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Simple Summary: Breast cancer is the most common cancer in women worldwide. Although many
studies have aimed to understand the genetic basis of breast cancer, leading to increasingly accurate
diagnoses, only a few molecular biomarkers are used in clinical practice to predict response to
therapy. Current studies aim to develop more personalized therapies to decrease the adverse effects
of chemotherapy. Personalized medicine not only requires clinical, but also molecular characterization
of tumors, which allows the use of more effective drugs for each patient. The aim of this study was
to identify potential molecular biomarkers that can predict the response to therapy after neoadjuvant
chemotherapy in patients with breast cancer. In this review, we summarize genomic, transcriptomic,
and proteomic biomarkers that can help predict the response to therapy.

Abstract: Neoadjuvant chemotherapy (NAC) is often used to treat locally advanced disease for tumor
downstaging, thus improving the chances of breast-conserving surgery. From the NAC response, it is
possible to obtain prognostic information as patients may reach a pathological complete response
(pCR). Those who do might have significant advantages in terms of survival rates. Breast cancer
(BC) is a heterogeneous disease that requires personalized treatment strategies. The development of
targeted therapies depends on identifying biomarkers that can be used to assess treatment efficacy as
well as the discovery of new and more accurate therapeutic agents. With the development of new
“OMICS” technologies, i.e., genomics, transcriptomics, and proteomics, among others, the discovery
of new biomarkers is increasingly being used in the context of clinical practice, bringing us closer to
personalized management of BC treatment. The aim of this review is to compile the main biomarkers
that predict pCR in BC after NAC.

Keywords: pathological complete response; neoadjuvant chemotherapy; breast cancer; molecular
biomarkers

1. Introduction

Breast cancer (BC) is the most commonly diagnosed malignancy and is responsible
for the highest number of deaths among women worldwide [1]. Furthermore, BC is
heterogeneous and presents different morphological and biological characteristics, thus
leading to different clinical behaviors and responses [2]. Therefore, BCs are classified
according to their characteristics, histological type, and expression of tumor markers,
which develop from genetic and molecular changes in breast tissue cells [3,4].

Cancers 2021, 13, 5477. https://doi.org/10.3390/cancers13215477 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-9677-2093
https://orcid.org/0000-0003-1749-9736
https://orcid.org/0000-0002-4482-6440
https://orcid.org/0000-0002-7046-0059
https://orcid.org/0000-0003-3515-0263
https://orcid.org/0000-0002-6412-8041
https://orcid.org/0000-0001-5616-6710
https://doi.org/10.3390/cancers13215477
https://doi.org/10.3390/cancers13215477
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13215477
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13215477?type=check_update&version=1


Cancers 2021, 13, 5477 2 of 17

Neoadjuvant chemotherapy (NAC) is an important treatment strategy for BC patients,
with the aim of reducing staging and monitoring response to treatment for prognostic
purposes, thereby increasing pathological complete response rate (pCR) [5]. pCR is an
important long-term clinical outcome for patients with BC, as patients who achieve pCR
with neoadjuvant therapy tend to have better disease-free survival (DFS) and overall
survival (OS) compared with patients with residual invasive disease [6,7].

pCR is defined as the complete disappearance of all invasive breast carcinoma cells
and axillary lymph nodes (ypT0/ypN0), and is determined pathologically in the resected
tissue after NAC [8]. Predicting which patients will achieve pCR or have residual disease
(RD) may help suggest and plan a specific treatment according to patient’s characteristics,
thus enabling personalized therapy. Clinical staging, axillary lymph node status, and
human epidermal growth factor receptor-2 (HER2) positivity are associated with cancer
recurrence rates after NAC [9]. RD is defined by the presence of breast cancer cells in the
tumor bed and/or positive lymph nodes after surgical removal. Patients with documented
RD are usually associated with a worse prognosis than those who achieve pCR, although
RD can have a heterogeneous prognosis in each patient [10,11]. Studies have attempted
to identify molecular biomarkers that could monitor patients with early pCR and avoid
overtreatment in this population. However, these markers require larger studies with
long-term follow-up, and for this reason, they currently lack clinical validation [12,13].

The identification of efficient molecular markers that can predict sensitivity to chemo-
therapy, demonstrate higher rates of pCR, and identify patients that can benefit from
NAC in clinical practice has been a challenge in many recent studies. However, molecular
markers can be effective in avoiding unnecessary treatments and associated toxicities for
BC patients that do not respond to NAC [14]. Since histologically similar tumors may
demonstrate different prognoses and responses to therapy, some molecular subtypes of
BC can have high rates of pCR to NAC, while others may not have the same benefits from
being exposed to the same treatment. Therefore, there is a need for predictive biomarkers to
select patients who will not benefit from NAC in order to offer new therapeutic approaches
to these patients [15]. NAC offers an opportunity to identify biomarkers that are predictive
of the response to such treatment in patients with BC.

