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The Pacific oyster, Crassostrea gigas, belongs to one of the most species-rich phyla 
and provides important ecological and economical services. Here we present a genome 
assembly for a variety of this species, black-shelled Pacific oyster, using a combination 
of 61.8 Gb Nanopore long reads and 105.6 Gb raw BGI-seq short reads. The genome 
assembly comprised 3,676 contigs, with a total length of 587 Mb and a contig N50 of 581 
kb. Annotation of the genome assembly identified 283 Mb (48.32%) of repetitive sequences 
and a total of 26,811 protein-coding genes. A long-term transposable element active, 
accompanied by recent expansion (1 million years ago), was detected in this genome. The 
divergence between black-shelled and the previous published Pacific oysters was estimated 
at about 2.2 million years ago, which implies that species C. gigas had great intraspecific 
genetic variations. Moreover, we identified 148/188 specifically expanded/contracted gene 
families in this genome. We believe this genome assembly will be a valuable resource for 
understanding the genetic breeding, conservation, and evolution of oysters and bivalves.

Keywords: Crassostrea gigas, black-shelled pacific oyster, evolution, genome assembly, nanopore sequencing

INTRODUCTION 
Fossil records show that oysters appeared about 200 million years ago (Upper Triassic; Stott, 2004). 
From then on, they began their work of filtering the oceans. Because of their “advanced” defense 
mechanism (thick shells), which confers strong resistance to desiccation and sunlight exposure, they 
underwent a large increase during the following 70 million years (from the Jurassic to the Cretaceous). 
By about 135 million years ago, oysters were the predominant shellfish in the world’s ocean (Stott, 
2004). Following settlement and metamorphosis, oysters attach their left shells to other objects and 
begin a sessile lifestyle (Zhang et al., 2012). Individuals of all ages cluster together and eventually form 
reefs, which harbor many kinds of marine organisms. Thus, the oyster is of great significance to marine 
ecology (Beck et al., 2011).

Abbreviations: BPO, Black-shelled Pacific oyster; BUSCO, Benchmarking Universal Single-Copy Orthologs; BWA, Burrows-
Wheeler Aligner; CAFÉ, Computational Analysis of gene Family Evolution; FDR, False discovery rate; GO, Gene Ontology; 
LINE, Long interspersed nuclear element; LTR, Long terminal repeat element; ML, Maximum likelihood; Ma, Million years 
ago; Ne, Estimated effective population size; RC, Rolling circle; SINE, Short interspersed nuclear element; SRA, Sequence Read 
Archive; TE, Transposable element.
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Because oysters are sessile animals living in estuarine and 
intertidal regions, they have to cope with drastically changing 
environments. Hence, they are ideal models for investigating 
adaptations of living organisms to climate change (Li et al., 2018). 
In addition, oysters are frequently used as models in studies on 
neurobiology, biomineralization, ocean acidification, immunity, 
and developmental biology (Caldeira and Wickett, 2003).

The Pacific oyster, Crassostrea gigas (Bivalvia, Osteroida, 
Ostreidae), is economically important in aquaculture around the 
world (Zhang et al., 2016). Several famous types of oysters, such 
as the Gillardeau oyster from France and the Rock Oyster from 
Australia, are Pacific oysters. Because they are of great value to 
the economy, scientific research, and ecology, Pacific oysters 
have received extensive attention (Wrange et al., 2010; Du et al., 
2017; Sun et al., 2017; De Lorgeril et al., 2018; Powell et al., 2018). 
Moreover, a number of varieties of this species have been bred, such 
as the black-shelled Pacific oyster (BPO; Hao et al., 2015). Prior 
to this work, a Pacific oyster genome sequence had been reported 
in 2012 (Zhang et al., 2012). However, the extensive intraspecific 
variations that characterize the Pacific oyster (Li et al., 2018) mean 
that the previous genome has been of limited assistance to oyster 
research and the oyster industry. Hence, there is a pressing need 
for high-quality genome maps of multiple varieties.

