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Prediction of severe thunderstorm 
events with ensemble deep 
learning and radar data
Sabrina Guastavino 1*, Michele Piana 1,2, Marco Tizzi 3, Federico Cassola 3, Antonio Iengo 3, 
Davide Sacchetti 3, Enrico Solazzo 4 & Federico Benvenuto 1

The problem of nowcasting extreme weather events can be addressed by applying either numerical 
methods for the solution of dynamic model equations or data-driven artificial intelligence algorithms. 
Within this latter framework, the most used techniques rely on video prediction deep learning 
methods which take in input time series of radar reflectivity images to predict the next future 
sequence of reflectivity images, from which the predicted rainfall quantities are extrapolated. 
Differently from the previous works, the present paper proposes a deep learning method, exploiting 
videos of radar reflectivity frames as input and lightning data to realize a warning machine able to 
sound timely alarms of possible severe thunderstorm events. The problem is recast in a classification 
one in which the extreme events to be predicted are characterized by a an high level of precipitation 
and lightning density. From a technical viewpoint, the computational core of this approach is an 
ensemble learning method based on the recently introduced value-weighted skill scores for both 
transforming the probabilistic outcomes of the neural network into binary predictions and assessing 
the forecasting performance. Such value-weighted skill scores are particularly suitable for binary 
predictions performed over time since they take into account the time evolution of events and 
predictions paying attention to the value of the prediction for the forecaster. The result of this study is 
a warning machine validated against weather radar data recorded in the Liguria region, in Italy.

One of the most interesting problems in weather forecasting is the prediction of extreme rainfall events such 
as severe thunderstorms possibly leading to flash floods. This problem is very challenging especially when we 
consider areas characterized by a complex, steep orography close to a coastline, where intense precipitation can 
be enhanced by specific topographic features: this is the case for the example of Liguria, an Italian region located 
on the northwest Mediterranean Sea and characterized by the presence of mountains over 2000 m high at only 
a few kilometres away from the coastline. This specific morphology gives rise to several catchments with steep 
slopes and limited extension1. Autumn events, when deep Atlantic troughs more easily enter the Mediterranean 
area and activate very moist and unstable flow lifted by the mountain range, may cause catastrophic flooding on 
these coastal areas, which are characterized by a high population density (see2,3 for a review of the climatology 
and typical atmospheric configurations of extreme precipitation over the Mediterranean area). Just as an example, 
the November 4th 2011 flood in Genoa caused six deaths and economic damage up to 100 million euros4–7). A 
common feature in these extreme events is the presence of a quasi-stationary convective system with a spatial 
extension of few kilometers8–12

Medium and long range either deterministic or ensemble Numerical Weather Prediction (NWP) models 
still struggle to correctly predict both the intensity and the location of these events, which can be triggered and 
enhanced by very small-scale features. High resolution convection-permitting NWP models manage to partly 
return a more realistic description of the dynamics of severe thunderstorms. Many studies addressed the role 
played by different components or settings of NWP models in order to better describe severe convective systems 
over the Liguria area, such as model resolution, initial conditions, microphysics schemes or small-scale patterns 
of the sea surface temperature6,13–19.