Biomarkers that use “omics” technologies, i.e., genomics, transcriptomics, and pro-
teomics, in BC research have gained recognition in the scientific community. These omics
analyses involve the identification of biomolecules responsible for each step of cell function
control from DNA replication (genomics markers) to transcriptional events and post-
transcriptional regulation (transcriptomic markers) to protein translation (proteomic mark-
ers). These markers can be identified not only in tumor tissues but also by liquid biopsy
(Figure 1) [16,17], which could assist in the development of new drugs and in the identifica-
tion and monitoring of patients who will respond and benefit from this treatment [18,19].

Despite the importance of pCR markers for therapy selection, we identified only
a few studies that explored this potential and demonstrated that many molecules are
differentially expressed at the genomic, transcriptomic, and proteomic levels, and can be
used as effective biomarkers of NAC response.
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Figure 1. Tumor and liquid biopsies can help identify pCR biomarkers as they can provide information at the genomic 
(DNA methylation and DNA mutation), transcriptomic (mRNA and miRNA expression), and proteomic (immunohisto-
chemistry) levels. 
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These molecules can be identified in tumor tissues or biofluids, such as blood, serum, or 
plasma samples. 

2.1. DNA Mutation 
Mutations in genes such as oncogenes or tumor suppressor genes have been widely 

studied because of their potential as predictors of prognosis. Furthermore, it is possible to 
predict their impact on tumor development and progression. Table 1 summarizes the mu-
tations that predict pCR in patients with BC. Dysfunctions in DNA repair pathways can 
occur because of genetic mutations that compromise genomic integrity. Genomic instabil-
ity is an important hallmark of carcinogenesis, and cellular machinery plays an important 
role in maintaining this stability [20]. For example, homologous recombination is neces-
sary for repairing DNA double-strand breaks. Some genes have already been described 
in the literature, such as BRCA1/2, which encodes proteins necessary for homologous re-
combination repairing [13]. 

  

Figure 1. Tumor and liquid biopsies can help identify pCR biomarkers as they can provide information at the genomic
(DNA methylation and DNA mutation), transcriptomic (mRNA and miRNA expression), and proteomic (immunohisto-
chemistry) levels.

2. Genomic: DNA as Biomarkers of NAC Response in BC Patients

The potential use of genomic markers for diagnosis and predicting prognosis, and
response to treatment has been increasingly studied. DNA mutations, DNA methylation,
and circulating tumor DNA (ctDNA) are among the main classes of genomic biomarkers.
These molecules can be identified in tumor tissues or biofluids, such as blood, serum, or
plasma samples.

2.1. DNA Mutation

Mutations in genes such as oncogenes or tumor suppressor genes have been widely
studied because of their potential as predictors of prognosis. Furthermore, it is possible
to predict their impact on tumor development and progression. Table 1 summarizes the
mutations that predict pCR in patients with BC. Dysfunctions in DNA repair pathways can
occur because of genetic mutations that compromise genomic integrity. Genomic instability
is an important hallmark of carcinogenesis, and cellular machinery plays an important role
in maintaining this stability [20]. For example, homologous recombination is necessary for
repairing DNA double-strand breaks. Some genes have already been described in the liter-
ature, such as BRCA1/2, which encodes proteins necessary for homologous recombination
repairing [13].

Several studies have evaluated many gene mutations to identify sensitive and specific
biomarkers that can predict patient response to different treatments and assess their impact
on development and tumor progression. In BC settings, germline mutations of BRCA1/2
genes are frequent in patients with the triple negative breast cancer (TNBC) molecular
subtype. A study evaluated the pCR rate in TNBC patients, with or without a mutation
in one of these genes, who received NAC with epirubicin, cyclophosphamide, docetaxel,
and bevacizumab. The findings showed that therapy with bevacizumab promoted pCR in
patients with BRCA1/2 mutations [21].
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Table 1. DNA mutations as biomarkers of pCR or non-pCR after NAC in BC patients.

Author, Year Specimens DNA Mutation
Biomarkers NAC IHC Subtypes (n) Outcome Ref.

Fasching et al., 2018 Plasma BRCA1/2

Epirubicin
Cyclophosphamide

Docetaxel
Bevacizumab

TNBC (n = 493) pCR [21]

Guo et al., 2020 FFPE PIK3CA
H1047R

Paclitaxel
Doxorubicin
Bevacizumab
Carboplatin

TNBC (n = 92) non-pCR [22]

Shi et al., 2017 Frozen tissue PIK3CA Lapatinibe
Trastuzumab HER2+ (n = 207) non-pCR [23]

Gluck et al., 2011 Frozen tissue TP53
Capecitabine

Docetaxel
Trastuzumab

HER2− (n = 99)
HER2+ (n = 38) pCR [24]

Desmedt et al., 2011 FFPE
Frozen tissue TOP2A

Anthracycline
Epirubicin

Taxanes
ER− HER2+ (n = 106) pCR [25]

Tibau et al., 2014 FFPE TOP2A
CEP17

Fluorouracil
Epirubicin

Cyclophosphamide
Doxorubicin

Docetaxel

Non-classification (n
= 140) pCR [26]

pCR, pathological complete response; non-pCR, non-pathological complete response; NAC, neoadjuvant chemotherapy; IHC subtypes,
molecular subtypes identified by immunohistochemistry; HER2+, human epidermal growth factor receptor-2 positive; HER2−, human
epidermal growth factor receptor-2 negative; TNBC, triple-negative breast cancer; ER− HER2+: estrogen receptor-negative and human
epidermal growth factor receptor-2 positive; FFPE: formalin-fixed, paraffin-embedded.

