits [16-18,20,29-32]. These
have shown that the accuracy of DGV depends on the
size of the training data, SNP density, heritability and
the genetic relationships between animals in the training
and validation data. Although it is difficult to compare
accuracies between studies, accuracies estimated in the
current study are within the range of those reported
previously.

There was a strong relationship between the accuracy
of prediction and the heritability of the trait, with the
prediction for production traits, which had with a higher
heritability, being more accurate than that for traits with
a low heritability. The generally low accuracies of DGV
for survival are perhaps in part due to its low heritability
(h* = 0.03, [27]) and the low number of effective records
contributing to the DRBV for young bulls (Table 1). For
a trait with a low heritability, achieving an accuracy
similar to that obtained for production traits requires
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Figure 3 Accuracy of DGV of bulls using low-density assays depending on the method of SNP selection. Accuracy of prediction is shown
as percentage of the accuracy obtained with 42,576 SNP for subsets including the highest ranked SNP (Trait), subsets of evenly spaced SNP
including the highest ranked SNP for ASI (ASI), APR (APR) or SNP with highest minor allele frequency (MAF) obtained by PLSR

more records [18,33,34]. Results for the overall type trait
were less consistent across the various analyses, with
larger differences between bulls and cows and between
subset selection strategies compared to other traits. The
differences between cows and bulls for overall type can
be partly attributed to the fact that the cow’s phenotype
is derived from a single observation, and the smaller
number of animals in the training and validation sets
may be responsible for some of the variation between

methods of SNP selection. In general, the estimated
accuracies reported herein most likely underestimate the
correlation between DGV and true breeding value, as
the phenotypes (DRBV, DTD and TD) are not perfectly
predicting the true breeding value.

Both, RR and PLSR performed very similar in predict-
ing DGV and differences were generally small. However,
the highest accuracy of prediction of PLSR was obtained
with subsets including considerably fewer SNP than the
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Figure 4 Accuracy of DGV of cows using low-density assays depending on the method of SNP selection. Accuracy of prediction is shown
as percentage of the accuracy obtained with 42,576 SNP for subsets including the highest ranked SNP (Trait), subsets of evenly spaced SNP
including the highest ranked SNP for ASI (ASI), APR (APR) or SNP with highest minor allele frequency (MAF) obtained by PLSR

high-density assay and fewer SNP than the best subset
for RR. This might indicate that using PLSR is less
appropriate when analysing very large numbers of SNP,
although the differences between the maximum accu-
racy of DGV and the accuracy obtained with 42,576
SNP was small. A similar result has been found by Sol-
berg et al. [9] who have compared PLSR and BayesB for
different maker densities in simulated data and found
that BayesB gives higher accuracies than PLSR and that

the largest difference is obtained with high marker den-
sities. In other simulation studies, Meuwissen et al. [6]
and Habier et al. [15] have found higher accuracies for
BayesB compared to RR. In all three simulation studies,
a limited number of QTL with large effects accounts for
most of the genetic variance. This situation is similar to
the distribution of QTL effects for fat percentage, where
a mutation in the gene DGATI1 [35] is segregating
which accounts for 30% of the genetic variance in our
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Table 3 Summary of accuracy of DGV using low-density
assays derived by PLSR

Test set SNP selection Number of SNP
5,000 3,000 1,000 500 300 100
Bulls Trait-specific assay
89 85 84 78 72 59
Common assay of evenly spaced SNP
ASI 88 86 68 67 65 32
APR 92 86 68 67 65 32
MAF 86 80 61 62 58 40
Cows Trait-specific assay

98 96 88 80 80 72
Common assay of evenly spaced SNP

ASI 94 92 85 75 69 47
APR 92 90 79 77 69 52
MAF 94 93 78 79 57 42

Accuracy of prediction is shown as percentage of the accuracy obtained with
42,576 SNP, averaged over nine traits for bulls and four traits for cows.
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population. Of the 300 highest ranked SNP for fat per-
centage, 11 were located on BTA14 in the region of
DGAT]1, with the SNP with rank 1 closest to the known
mutation. The highest accuracy for fat percentage was
obtained with subsets including substantially less SNP
than the high-density assay and this suggests that part
of the advantage of BayesB over PLSR and RR in the
simulations stems from the fact that it simultaneously
performs shrinkage of marker coefficients and marker
selection [34].