However, the intrinsically limited predictability of convective systems requires the use of shorter-term now-
casting models, e.g. in order to feed automatic early warning systems, which may support meteorologists and 
hydrologists in providing accurate and reliable forecasts and thus reducing the consequences of these extreme 
events. These forecasting systems typically rely on two kinds of approaches. On the one hand, either stochastic 
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or deterministic models are formulated utilizing partial differential equations in fluid dynamics, and numerical 
methods are implemented for their reduction, nesting hydrological models into meteorological ones20–22. On 
the other hand, more recent data-driven techniques take as input a time series of radar (and in case satellite) 
images belonging to a historical archive and provide as output a synthetic image representing the prediction of 
the radar signal at a subsequent time point; this approach can rely on some extrapolation technique, e.g. based 
on a storm-tracking system23 or a diffusive process in Fourier space24, or on deep learning networks25–36. Mixed 
techniques have been also proposed, blending NWP outputs with data-driven synthetic predictions37. The aim 
of these studies is to make time series prediction by exploiting image-based deep learning techniques, such as 
U-net26, Convolutional Long Short-Term Memory (ConvLSTM)28, improvements of ConvLSTM as Trajectory 
Gated Recurrent Unit (TrajGRU)30,33,34, and Generative Adversial Networks (GANs)35,36, which produce reflectiv-
ity images in the next future. From the predicted reflectivity images the rainfall quantity can be extrapolated but 
no indication of the presence of lightning can be provided. In our work, we focus on the forecasting of extreme 
thunderstorm events and therefore previous methods mentioned above do not directly apply to our problem. On 
the contrary, we present a novel method which recasts the problem into a classification one by using the lightning 
density as a fundamental feature for characterizing an extreme event. Towards this aim, we exploit a deep neural 
network, originally conceived for video classification, to predict the probability that an extreme event occurs. We 
use as input time series of multichannel radar images and we define the labels on the basis of a certain level of 
precipitation and lightning density. The deep-learning model combines a convolutional neural network (CNN) 
with a long short-term memory (LSTM) network38,39 in order to construct a long-term recurrent convolutional 
network (LRCN)40. The prediction assessment is performed by means of the recently introduced value-weighted 
skill scores41 which allows ranking prediction errors on the basis of their distribution along time, preferring to 
show up a warning well in advance of the actual occurrence of an event rather than not to show it at all. Finally, 
we exploit the iterative nature of the network training process to collect a set of predictions from which we select 
a subset of valuable ones on the basis of their value-weighted skill score. This procedure falls within the class of 
ensemble learning techniques. We remark that the term “ensemble” as used here refers to deep learning methods 
and not to the NWP algorithms. The main methodological novelties of this approach are the following. 

1.	 The prediction problem is reformulated into a binary classification one in which labels depend on both heavy 
rainfall conditions and lightning density;

2.	 forecasting verification is performed by the use of value-weighted skill scores on the basis of an automatic 
ensemble strategy.

Other works have been translated the forecasting problem into a binary prediction , but the focus was on mod-
erate rain, i.e. when the rainfall is beyond a certain threshold, mainly > 5 mm/h or at most > 30 mm/h. To our 
knowledge, the present work is the first attempt to predict severe thunderstorm events on the basis of lightnings 
and radar video data. Moreover, forecast verification is completely different with respect to previous works. 
Usually, skill scores compare the predictions with observations in a time independent way, i.e, a score remains 
unchanged if we permute the temporal order of events and predictions in the same way. On the contrary, the 
value-weighted skill scores take into account the time evolution of events and predictions paying attention on 
the value of the prediction for the forecaster. Indeed, this approach provides probabilistic outcomes concerning 
the event occurrence and related quantitative parameters, thus realizing an actual warning machine for the fore-
casting of extreme events. The results of this study is a data-driven warning system for supporting the decision 
making in the case of extreme rainfall events tailored for the Ligurian region. This system takes advantage of the 
value-weighted skill scores which, in the framework of an ensemble learning approach, allow the deep network 
to provide predictions more accurate than those obtained when standard quality-based skill scores are applied.

The paper is organized as follows. In “Constant altitude plan position indicator reflectivity data in Liguria” 
section we describe the considered weather radar and lightning data, and in “Long-term recurrent convolutional 
network” section we give details on the architecture of the LRCN model used in this study. In “Ensemble deep 
learning” section we recall the definition of value-weighted skill scores, and we describe the proposed ensemble 
deep learning technique. In “Experimental results” section  we show the effectiveness of the method in predic-
tion of extreme rainfall events using radar-based data. Our conclusions are offered in “Conclusions and future 
work” section.

Constant altitude plan position indicator reflectivity data in Liguria
Precipitation activity and locations of rain, showers, and thunderstorms are commonly monitored in real-time by 
polarimetric Doppler weather radars; return echoes from targets (such as hydrometeors) allow the measurement 
of the reflectivity field on different conical surfaces, one at each elevation angle of the radar; however, reflectivity 
values at a certain height can be interpolated to 2D maps, which are also known as Constant Altitude Plan Posi-
tion Indicator (CAPPI) images42; such a representation is particularly useful for compositing reflectivity data 
measured by different radars over overlapping regions, returning a reflectivity field for the larger area covered 
by a radar network.