Another widely studied mutation is the PIK3CA gene mutation. This gene encodes
the p110α catalytic subunit of the phosphatidylinositol 3-kinase signaling pathway, one
of the intracellular pathways often related to BC [22]. Using whole exome sequencing
(WES), Shi et al. identified a correlation between the PIK3CA gene mutation and resistance
to trastuzumab treatment associated with non-pCR. Furthermore, these findings indicate
that treatment with lapatinib provided better outcomes in patients with HER2-positive
molecular phenotype BC who had PIK3CA driver mutation [23].

A second study also evaluated pCR based on the PIK3CA mutation in HER2-positive
or TNBC patients who received NAC with paclitaxel and doxorubicin. Patients with
TNBC also received bevacizumab and carboplatin. However, in this study, the researchers
evaluated only exons 9 and 20, and not the complete gene, through DNA sequencing. By
performing a multivariate analysis, it was possible to associate the PIK3CA H1047R hotspot
mutation with non-pCR in TNBC patients [22].

A study evaluated pCR in patients with early BC who received NAC with capecitabine,
docetaxel (for HER2-negative patients), and trastuzumab (HER2-positive patients). This
analysis was performed by identifying mutations in the TP53 gene, a tumor suppressor
that is involved in the regulation of cell proliferation, survival, and genomic integrity in
BC. The authors showed that the most frequent mutation was missense and that patients
with the mutation had higher pCR rates, indicating the effectiveness of NAC [24].

In the context of identifying potential predictive genomic biomarkers, the expression
of the TOP2A gene has been studied using the fluorescent in situ hybridization (FISH)
technique. TOP2A encodes topoisomerase IIα, a key enzyme in DNA replication, and one
of the molecular targets of anthracyclines, and is mutated in a significant percentage of
HER2-overexpressing BC patients. Thus, several studies have evaluated the relationship
between this gene and its ability to predict resistance to anthracyclines in BC. Desmedt
et al. evaluated patients with estrogen receptor-negative (ER-negative) and HER2-positive
molecular phenotypes who were treated with anthracycline (epirubicin) and taxane. The
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findings showed that TOP2A amplification was correlated with pCR in patients who
received anthracycline alone [25].

Tibau et al. also evaluated the relationship between TOP2A and anthracycline resis-
tance. Because this gene is located on chromosome 17, close to the centromere, the authors
also evaluated the duplication of the centromere on this chromosome (CEP17), which may
be a biomarker for genomic instability and DNA repair dysfunction. In this study, HER2-
positive BC patients who underwent NAC with either fluorouracil, or taxanes combined
with anthracyclines and cyclophosphamide, and were treated before trastuzumab approval,
were evaluated. Multivariate analysis showed that the presence of CEP17 duplication, as
well as TOP2A amplification, showed a high percentage of pCR [26].

Besides point mutations, it is also possible to use biomarkers based on DNA expression
profiles, such as the homologous recombination deficiency (HRD) score, which includes
telomeric allelic imbalance (TAI, defined as the number of regions with allelic imbalance
that extend to one of the subtelomeres), large-scale state transitions (LST, defined as the
number of chromosomal breaks between adjacent regions), and loss of heterozygosity
(LOH, defined as allele-specific copy number for each sub-chromosomal region). Kak-
lamani et al. investigated HRD associated with mutation status for BRCA1/2 genes and
BRCA1 promoter methylation through DNA sequencing. An important finding was that
patients who had a BRCA1/2 germline mutation or methylation had an HRD score above
the threshold. In this study, which aimed to evaluate these profiles based on DNA and
protein expression as potential predictors of therapeutic response, it was possible to predict
pCR to treatment with carboplatin and eribulin in patients with early stage TNBC [27].

2.2. DNA Methylation

DNA methylation, a type of epigenetic alteration that is involved in carcinogenesis,
consists of the addition of a methyl group in the promoter region of a gene related to
the tumor development process. These changes occur at high rates and contribute to the
loss of epigenetic regulation, which can be crucial in early stages of carcinogenesis. The
most common alteration is DNA hypermethylation of CpG dinucleotide islands, which
increases the probability of sporadic mutation by deamination of 5-methylcytosine to
thymine, resulting in point mutations and abnormal protein translation [28,29]. Some
studies have shown that epigenetic mechanisms such as DNA methylation occur more
often in patients who had pCR compared to women who had RD. Accordingly, Table 2
summarizes the studies that demonstrated whether DNA methylation could predict pCR
in BC patients.