Here, we present a high-quality genome assembly for the 
BPO bred by our lab, constructed using both Nanopore long 
reads and BGI-seq short reads. Some aspects of this assembly are 
superior to those of the earlier one mainly due to much advanced 
technologies. We think that this well-annotated genome 
assembly and the massive amount of sequencing data generated 
in this study will serve as substantial resources for future oyster 
academic research and industrial development.

MATeRIAlS AND MeThODS

Sample Collection, library Construction, 
and Sequencing
An individual of the BPO (C. gigas, NCBI taxonomy ID: 
29159; Figure 1), collected from Changdao County, Yantai 

City, Shandong Province, China, was used for whole-genome 
sequencing. Genomic DNA was isolated from the mantles using 
a Qiagen Blood & Cell Culture DNA Mini Kit according to the 
manufacturer’s instructions. A BGI-seq library was constructed 
using a MGIEasy Library Prep Kit V1.1 (MGI Tech), and 
paired-end 150 bp single-indexed sequencing was performed 
on the MGISEQ-2000 platform (BGI, Shenzhen, China; 
Winnepenninckx et al., 1993). Nanopore libraries were prepared 
and sequenced on two flow-cells using a GridION DNA sequencer 
according to the manufacturer’s instructions (Oxford Nanopore, 
Oxford, UK; Jain et al., 2016; Jain et al., 2018; Gong et al., 2019).

Data Filtering and Genome Size 
estimation
Both Nanopore and BGI-seq reads were used to achieve a high-
quality genome assembly. Before assembly, these two kinds of 
reads were filtered as follows: For the Nanopore data, reads with 
mean quality scores >7 were retained and further corrected with 
NextDenovo (https://github.com/Nextomics/NextDenovo). For 
the BGI-seq data, adaptor sequences and low-quality reads were 
filtered out using the program fastp (v 0.20; Chen et al., 2018). 
Any reads with more than 30 low-quality bases or 5% unknown 
bases were abandoned. These reads were used for further 
assembly and subsequent analyses.

The genome size (G) of this Pacific oyster was estimated from 
k-mer (k = 23 in this case) frequency distribution analysis using 
the clean BGI-seq data. The term k-mer is used to refer to each of 
the possible successive subsequences of length k in a read. If the 
length of each k-mer is 23 bp, a filtered read that is L bp in length 
contains (L-23+1) k-mers. The genome size is estimated by the 
formula: G = K_num/K_depth, where K_num and K_depth are 
the total number and the peak frequency of 23-mers respectively 
(Koren et al., 2012; Ross et al., 2013; Wences and Schatz, 2015; 
Vurture et al., 2017).

Genome Assembly
The corrected Nanopore reads were assembled into contigs 
by wtdbg (v 2.2; Ruan and Li, 2019) with the parameter “-x 

FIGURe 1 | A photograph of black-shelled and white-shelled Pacific oysters, Crassostrea gigas. B-L denotes the left shell of a black-shelled oyster; B-R denotes 
the right shell of a black-shelled oyster; W-L denotes the left shell of a white-shelled oyster; W-R denotes the right shell of a white-shelled oyster.
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corrected”. After that, the filtered BGI-seq reads were mapped 
to the contigs using Burrows-Wheeler Aligner (BWA, RRID: 
SCR_010910; Li and Durbin, 2010) and then subjected to two 
rounds of polishing with Pilon (v 1.21; Walker et al., 2014). 
Finally, we employed Purge Haplotigs (v 1.0.4; Roach et al., 2018) 
to resolve redundancy in the assembly based on Nanopore reads 
depth information.