In our study CAPPI reflectivity fields measured by the Italian Radar Network within the Civil Protection 
Department are considered. CAPPI images, measured in dBZ, are sampled every 10 minutes at a spatial resolu-
tion of 0.005◦ ≃ 0.56 km in latitude and 0.005◦ ≃ 0.38 km in longitude. We used CAPPI images at three different 
heights (2 km, 3 km, and 5 km above sea level (ASL)) and cut each image over an area comprising the Liguria 
region (as shown in Fig. 1). In detail, for each image the latitude ranges in [ 43.4◦ N, 45.0◦ N] and the longitude 
ranges in [ 7.1◦ E, 10.4◦ E], so that images have size 321× 661 and cover an area of about 180 km in latitude and 
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250 km in longitude. We used 1.5-hour-long movies of CAPPI images to construct temporal feature sequences 
to predict the occurrence of extreme rainfall event in the hour after the last time step.

The training set exploited to optimize the LRCN is generated by means of a labeling procedure involving 
modified conditional merging (MCM) data and lightning data. MCM data43 combine radar rain estimates and 
rain gauge measurements with an hourly frequency and provide the amount of rainfall integrated over 1 hour 
(in these data the content of each pixel is measured in mm per hour and the spatial resolution is 0.013267◦ ≃ 1 
km in longitude and 0.008929◦ ≃ 1 km in latitude; see Fig. 1). Lightning data are recorded by the LAMPINET 
network of Military Aeronautics44 and have a resolution of 1 microsecond.

The labeling process associates each CAPPI video to the concept of severe convective rainfall event, whose 
definition relies on the following two items:

•	 MCM data must contain at least 3 contiguous pixels exceeding 50 mm/h within the selected area;
•	 at least 10 lightning strikes must occur in a 10-minute time range in the area comprising 5 km around each 

one of the MCM pixels with over-threshold content.

It is worth noticing that 50 mm/h is regarded as a threshold for heavy rain in the Liguria region; however, the 
first condition accounts for the fact that an over-threshold value associated to an isolated pixel may be associated 
to spurious non-meteorological echoes like, for instance, the passage of a plane. On the other hand, the second 
condition implies that the extreme events considered must always involve the occurrence of thunderstorms.

Long‑term recurrent convolutional network
The idea of this work is to address the prediction of extreme events in the short term as a radar image video 
classification problem. Following the work of40 we propose the use of a Long-term recurrent convolutional net-
work (LRCN) which combines a convolutional neural network (CNN) and a long short-term memory (LSTM) 
network to create spatio-temporal deep learning models45,46. In this application, the input is made of time series 
of 10 radar reflectivity images (representing a video 1.5 hours long) at the three CAPPI 2, CAPPI 3 and CAPPI 
5 levels, which refer to 2 km, 3 km and 5 km ASL, respectively. Images have been resized to a 128× 256 pixel 
size in order to guarantee a good trade-off between computational efficiency and image resolution. The CNN is 
used to automatically extract spatial features from the image set. The features are decomposed into sequential 
components and fed to the LSTM network to be analyzed. Finally, the output of the LSTM layer is fed into the 
fully connected layer, and the sigmoid activation function is applied to generate the probability distribution of 
the positive class. Figure 2 shows the architecture of the LRCN model.

In this work the CNN architecture of the LRCN model consists in three blocks, each one composed by a 
convolutional layer with stride (2, 2), followed by a batch normalization layer to improve stability; the Rectified 
Linear Unit (ReLU) function47 is adopted as an activation function and the max pooling operation with size 
(4,4) and stride (2, 2) is applied. We initialize all the convolutional weights by sampling from the scaled uniform 
distribution48. The three convolutional layers are characterized by 8, 16 and 32 kernels with size (5, 5), (3, 3) and 
(3, 3), respectively. The input are sequences of size (T, 128, 256, 3), where T represents the number of frames in 
each movie, 128 and 256 correspond to the image size (in pixel) and 3 represents the three levels of CAPPI data. 
In all operations we take advantage of the “Timedistributed” layer, available in the Keras library49, which allows 
the in parallel training of the T convolutional flows. Figure 3 illustrates this CNN architecture. Then, the CNN 
output is flattened to create the sequence of feature vectors to feed into the LSTM network. In our experiments, 
the LSTM layer has 50 hidden neurons. Finally, the dropout layer is used to prevent overfitting50: the dropout 
value is set to 0.5, meaning that 50% of neurons are randomly dropped from the neural network during training 

Figure 1.   An example of a 2-km CAPPI reflectivity frame (left) and an MCM rain rate frame (right) (both 
referred to 21/10/2019 23:00 UTC); the selected area surrounding Liguria is delimited in yellow. The maps are 
downloaded from OpenStreetMap.
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in each iteration. The hyperparameters of the NN are estimated by an empirical trial-and-error optimization 
process on several experiments.