Almeida et al. investigated genome-wide DNA methylation patterns in BC patients
and correlated the variations with gene expression data from The Cancer Genome Atlas
(TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
databases. Their study suggests that both hypermethylation and hypomethylation of CpG
may be crucial events in BC and identifies three new diagnostic and prognostic biomarker
candidates for DNA methylation [29].

Studies have demonstrated the consequences of DNA methylation in the cancer
research landscape. Fujii et al. identified methylation of the promoter CpG island of the
HSD17B4 gene through genome-wide methylation analysis in tumor samples from patients
with HER2-positive BC. Using DNA sequencing and performing a multivariate analysis, it
was possible to predict pCR for treatment with trastuzumab, paclitaxel, or anthracycline
through methylation of that gene that encodes the 17β-hydroxysteroid dehydrogenase
type 4 enzyme [30].
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Table 2. DNA methylation as a biomarker of pCR or non-pCR after NAC in BC patients.

Author, Year Specimens
DNA

Methylation
Biomarkers

NAC IHC Subtypes Outcome Ref.

Fujii et al., 2017 FFPE HSD17B4
Trastuzumab

Paclitaxel
Anthracycline

HER2+ (n = 67) pCR [30]

Connolly et al.,
2018

FFPE
Serum

HIST1H3C
AKR1B1

GPX7
HOXB4
TMEFF2

RASGRF2
COL6A2

ARHGEF7
TM6SF1

RASSF1A

Carboplatin
Nab-paclitaxel

Vorinostat
HER2− (n = 61) non-pCR [31]

pCR, pathological complete response; non-pCR, non-pathological complete response; NAC, neoadjuvant chemotherapy; IHC subtypes,
molecular subtypes identified by immunohistochemistry; HER2+, human epidermal growth factor receptor-2 positive; HER2, human
epidermal growth factor receptor-2 negative; FFPE, formalin-fixed, paraffin-embedded.

Another study evaluated the response to NAC using DNA methylation profiles.
Connolly et al. used a methylation panel, which investigated 10 genes (HIST1H3C, AKR1B1,
GPX7, HOXB4, TMEFF2, RASGRF2, COL6A2, ARHGEF7, TM6SF1, and RASSF1A), to
evaluate tumor tissue and serum samples from patients with HER2-negative BC. These
genes were selected from previous studies [32,33] that identified their methylation in
breast tumors at all stages and in the serum of patients with metastatic BC. By performing
exploratory analyses with univariate and multivariate logistic regression models, it was
possible to associate the high cumulative methylation index with non-pCR in patients who
underwent NAC with carboplatin and nab-paclitaxel or vorinostat [31].

2.3. Circulating Tumor DNA

The detection of ctDNA through liquid biopsy has already been used in clinical
practice to monitor cancer. However, studies have been performed to improve the tech-
nique and identify precise biomarkers. These molecules have been studied because they
can be obtained using a minimally invasive approach as ctDNA is evaluated through
plasma samples.

Malignant cells release cell-free DNA molecules into the bloodstream, thus allowing
tumor progression. Studies have evaluated the potential of these molecules as prognostic
factors and their response to treatment biomarkers. The first published study of ctDNA
and BC was published more than a decade ago [34], and since then, several studies have
examined techniques used to identify highly sensitive and specific biomarkers [35].

A recent study evaluated the efficacy of NAC with paclitaxel and/or anthracycline
in BC patients using ctDNA expression through WES. This study identified that high
expression of ctDNA was associated with non-pCR, thus suggesting it to be a considerable
biomarker of early response prediction in the neoadjuvant setting in different molecular
subtypes [36]. Moreover, this dynamic monitoring during treatment can facilitate the
evaluation of new agents, providing greater sensitivity to the effectiveness of the treatment.

3. Transcriptomic: mRNA and miRNAs as Biomarkers of NAC Response in BC Patients

Studies have demonstrated that transcriptomic biomarkers can predict a patient’s
response to NAC. The main classes of these biomarkers are the expression of genes and the
miRNAs, which may originate from tumor or liquid biopsy.
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3.1. Gene Expression Panels

With the discovery of microarray technology, it is possible to analyze the expression
of several genes simultaneously. Thus, Perou et al. were able to use gene expression assays
to identify five molecular subtypes in BC: (1) baseline as, Erb−B2+, (2) normal breast,
(3) luminal A, (4) luminal B, and (5) luminal C [37]. Later, this classification underwent
several modifications, and it was widely accepted as a method to identify the prognostic
significance of BC, in which the ER+ HER2− and luminal A tumors demonstrated a
better prognosis, while the baseline and non-baseline triple-negative tumors had worse
prognosis [38].