The accuracy of the genome assembly was evaluated by 
mapping the clean BGI-seq short reads against the genome 
using BWA (Li and Durbin, 2010). Furthermore, we employed 
Benchmarking Universal Single-Copy Orthologs (BUSCO, v 3.0.2; 
Simao et  al., 2015), a software package that can quantitatively 
measure completeness of genome assembly based on 
evolutionarily informed expectations of gene content, to evaluate 
the completeness of the genome assembly, using 978 genes that are 
expected to be present in all metazoans (Cai et al., 2019).

Annotation of Genomic Repeats
Both de novo and homology-based predictions were used to 
identify repetitive elements in the C. gigas genome. Firstly, we 
constructed a de novo repeat library using RepeatModeler (v 
1.0.11; Tarailo-Graovac and Chen, 2009) and LTR_FINDER 
(Xu and Wang, 2007). We then used RepeatMasker (v 2.1; 
setting -nolow -norna -no_is; Tarailo-Graovac and Chen, 
2009) to detect and classify repeats in the sequences. To search 
for tandem repeats, we subjected the draft genome to Tandem 
Repeats Finder (v 4.07; Benson, 1999), setting the following 
parameters: Match  =  2, Mismatch  =  7, Delta  =  7, PM  =  80, 
PI  =  10, Minscore  =  50, MaxPeriod  =  500. We also annotated 
transposable elements (TEs) by running RepeatMasker v 2.1 and 
RepeatProteinMask v 2.1 (a package in RepeatMasker, with the 
parameters -engine ncbi -noLowSimple -pvalue 1e-04; Tarailo-
Graovac and Chen, 2009) against the Repbase and TE protein 
databases. Prior to gene prediction, all regions of repetitive 
elements were soft-masked with RepeatMasker.

Gene Prediction and Annotation
We combined de novo and homology-based predictions to 
identify protein-coding genes. For homology-based annotation, 
three genomes of Pteriomorphia species were downloaded 
from NCBI: C. gigas (GCA_000297895.1), Crassostrea 
virginica (GCA_002022765.4), and Mizuhopecten yessoensis 
(GCA_002113885.2). We picked the longest transcript of each 
gene and removed those with premature terminations. The 
remaining genes were translated into proteins and aligned to our 
genome with TBLASTN (v 2.7.1; Altschul et al., 1990) to search 
for the approximate positions of potential gene homologs. Next, 
we used Exonerate (v 2.2; Slater and Birney, 2005) to obtain an 
accurate gene structure for each locus. For de novo annotation, 
we first picked 898 complete genes in order to obtain parameters 
suitable for C. gigas. Then we performed de novo prediction 
on the repeat-masked genome using AUGUSTUS (v  3.2.1; 
Stanke et  al., 2008) with the gene parameters so obtained. 
Finally, we used EVidenceModeler (v 1.1.1; Haas et al., 2008) to 
integrate homologs and de novo predicted genes and generate a 
comprehensive, non-redundant gene set. The completeness of 

the genome annotation was investigated using BUSCO (v 3.0.2; 
Simao et al., 2015) with the parameter “-l metazoa _odb9”.

We used InterProScan (v 5.30-69.0; Jones et al., 2014) with 
default parameters to annotate the functions of detected motifs 
and domains by searching public databases (GO, INTERPRO, 
PFAM, KEGG, and PANTHER).