Loss function.  Once the architecture of the NN is set up, we can denote with θ the NN weights and we can 
interpret the NN as a map fθ , mapping a sample X to a probability outcome fθ (X) ∈ [0, 1] , since the sigmoid 
activation function is applied in the last layer. We recall that, in our application, the sample X is a video of CAPPI 
reflectivity images and fθ (X) represents the predicted probability of the occurrence of an extreme rainfall event 
in the next hour after the end time of the CAPPI video X within the selected area (in fact, we are not interested 
in the exact location of the possible event). In the training process we consider an optimization problem

where {X,Y} = {(Xi ,Yi)}
n
i=1 is the training set ( Yi represents the actual label of the sample Xi according to the def-

inition given in “Constant altitude plan position indicator reflectivity data in Liguria”) Section, Fθ (X) = (fθ (Xi))i 
represents the probability outcomes of the NN on the set X and ℓ represents the loss function measuring the 
discrepancy between the true label Y and the predicted output Fθ (X) . In classification problems the most used 
loss function is the binary cross-entropy. In the case of imbalanced data sets, modifications of the cross-entropy 
loss are considered, such as the following one:

where β0,β1 are positive weights defined according to the data set imbalance. We define the weights as

where Yi = 1 indicates the presence of extreme rainfall event and Yi = 0 indicates the absence of extreme rainfall 
event. We refer to the chosen loss function as the class balanced cross-entropy.

(1)min
θ

ℓ(Fθ (X),Y),

(2)ℓ(Fθ (X),Y) = −

(

n
∑

i=1

β1Yi log(fθ (Xi))+ β0(1− Yi) log(1− fθ (Xi))

)

,

(3)β1 =
1

#{i ∈ {1, . . . , n} : Yi = 1}
and β0 =

1

#{i ∈ {1, . . . , n} : Yi = 0}
,

Figure 2.   The LRCN architecture.

Figure 3.   The CNN architecture.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20049  | https://doi.org/10.1038/s41598-022-23306-6

www.nature.com/scientificreports/

Ensemble deep learning
During the iterative optimization process a set of deep neural networks X → fθ (X) by varying of θ is generated. 
The proposed ensemble deep learning technique selects a subset of this set as follows. For each θ , it transforms 
the probabilistic outcome fθ (X) of fθ into a binary prediction and then it evaluates on the validation set such a 
prediction according to its value-weighted skill score. To describe this strategy in detail we start by the value-
weighted skill score..

Evaluation skill scores.  The result of a binary classifier is usually evaluated by computing the confusion 
matrix, also known as the contingency table. Let us denote with M2,2(N) the set of 2-dimensional matrices with 
natural elements. Let Y = (Yi) ∈ {0, 1}n be a binary sequence representing the actual labels of a given dataset 
of examples, and let Ŷ = (Ŷi) ∈ {0, 1}n be a binary sequence representing the prediction. Then the classical 
(quality-based) confusion matrix C̃ ∈ M2,2(N) is given by:

where TP =
∑n

i=1 1{Yi=1,Ŷi=1} represents the true positives, i.e. the number of samples correctly classified as 
the positive class; TN =

∑n
i=1 1{Yi=0,Ŷi=0} represents the true negatives, i.e. the number of samples correctly 

classified as the negative class; FP =
∑n

i=1 1{Yi=0,Ŷi=1} represents the false positives, i.e. the number of negative 
samples incorrectly classified as the positive class; FN =

∑n
i=1 1{Yi=1,Ŷi=0} represents the false negatives, i.e. the 

number of positive samples incorrectly classified as the negative class.
A specific classical (quality-based) skill score is given by a map S : M2,2(N) → R defined on the confusion 

matrix C̃ . In this study we considered two skill-scores, i.e., the critical success index (CSI)

which is commonly used in meteorological applications34; and the true skill statistic (TSS)

which is particularly appropriate for imbalanced data sets51. The CSI varies from [0, 1], while the TSS varies from 
[−1, 1] and for both scores the optimal value is 1.