Over the past few years and with the advancement of scientific research, it has been
possible to identify several biomarkers for BC, and many gene expression signatures
have become commercially available as prognostic tools for this neoplasm. Oncotype
DX gene panels (RS; Genomic Health, Redwood City, CA, USA) [39], Mammaprint [40]
(Agendia, Amsterdam, the Netherlands), EndoPredict (EP; Myriad Genetics, Cologne,
Germany) [41], Prediction Analysis of Microarray 50 (PAM50) Risk of Recurrence, Prossigna
Kit (Prosigna; NanoString Technologies, Seattle, WA, USA) [42], and breast cancer index
(BCI; Biotheranostics, San Diego, CA, USA) [43] are some examples of panels that explore
and derive conclusions about tumor recurrence and relapse [44,45]. The main multigene
expression signatures (MES) used as biomarkers for pCR in BC that are currently available
on the market are shown in Table 3.

Table 3. Commercial panels for prognostic evaluation of BC patients using mRNA gene expression.

Panel Techonology Genes

Oncotype DX RT-qPCR ACTB; BAG1; BCL2; BIRC5; CCNB1; CD68; CTSL2; ESR1; GAPDH; GRB7; GSTM1; GUS;
HER2; Ki-67; MMP11; MYBL2; PGR; RPLPO; SCUBE2; STK15; TRFC

Mammaprint NGS

AA555029_RC; ALDH4A1; AP2B1; AYTL2; BBC3; C16orf61; C20orf46; C9orf30; CCNE2;
CDC42BPA; CDCA7; CENPA; COL4A2; DCK; DIAPH3; DTL; EBF4; ECT2; EGLN1; ESM1;

EXT1; FGF18; FLT1; GMPS; GNAZ; GPR126; GPR180; GSTM3; HRASLS; IGFBP5;
JHDM1D; KNTC2; LGP2; LIN9; LOC100131053; LOC100288906; LOC730018; MCM6;

MELK; MMP9; MS4A7; MTDH; NMU; NUSAP1; ORC6L; OXCT1; PALM2; PECI; PITRM1;
PRC1; QSCN6L1; RAB6B; RASSF7; RECQL5; RFC4; RTN4RL1; RUNDC1; SCUBE2;

SERF1A; SLC2A3; STK32B; TGFB3; TSPYL5; UCHL5; WISP1; ZNF533

Prosigna/
PAM50 Nanostring

ACTR3B; ANLN; BAG1; BCL2; BIRC5; BLVRA; CCNB1; CCNE1; CDC20; CDC6; CDCA1;
CDH3; CENPF; CEP55; CXXC5; EGFR; ERBB2; ESR1; EXO1; FGFR4; FOXA1; FOXC1;

GPR160; GRB7; KIF2C; KNTC2; KRT14; KRT17; KRT5; MAPT; MDM2; MELK; MIA; MKI-67;
MLPH; MMP11; MYBL2; MYC; NAT1; ORC6L; PGR; PHGDH; PTTG1; RRM2; SFRP1;

SLC39A6; TMEM45B; TYMS; UBE2C; UBE2T

EndoPredict RT-qPCR AZGP1; BIRC5; CALM2; DHCR7; HBB; IL6ST; MGP; OAZ1; RBBP8; RPL37A; STC2; UBE2C

BCI RT-qPCR BUB1B; CENPA; HOXB13; IL17BR; NEK2; RACGAP1; RRM2

RT-qPCR, reverse transcriptase quantitative polymerase chain reaction; NGS, next-generation sequencing; PAM50, prediction analysis of
microarray 50; BCI, breast cancer index.

Indeed, the biomarkers that predict patients’ response to NAC offer an opportunity
for personalized service, better response rates to therapy, reduced adverse effects, and cost
savings for the public health system by avoiding overtreatment in patients who will have
non-pCR [45]. Because there are now different molecular signatures, some studies have
pointed out that certain commercial gene expression panels may be useful in stratifying
patients who will have pCR. Currently, the most commonly used panel is the Oncotype DX,
which consists of a panel that assesses the expression of 21 genes in tumor tissue. The test
result, considered as Recurrence Score, is able to provide information on the probability of
tumor recurrence, as well as the chance of the patient presenting pCR in the face of NAC
administration [46].
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3.2. Differentially Expressed miRNA

From genome-wide miRNA expression analysis, it was possible to identify several
miRNAs that were differentially expressed in BC tissue [47]. Since then, many studies have
reported the importance of this molecule in different tumor phenotypes [48]. One recent
approach was the ability of miRNA expression profiles to classify breast tumors according
to histopathological variables, which are currently used to indicate responsiveness to
neoadjuvant therapy [49–55]. As a result, these molecules are highlighted as potential
predictive biomarkers that can allow the individualization of BC treatment and a better
selection of patients who could respond to NAC.