Comparisons of accuracies across traits between vali-
dation sets of cows and bulls were constrained by the
fact that for cows the accuracy of DGV prediction, com-
puted as the correlation between DGV and DRBYV,
could not be calculated for five out of the nine traits, as
DRBYV information was not available for cows. A possi-
ble remedy would be to use the correlation between
DGV and estimated breeding value, r(DGV, EBV), as a
measure of accuracy instead. When we computed r
(DGV, EBV) in bulls and cows (results not shown) we
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Figure 5 Percentage of the highest ranked SNP that are shared between sets of traits. Percentage of SNP that are shared between all
combinations of sets of traits for subsets including 500, 1,000, 5000 or 10,000 SNP
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found higher values of r(DGV, EBV) in cows than in
bulls, and using r(DGV, EBV) would considerably over-
estimate the accuracy of genomic selection of cows. The
higher correlation between DGV and EBV in cows is
probably due to a larger contribution of shared informa-
tion to the EBV through pedigree relationships.

Pedigree relationships between training and validation
animals might also have contributed to the accuracy of
DGV in cows, with 473 (92.7%) of cows having their sire
in the training set compared to 80.8% of the young bulls,
and the training set containing more sires of cows (N =
164) than sires of young bulls (N = 30). This could partly
explain why for protein, fat and milk yield, the r(DGV,
TD) of cows was similar in size as the r(DGV, DTD) for
bulls, although the phenotypes of bulls are derived from
many more daughter records than the cow phenotypes.
Furthermore, the records of cows are included in the sire
phenotype. However, the effect of cows contributing
information to the sire phenotype is expected to be
small, with bulls in the training set which sired a cow in
the validation set having on average 5,259 phenotyped

daughters. A larger variance of the phenotypes for cows
compared to the pre-selected bull teams (Figure 1) has
also positively contributed to the correlation between
DGV and phenotypes for cows. In addition, the cows
were selected from a repository of animals which have
been well recorded, so the heritabilities in this subset are
most likely higher than in the wider industry.

Habier et al. [16] have demonstrated that the maxi-
mum of the additive-genetic relationships between train-
ing and validation animals is a good indicator for the
accuracy of DGV. The additive-genetic relationship did
differ for bulls and cows whose sires were or were not
represented in the training set, as shown in Figure 6. As
part of the genetic relationship can be captured by SNP
[15], one would expect higher accuracies for animals
whose sire is included in the training set [5,16]. Our
results are less conclusive, as accuracies of DGV for
bulls whose sire was included in the training set was not
higher than those for bulls whose sire was not included
in the training set for all traits. A partial explanation
might be the relatively small number of bulls whose sire
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was not genotyped, resulting in a large sampling error of
the correlation between DGV and phenotype. However,
an important observation is that the differences in
accuracies between the two groups appear to be inde-
pendent of the number of SNP and the method of SNP
selection [see Additional files 2 and 3], with the excep-
tion of survival and overall type and possible reasons for
this are discussed above.

In practise, whilst an attractive application of genotyp-
ing using low-density assays is the selection of replace-
ment heifers, for reasons given above, the accuracy is
expected to be smaller than reported here for cows.
However, the accuracy of genomic selection will be
increased if DGV predictions are combined with infor-
mation from pedigree [17,18,20].

Few SNP were in common between the trait-specific
subsets (Figure 5) and, given that at least 1,000 SNP are
required to obtain accurate DGV predictions for most
traits, combining the highest ranked SNP for each trait
onto a single chip or developing multiple low-density

assays might not provide adequate reductions in geno-
typing costs. Irrespective of the method of SNP selec-
tion, subsets of 3,000 evenly spaced SNP provided more
than 90% of the accuracy that can be achieved with a
high-density assay in genomic selection of cows and
80% of the high-density assay in young bulls. Further-
more, the rate of increase in accuracy with increasing
size of the subset was more rapid for evenly spaced
SNP, so that the additional gain from using trait-specific
assays or SNP related to a single index such as ASI or
APR was small for subsets with a larger number of SNP.

Predictions using subsets including 3,000 of the high-
est ranked SNP were only 1.06 times more accurate in
bulls and 1.03 times more accurate in cows than a com-
mon subset of evenly spaced SNP of the same size
selected based on MAF. This suggests that the distribu-
tion of true effects is more or less spread among many
loci across the genome and that 3,000 evenly spaced
SNP largely capture the level of LD present in the popu-
lation. While accuracies based on at least ~1,000 or
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3,000 SNP appear to be very robust to the method used
to select those SNP, accuracies are very sensitive when
fewer than 1,000 SNP are used (Figure 3 and 4). How-
ever, without re-estimation of effects, accuracy when
using evenly spaced low-density assays is expected to
decrease steadily and faster over generations compared
to accuracy from a high-density assay or from subsets
including SNP with large effects, but this loss could be
limited by genotyping the parents used for breeding
with the high-density assay and retraining [36]. Dense
genotyping of some parents might not be necessary if
the genotype information of the high-density assay can
be imputed from a low-density SNP panel [36,37].
Weigel et al. [5] have also assessed the ability to pre-
dict DGV using subsets of SNP with largest effects and
subsets of evenly spaced SNP for the trait lifetime net
merit in dairy cattle. Although it is difficult to compare
accuracies between studies due to differences in the
methods used to calculate DGV, the size of the training
data and the number of SNP of the high-density assay,