Phylogenetic Analysis and Divergence 
Time estimation
Genomes of 10 other species, Helobdella robusta 
(GCA_000326865.1), Lingula anatine (GCA_001039355.2), 
Octopus bimaculoides (GCA_001194135.1), Pomacea canaliculate 
(GCA_003073045.1), Lottia gigantea (GCA_000327385.1), 
Elysia chlorotica (GCA_003991915.1), Aplysia californica 
(GCA_000002075.2), Limnoperna fortune (GCA_003130415.1), 
Bathymodiolus platifrons (GCA_002080005.1), and Modiolus 
philippinarum (GCA_002080025.1) were downloaded from 
NCBI and processed in the same way as those three species 
above. Then, the detected BPO genes along with those of 13 
species were clustered in families by OrthoFinder (v 2.3.1; Emms 
and Kelly, 2015) with default parameters in an all-to-all BLASTP 
analysis. Subsequently, one to one orthologs were identified 
from these species. The sequences were aligned using MUSCLE 
(v 3.8.1551; Edgar, 2004) and trimmed by TrimAl (Capella-
Gutiérrez et al., 2009) with algorithm automated1. The remained 
sequences were then concatenated into a supergene and used to 
construct a phylogenetic tree by RAxML (v 8.2.12; Stamatakis, 
2014), with the GTRGAMMA model and 100 pseudoreplicates. 
Finally, the species divergence time was estimated along the ML 
phylogenetic tree by MCMCtree in PAML (v 4.9; Yang, 2007). 
Four time-calibrated points were used based on fossil records, 
the first appearance of Lophotrochozoa (550.3–636.1 Ma; 
Benson et al., 2015), the first appearance of Molluscs (532–549 
Ma; Benton et al., 2015), L. gigantea–A. californica (470.2–531.5 
Ma; Benson et al., 2009), and C. gigas–C. virginica (63.2–82.7 Ma; 
Plazzi and Passamonti, 2010; Ren et al., 2010).

We further used parseRM.pl (a custom Perl script, available 
at https://github.com/4ureliek/Parsing-RepeatMasker-Outputs; 
Kapusta et al., 2017) to rebuild the TE accumulation. The 
parseRM.pl allowed us to parse the age category of each TE 
copy based on alignment outputs from RepeatMasker (Tarailo-
Graovac and Chen, 2009). The mutation rate was set at 0.0084 per 
million years, which was reestimated by r8s (v 1.81; Sanderson, 
2003) with the penalized likelihood method. The analysis result 
was packed into bin per 0.1 Ma.

Gene Family expansions and Contractions
We used computational analysis of gene family Evolution 
(CAFÉ; V 4.0.1; De Bie et al., 2006) with default settings to 
identify the expanded and contracted gene families, along the 
timetree created in the previous step. any gene family under 
both family-wide and viterbi P-Values < 0.01 was retained. 
Then we conducted GO enrichment analysis to investigate 
functional categories of the expanded and contracted 
gene families under the standard of Chi.FDR < 0.05  
(Xiao et al., 2018).
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ReSUlTS AND DISCUSSIONS
In total, 105.6 Gb of raw BGI-seq data and 61.8 Gb of Nanopore 
reads were produced. After the removal of low-quality reads, 
we harvested 104.9 Gb of clean BGI-seq reads, and 39.9 Gb of 
corrected Nanopore reads with a mean subread length of 21.9 kb 
(Table S1). For the 23-mer analysis, K_num was 83,754,003,275 
and K_depth was estimated as 141, giving an estimated genome 
size of c. 594 Mb (Table S2). This genome size is within the range 
of 545–637 Mb reported by (Zhang et al., 2012). A bimodal 
pattern was observed in the 23-mer frequency distribution 
analysis (Figure S1). The heterozygous peak (the first peak) was 
much higher than the second, homozygous peak, indicating that 
the BPO had a diploid genome with a high level of heterozygosity.

Initial assembly yielded a total length of 656 Mb, comprising 
6,815 contigs with a contig N50 length of 436 kb (Table S3). The 
genome assembly was larger than the estimated genome size 
of c. 594 Mb (see above), because some allelic variants failed 
to be merged due to high heterozygosity (Zhang et al., 2012). 
After eliminating the redundancy, we obtained a final genome 
assembly of 587 Mb for the BPO, which was pretty close to the 
estimated genome size, comprising 3,676 contigs with a contig 
N50 length of 581 kb (Table 1 and S3).