Evidence has shown that miRNAs can be differentially expressed in the bloodstream
of patients with pCR to NAC compared with patients with RD. Circulating miRNAs (ct-
miRNAs) originate from the tumor tissue and migrate into the bloodstream, which makes
it possible to identify the specific biological characteristics of the tumor [56,57]. With the
advancement of technology in recent years, the detection of ct-miRNAs from body fluids
has been made possible, and the evaluation of ct-miRNA expression has shown that it has
great potential as a biomarker for early detection, drug resistance, tumor recurrence, and
clinical outcome prediction of patients on cancer therapy [58], especially for monitoring of
BC patient treatment [59].

Seven articles were identified in this context. These studies evaluated differential
miRNA expression and investigated the association between miRNAs and pCR or non-
pCR in BC patients who underwent NAC (Table 4). The results obtained from the high-
throughput miRNA profile assessment identified four significant signatures between HER2-
positive patient groups that received lapatinib at T0 and T1 and the group that received
lapatinib and trastuzumab at T1, demonstrating promising evidence for future analyses
using ct-miRNAs to assess the response to anti-HER2 agents. However, the authors stated
that confirmatory studies in independent case series are needed to validate and evaluate
the generalization of these ct-miRNA signatures. The data presented in this study may
have direct implications for future clinical trials, as miRNA analyzed in plasma can be a
promising strategy for predicting response to trastuzumab as monotherapy and can be used
to guide de-escalation therapy [52]. Cosimo et al. identified increased levels of ct-miRNAs,
from which ct-miR-148a-3p and ct-miR-374a-5p were significantly associated with pCR
after NAC in patients with HER2-positive BC [49]. Using univariate and multivariate
models, it was verified that miR-155 and miR-301 indicated a better pCR. This study
evaluated the expression of miRNAs from the isolation of total plasma exosomes from
patients with TNBC and HER2-positive patients before NAC. It was possible to identify a
network of deregulated exosomal miRNAs with specific expression patterns in exosomes
of HER2-positive and TNBC patients that are also associated with clinicopathological
parameters and pCR within each molecular subtype of BC [51].

García-García et al. also demonstrated that miR-145-5p low expression was associated
with high pCR rates in patients with TNBC who received cisplatin/doxorubicin-based
neoadjuvant treatment. In contrast, patients with higher levels of miR-145-5p expression
did not respond to chemotherapy regimens and had worse outcomes [53]. In addition,
this study suggested that miR-145-5p could be a predictor of pCR. Our hypothesis is that
patients with a worse prognosis may respond better because of the proliferative index.
García-García et al. performed functional in vitro assays and verified that miR-145 mimics
were able to decrease cell line proliferation of TNBC (MDA-MB-231), and a high expression
level of miR-145-5p was identified in patients with non-pCR after NAC regimen [53].
On the other hand, another study demonstrated that the expression of ct-miR-21 could
accurately distinguish clinical responders from non-responders, but it was not possible to
distinguish those with pCR from those with RD [50].
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Table 4. miRNAs as biomarkers of pCR or non-pCR after NAC in BC patients.

Author, Year Specimens miRNA
Biomarkers NAC IHC Subtypes (n) Outcome Ref.

Cosimo et al., 2020 Plasma
ct-miR-148a-3p Lapatinib

Trastuzumab
Paclitaxel

HER2+ (n = 52) pCR [49]
ct-miR-374a-5p

Liu et al., 2019 Serum ct-miR-21
Taxotere

Paraplatin
Trastuzumab

HER2+ (n = 83) non-pCR [50]

Stevic et al., 2018 Plasma
(exosomes)

18 exosomal
miRNAs

Paclitaxel
Doxorubicin
Carboplatin

HER2+ (n = 211)
TNBC (n = 224) pCR [51]

Cosimo et al., 2019 Plasma ct-miR-140-5p
Lapatinib

Trastuzumab
Paclitaxel

HER2+ (n = 429) non-pCR [52]

García-García et al.,
2019 FFPE miR-145-5p Cisplatin

Doxorubicin TNBC (n = 32) pCR [53]

Raychaudhuri
et al., 2017 FFPE

miR-7 Epirrubicin
Paclitaxel

Cyclophosphamide
Docetaxel

ER+ (n = 41)
PR+ (n = 37)

HER2+ (n = 36)

pCR [54]
miR-340

Müller et al., 2014 Serum

ct-miR-21
Lapatinib

Trastuzumab
HR+ (n = 71)

HER2+ (n = 127) non-pCR [55]ct-miR-210

ct-miR-373

pCR: pathological complete response; non-pCR: non-pathological complete response; NAC: neoadjuvant chemotherapy; IHC subtypes:
molecular subtypes identified by immunohistochemistry; HER2+: human epidermal growth factor receptor-2 positive; TNBC: triple-
negative breast cancer; ER+: estrogen receptor positive; PR+: progesterone receptor positive; HR+: hormone receptor positive; FFPE:
formalin-fixed, paraffin embedded.