both studies agree well in that a trait-specific subset
including 2,000 of the highest ranked SNP captured
most of the gain achieved with a high-density assay.
However, for subsets of evenly spaced SNP, the rate in
loss of accuracy with decreasing SNP numbers was
lower in our study compared to [5]. Here, selection of
SNP was performed by choosing the highest ranked
SNP within segments of approximately equal size,
whereas in [5] spacing of SNP was only informed by the
position of the SNP. Using the latter approach, one
would expect a larger number of low ranked SNP to be
selected in the assay. Indeed, when compared to subsets
including evenly spaced SNP selected for APR, we
found that selecting SNP only on their position reduced
the relative accuracy between 5% and 17% depending on
the size of the subset and the trait analysed (results not
shown).

Although ranking of SNP was based on the magnitude
of the estimated SNP effects, SNP selected on their rank
had a higher average minor allele frequency (pyar) than



Moser et al. Genetics Selection Evolution 2010, 42:37
http://www.gsejournal.org/content/42/1/37

all SNP on the high-density assay. For example, subsets
containing 300 evenly spaced SNP selected for ASI by
PLSR had a mean ppap = 0.33 compared to pyar =
0.30 for SNP selected by RR and ppar = 0.27 for SNP
selected on only their location. This suggests that selec-
tion of SNP should be based on their expected contribu-
tions to the genetic variance, which is a function of the
allele frequency in the training set. This also implies
that accuracy of prediction will be lower for a validation
set where the distribution of allele frequencies does not
resemble that of the training set and why prediction
equations derived in one breed do not predict accurate
DGV when applied to other breeds, as shown by Hayes
et al. [31].

Arguably, the major advantage of a low cost SNP
assay will be that training sets will become much larger,
as relatively more animals are genotyped and hence
accuracy of DGV will increase (e.g.[38]). The current
reference populations predominantly consist of elite pro-
geny tested sires and to significantly increase the size of
the training data will require the genotyping of cows.

Conclusions

Genomic selection has become a routine in dairy cattle
breeding programs worldwide. The current cost of
whole-genome selection based on dense SNP genotypes
has limited the application to the selection of elite males
and females that are likely to become parents of the
next generation. Results of our study indicate that accu-
rate genomic evaluation of the broader bull and cow
population can be achieved with genotyping assays con-
taining ~ 3,000 to 5,000 SNP. A chip containing 3,000
evenly spaced markers can provide approximately 90%
of the accuracy achieved with a high-density SNP assay
for genomic selection of bulls and cows combined
across traits. Possible applications include the selection
of replacement heifers and the pre-screening of young
bulls and potential bull dams. Assays with evenly spaced
markers are preferable as they can be used across traits
and possibly across populations. It also allows for a high
volume generic chip to be produced, which will lower
assay cost per individual and will limit heterogeneity of
genomic information compared to using multiple assays
for different traits. Evenly spaced low-density assays
might also permit the reconstruction of the genotype
information of high-density assays through imputation,
which is important in situations where, for example,
high-density genotyping is limited to nucleus breeding
herds. Increasing the proportion of animals genotyped
will further increase the accuracy of genomic selection
as the training data grows over time, particularly
through genotyping of cows.
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Additional file 1: Accuracy of DGV of bulls and cows using subsets
of 5,000 or less of the highest ranked SNP obtained by RR and
PLSR. Enlarged representation of Figure 2 for subsets of up to 5,000 SNP
to make differences between RR and PLSR more visible

Additional file 2: Accuracy of DGV of bulls whose sires were
included (Sire) or were not included (No Sire) in the training set
depending on the method of SNP selection. Accuracy of prediction is
shown for subsets including the highest ranked SNP (Trait), subsets of
evenly spaced SNP including the highest ranked SNP for ASI (ASI), APR
(APR) or SNP with highest minor allele frequency (MAF) obtained by
PLSR

Additional file 3: Accuracy of DGV of cows whose sires were
included (Sire) or were not included (No Sire) in the training set
depending on the method of SNP selection. Accuracy of prediction is
shown for subsets including the highest ranked SNP (Trait), subsets of
evenly spaced SNP including the highest ranked SNP for ASI (ASI), APR
(APR) or SNP with highest minor allele frequency (MAF) obtained by
PLSR
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