BUSCO analysis showed that 919 (94.0%) of 978 metazoan 
BUSCOs were detected in the BPO genome assembly, with 
890 (91.0%) and 29 (3.0%) being identified as complete and 
fragmented respectively (Table 2). Mapping rate test suggested 
that more than 97.42% of the clean BGI-seq reads were properly 
mapped to the genome, and of these 91.42% mapped to their 
mates. These reads covered 98.08% of the genome assembly 
(Table S4). These analyses indicated that the assembly was high 
quality in both levels of completeness and accuracy.

Repeat annotation identified 283 Mb (48.32%) of repetitive 
sequences in the assembled genome. The proportion of repetitive 
sequences was a bit higher than that of the previous C. gigas 
genome (36.1%; Zhang et al., 2012). DNA transposon was the 
most abundant repeat and accounted for 21.28% (125 Mb in total) 
of the genome (Tables S5 and S6), while it was only 4.1% of the 
previous C. gigas genome (Zhang et al., 2012). TE accumulation 
analysis suggested long-term TE actives, accompanied by recent 

expansion within 1 million years ago (Ma), in this genome (Figure 
2A and Figure S2). DNA transposons and rolling circles (RC) 
presented landscapes similar to the whole, whereas long terminal 
repeat elements (LTR) and long interspersed nuclear elements 
(LINE) showed ancient retention and recent expansion of the TE 
insertions (Figure S2). The BPO genome exhibits a remarkable 
level of recent TE actives that differed from the previous version 
(Zhang et al., 2012). The specific TEs accumulation may be an 
important reason underlying the difference in repeats repertoire 
between these two C. gigas genomes. In addition, 26,811 protein-
coding genes were identified, averaging 7.0 exons and a 1,225 
bp coding region per gene, which was comparable to the other 
Pacific oyster genome published in 2012 (Figure S3 and Table 
S7; Zhang et al., 2012). 23,111 genes (86.2% of the predicted 
genes) were successfully annotated with predicted functions 
or conserved functional motifs. Respectively, 11,810, 14,400, 
16,853, 7,575, and 15,997 genes showed positive hits in GO, 
PFAM, INTERPRO, KEGG, and PANTHER (Table S8). BUSCO 
(Simao et al., 2015) analysis suggested that 94.9% (928) of the 
metazoa core conserved genes were detected in the BPO gene 
set, with 894 (91.4%) and 34 (3.5%) being identified as complete 
and fragmented, respectively (Table 2). BUSCO analysis showed 
that the performance in the genome is better than the genome 
assembly, which was presumably most that it is simpler to search 
for genes in a transcriptome or proteome than in a genome (Cai 
et al., 2019).

OrthoFinder analysis identified 199 single-copy orthologues. 
RaxML analysis supported that the BPO was clustered with the 
other C. gigas in the phylogenetic tree. Based on four solid time-
calibrations (see MATERIALS AND METHODS), molecular 
clock analysis suggests that they diverged at about 2.2 million 
years ago (Figure 2B). Previous phylogenetic studies and fossil 
records (http://fossilworks.org/bridge.pl?a = taxonInfo&taxon_
no = 109465) indicated that species divergence between C. gigas 
and C. virginica was at 63.2–82.7 Ma (Plazzi and Passamonti, 
2010; Ren et al., 2010). Thus, the divergence time between the 
BPO in this study and the other C. gigas sequenced in 2012 should 
be rational but still very long. The deep divergence, combined 
with remarkable difference in repeats repertoire, suggested that 
C. gigas comprised great intraspecific genetic variations. Our 
result was consistent with studies of Li et al. (2018), who found 
unexpected genetic divergence in several populations of C. gigas. 
Estimated effective population size (Ne) dynamic indicated 
that the BPO reached a top Ne at around 0.6 Ma, and then 

TABle 1 | Assembly statistics for the genome of Crassostrea gigas 
black-shelled.