Bearing in mind that ct-miRNAs, acting as potential predictive and prognostic biomark-
ers, may be able to identify patients who will have pCR allows us to individualize the treat-
ment of BC and better select patients for NAC. Although rapid and continuous advances
are being made in regard to the use of differentially expressed miRNAs as biomarkers
of pCR prediction, this area of research still has many obstacles to overcome before its
implementation in the management of BC patients’ clinical practice. To date, few studies
have evaluated pCR after NAC treatment. Therefore, to validate these miRNA as effective
biomarkers for the identification of patients who will achieve pCR, large clinical trials
are needed to support these preliminary findings. Current obstacles to overcome include
identifying methods for evaluating miRNA expression profiles that are specific, sensitive,
and highly accurate at low cost. Additionally, research on the discovery of new biomarkers
and more accessible technologies is essential, and the identification of a biomarker that
could predict or potentially monitor the tumor’s response to NAC could revolutionize
the way chemotherapeutic drugs are administered, bringing us closer to personalized
management of BC.

4. Proteomic: Proteins as Biomarkers of NAC Response in BC Patients

Protein biomarkers are widely used in clinical practice to assess the prognosis of
patients. Different studies have reported differential expression of proteins as biomark-
ers of pCR in molecular subtypes of BC (Table 5). Currently, many protein biomarkers
have been identified in BC tissues and/or from the tumor-infiltrating immune system [60].
The advent of protein analysis in BC made it possible to obtain prognostic markers [61]
and identify molecular subtypes [62] using immunohistochemistry (IHC). These biomark-
ers are currently available and can guide the clinical management of targeted therapy.
IHC is a quick and inexpensive assay that provides important diagnostic and prognostic
information [63,64].
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Table 5. Proteins as biomarkers of pCR or non-pCR after NAC in BC patients.

Author, Year Specimens Protein
Biomarkers NAC IHC Subtypes (n) Outcome Ref.

Yoshioka et al., 2015 FFPE Ki-67 Anthracycline
Taxane-based

Luminal A (n = 8)
Luminal B (n = 22)

ER+ HER2+ (n = 11)
ER− HER2+ (n = 12)

TNBC (n = 11)

pCR [65]

Alves et al., 2019 FFPE CAIX
Doxorubicin

Cyclophosphamide
Paclitaxel

Luminal A (n = 22)
Luminal B (n = 77)

Luminal B HER2+ (n = 46)
HER2 (n = 20)
TNBC (n = 31)

pCR [66]

Cerbelli et al., 2017 FFPE PDL-1
Doxorubicin

Cyclophosphamide
Paclitaxel

TNBC (n = 54) pCR [67]

Xing et al., 2019 FFPE FKBP12 5-florouracil
Epirubicin Cyclophosphamide

Luminal HER2− (n = 334)
HER2+ (n = 102)
TNBC (n = 88)

pCR [68]

Nakai et al., 2012 FFPE MGMT Anthracycline
Taxane TNBC (n = 32) pCR [69]

Chuthapisith et al., 2009 FFPE
ANXA1 Adriamycin

Cyclophosphamid
Docetaxel

Non-classification (n = 40) non-pCR [70]ANXA2

pCR: pathological complete response; non-pCR: non-pathological complete response; NAC: neoadjuvant chemotherapy; IHC subtypes:
molecular subtypes identified by immunohistochemistry; HER2+: human epidermal growth factor receptor-2 positive; HER2−: human
epidermal growth factor receptor-2 negative; ER+ HER2+: hormone receptor positive and human epidermal growth factor receptor-
2 positive; ER− HER2+: hormone receptor negative and human epidermal growth factor receptor-2 positive; TNBC: triple-negative breast
cancer; FFPE: formalin-fixed, paraffin-embedded.

Proliferation markers can predict systemic responses to NAC in some molecular
subtypes of BC. Ki-67 is a non-histone nuclear protein expressed during all cell cycle phases,
except the G0 phase. Therefore, Ki-67 is used as a marker for tumor proliferation [71].
This marker was identified by IHC analysis, where the levels of Ki-67 expression were
associated with the percentage of tumor cells stained positively among the total number of
malignant cells evaluated [72].

The use of Ki-67 has been reported in previous BC studies, which demonstrated
that this protein expression can predict the response to NAC [73,74]. Yoshioka et al.
demonstrated that a high Ki-67 expression in tumors before treatment was associated with
higher rates of pCR, and a high Ki-67 expression in post-treatment tumors was strongly
correlated with low DFS and OS, regardless of subtype [65].

Another protein that is related to pCR is carbonic anhydrase IX (CAIX), which is
a transmembrane protein and one of the only two isoenzymes of carbonic anhydrase
associated with tumors that may be involved in cell proliferation and transformation [66].
Alves et al. first described CAIX expression as a predictor of pCR and its association with
DFS and OS in patients with locally advanced BC treated with NAC using doxorubicin,
cyclophosphamide, and paclitaxel [66].