Contigs

length (bp) Number

N90 66,669 1,570
N80 124,267 922
N70 215,826 561
N60 361,254 350
N50 581,941 220
Shortest 3,241 —
Longest 6,082,460 —
Total Size 587,503,506 3,676
Total Number (>10 Kbp) — 3,293
Total Number (>100 Kbp) — 1,127
Total Number (>1 Mbp) — 109

TABle 2 | Assessments of the genome and gene set using BUSCO  
(metazoa odb9).

Mode Genome Genes

Number Number Percentage 
(%)

Number Percentage 
(%)

Complete 890 91.0 894 91.4
Single-copy complete 881 90.1 879 89.9
Duplicated complete 9 0.9 15 1.5
Fragmented 29 3.0 34 3.5
Missing 59 6.0 50 5.1
Total 978 – 978 –
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experienced a sustained recession (Figure 2C). In the end, 148 
expanded gene families and 188 contracted gene families were 
identified in the BPO. The expanded gene families were enriched 
in 22 GO categories about enzymatic activity, cytoskeleton, 
membranes, ion transport, etc. (for details, see Table S9). The 
contracted gene families were enriched in 31 GO categories: 
peroxidase activity, response to oxidative stress, response to 
stress, and 28 others (for details, see Table S10). It was possible 
that TE activities after divergence affected the expansion and 
contraction of gene families (Joly-Lopez et al., 2012; Kapusta 
et al., 2017). However, whether these notable changes in BPO tell 
about special adaptations needs further exploration.

Nanopore sequencing produces long read lengths, which can 
effectively improve the quality of genome assembly and alleviate 
assembly errors (Xiao et al., 2017). The C. gigas genome, known 
as its high heterozygosity and high repetition rate, once was a 
challenging project in the age of Next-generation sequencing 
(Zhang et al., 2012). Current assembly (contig N50 of 581.9 kb) 
using Nanopore sequencing is superior to the previous version 
(contig N50 of 19.4 kb and scaffold N50 of 401 kb, Zhang et al., 
2012) in genome continuity. Accuracy and integrity of this 
genome are also comparable to that of the previous genome. 
Although, reads produced by this technology have high error 

rates (Liu et al., 2019), several rounds of polishing before and 
after assembly can effectively eliminate the negative effects of 
sequencing errors.

CONClUSIONS
Here, we present high-quality genome assembly and annotation 
of a variety of Pacific oyster, the BPO. The deep divergence of 
history, specific TE repertoire, and significant expansion and 
contraction of gene families in this genome suggested that BPO 
also represents a special Pacific oyster in genetics. Hence, the BPO 
genome and the massive amount of data created in this study will 
serve as valuable resources for studying the genetic breeding, 
conservation, and evolution in oysters. A series of better assembly 
parameters suggested that nanopore sequencing technology is 
qualified for the assembly of complex genomes like oysters.

DATA AVAIlABIlITY STATeMeNT
Raw reads from BGI-seq and Nanopore sequencing had been 
deposited in the NCBI Sequence Read Archive (SRA) database 

FIGURe 2 | Genome evolution of the black-shelled Pacific oyster. (A) the whole landscape of TEs accumulation. (B) Phylogenetic relationships, divergence 
time, and expanded and contracted gene families of 14 Lophotrochozoa species. The phylogenetic tree was derived from RaxML analysis, with all nodes having 
a bootstrap value greater than 95. Red dots indicated time-calibration markers. Brown and blue numbers on branches represented the mount of expanded 
or contracted gene families, respectively. (C) Demographic history of the black-shelled Pacific oyster constructed by the PSMC model. g means generation. 
Abbreviations: TE, transposable element; DNA, DNA transposons; LINE, long interspersed nuclear element; LTR, long terminal repeat element; RC, rolling circle; 
SINE, short interspersed nuclear element; Ma, million years ago.
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under accession number SRP193912 and BioProject accession 
PRJNA534417. This Whole Genome Shotgun project has 
been deposited at DDBJ/ENA/GenBank under the accession 
SZQM00000000. The version described in this paper is version 
SZQM02000000.
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