Studies have shown that in patients with TNBC, the immune system can influence
the chemotherapy response. One example is programmed cell death-ligand 1 (PD-L1), a
transmembrane protein expressed in a variety of cells, including epithelial cells, vascular
endothelial cells, macrophages, myeloid dendritic cells, and B cells [75]. Cerbelli et al.
investigated the role of PD-L1 expression in predicting the pathological response to NAC
in TNBC. Before NAC, biopsies showed that PD-L1 in ≥25% of tumor cells predicted
pCR in TNBC. A possible explanation for these findings is that PD-L1 expression may be
associated with a subpopulation of TNBC with more aggressive behavior, with a probability
of responding to chemotherapy [67].

Similarly, FK506 binding protein 12 (FKBP12) is a cytoplasmic protein expressed with
multiple functions in the transduction of cell signaling [76] and has been reported as a
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predictive biomarker for the effectiveness of anthracycline-based chemotherapy in BC.
Xing et al. demonstrated that the loss of FKBP12 was specifically correlated with poor
prognosis and increased resistance to anthracycline-based chemotherapy. Patients with
low FKBP12 expression had a significantly lower rate of pCR [68].

A study with a female Japanese population with locally advanced BC showed that
lower levels of MGMT protein expression were associated with higher pCR rates when
compared with women with normal expression levels of MGMT protein [69]. MGMT is a
DNA repair protein that removes alkylating agents from DNA [77].

Furthermore, annexins are a large multifunctional family of phospholipid-binding
proteins regulated by Ca2+ [78]. Annexin A1 (ANXA1) is linked to phospholipids involved
in inflammation, immune response, and reactivity of mast cells and is associated with the
aggressive phenotype of TNBC [79]. Annexin A2 (ANXA2) is a calcium-binding cytoskele-
ton protein located on the extracellular surface of endothelial cells and in various types of
tumor cells [80]. It has been shown that the expression of ANXA2 in breast tumors can be a
biomarker for predicting BC outcome in high-risk groups [81]. Chuthapisith reported that
the proteins ANXA1 and ANXA2 are predictors of pCR, as it was demonstrated that the
presence of ANXA2 in conjunction with ANXA1 could be a potential marker of non-pCR
in BC [70].

5. Final Considerations

Our review found several studies that evaluated potential molecular markers as
predictors of pCR. The main markers are gene mutations, DNA methylation, and the
expression of miRNAs and proteins. Reaching ypT0/ypN0 is strongly associated with a great
impact on improving overall and progression-free survival in BC patients, as it is independent
of nodal status, and apparently of greater benefit in patients with TNBC [8,82]. Predicting
which patients will benefit from NAC is one of the main reasons for researching non-
invasive response markers. Despite the existence of various studies to identify biomarkers
associated with pathological response, there is still no ideal molecular marker that can be
used in clinical practice to distinguish resistant and sensitive patients and, thus, help define
possible changes in treatment for patients without pCR [83]. The aim of this review was
to compile the main genomic, transcriptomic, and proteomic signatures that were tested
for pCR.

The search for biomarkers has been the target of many studies, as they can be used
for diagnosis, prognosis, and drug selection in BC [84,85]. There are biomarkers that have
already been validated by clinical trials and, therefore, may be available to assist in clinical
practice, and promising biomarkers that still need to be better explored and validated [83].

The evolution of methods, such as artificial intelligence-powered imaging analysis,
use of high-performance molecular profiling, and computational tools allow the imple-
mentation of personalized medicine and aid in prognosis and risk stratification. These
methods can also be used for scaling or avoiding therapies, and predicting response to
treatment [86,87].

The identification of clinically useful biomarkers is challenging due to several limi-
tations, including tumor heterogeneity, since a single biomarker may not have sufficient
sensitivity and specificity to predict response to therapy and tumor behavior [88]. The lack
of standardized protocols and precise cutoff values, the need for a complete assessment
of sensitivity, specificity and reproducibility are also obstacles for the validation of these
biomarkers in clinical practice [89]. The development of affordable biomarkers also poses a
challenge due to the high cost needed for use in clinical practice [90]. Therefore, defining
which biomarkers that might be clinically applicable to discern between responders and
non-responders to NAC is a challenge.

In this review, we highlighted several studies that used the omics approach to identify
new biomarkers as potential predictors for target therapy (Figure 2). The use of these
biomarkers, although scarcely used in clinical practice, has been shown to be sufficiently
accurate to distinguish patients who will achieve pCR. However, further studies with larger
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cohorts and clinically controlled and randomized groups need to be conducted to validate
these findings.
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Current research has not yet identified any predictive molecular biomarkers for pCR
in BC patients, which are sufficiently robust and can be used in the clinical management of
patients with pCR or RD. Hence, it is essential to identify genomic, transcriptomic, and
proteomic markers that are specific, sensitive, and accurate. In this review, we demonstrated
that different biomarkers may be important in predicting a patient’s response to distinct
treatments. Thus, it can minimize the adverse effects and toxicity commonly caused by
these drugs and anticipate cases in which patients will not benefit from certain drugs.
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