However, such metrics do not account for the distribution of predictions along time and are not able to 
provide a quantitative preference to those alarms that predict an event well in advance with respect to its actual 
occurrence, and to penalize predictions sounding delayed false alarms. To overcome these limitations, value-
weighted confusion matrices have been introduced41. The aim of the value-weighted approach is to mitigate errors 
such as false positives that precede false negatives (the case of predictions well in advance) and false negatives 
which are preceded by true positives (the case of on going events already predicted) as they have little impact on 
the prediction from the point of view of the forecaster. In fact, a value-weighted confusion matrix is defined as

with

where the weights w(z−i , z
+
i ) and w(z−i , z

+
i ) are constructed as follows. First, the function w is

where w :=
(

1
2 ,

1
3 , . . . ,

1
T+1

)

 and w ◦ t indicates the element-wise product. Second, given the label Yi observed 
at the sampled time i, then z−i = (Yi−1,Yi−2, . . . ,Yi−T ) , is the sequence of the T elements before Yi and 
z+i = (Yi+1,Yi+2, . . . ,Yi+T ) is the sequence of the T elements after Yi . Analogously, given the label Ŷi predicted 
at time i, then ẑ−i = (Ŷi−1, Ŷi−2, . . . , Ŷi−T ) , and ẑ+i = (Ŷi+1, Ŷi+2, . . . , Ŷi+T ) . The weight function 
w : RT × R

T → R is then constructed in such a way to emphasize false positives associated with alarms pre-
dicted in the middle of 2T + 1-long time windows when no actual event occurs and false negatives associated 
with missed events in the middle of 2T + 1-long time windows in which no alarm is raised.

The introduction of this value-weighted confusion matrix allows the construction of the associated value-
weighted Critical Success Index wCSI and the value-weighted True Skill Statistic wTSS, respectively.

C̃(Ŷ,Y) =

(

TN FP
FN TP

)

,

(4)CSI(C̃(Ŷ,Y)) =
TP

TP+ FP+ FN
,

(5)TSS(C̃(Ŷ,Y)) =
TP

TP+ FN
−

FP

FP+ TN
,

(6)Cw(Ŷ,Y) =

(

TN wFP
wFN TP

)

,

(7)wFP =

n
∑

i=1

w(z−i , z
+
i )1{Yi=0,Ŷi=1},

(8)wFN =

n
∑

i=1

w(ẑ+i , ẑ
−
i )1{Yi=1,Ŷi=0} .

(9)w(s, t) =

{

2 if s, t ≡ 0
1−max(w ◦ t) otherwise
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Ensemble strategy.  We consider an ensemble procedure to provide an automatic classifier from the prob-
ability outcomes provided by the deep NN. Consider the first N epochs of the training process of the deep neural 
network fθ . Denote with θj := θj({X,Y}) the neural netwrork weights for each epoch j computed from the train-
ing set. The procedure has been introduced in41, and it can be summarized in the following steps: 

1.	 For each epoch j we select the classification threshold τ j , i.e. the real number that maximizes a given skill 
score 

 where Pτθj (X) := (1{fθj (Xi)>τ })i=1,...,n is the binary prediction on the set of samples X and 1{·} denotes the 
indicator function. Then, we denote by 

 the binary prediction on the set X obtained by using the optimized threshold value.
2.	 Choose the subset of valuable predictions by selecting the predictors with a skill score higher than a given a 

quality level α on the validation set {X̃, Ỹ} = {(X̃i , Ỹi)}
m
i=1 , i.e 

3.	 We define the ensemble prediction as the median value of all the selected predictions. Given a new sample 
X, we have 

 where m indicates the median function. In the case where the number of zeros is equal to the number of 
ones, we assume Ŷ θ = 1.

In the second step of the above scheme, the parameter α in Eq. (12) has to be given. Differently from41, where the 
above procedure was introduced and α was arbitrarily chosen, we propose to compute it as follows. 

	 (i)	 For each γ ∈ [γ0, γ1) with 0 < γ0 < γ1 < 1 , consider the epochs for which the skill score S computed 
on the validation set is higher than a given fraction γ of the maximum possible score S on the validation 
set by varying epochs 

 and compute the corresponding ensemble prediction on the validation set 

	 (ii)	 Select the optimal parameter γ  as the one which maximizes the skill score S computed on the validation 
set 

 and define the level α as follows 

As a result of this procedure, the estimated value of α only depends on the validation set.
We show the pipeline diagram explaining the ensemble method in Fig. 4.
In order to ensure statistical robustness of the entire ensemble procedure, we repeat it M times by randomizing 

the initial values of the weights, i.e. by training the deep neural network M times and we take the best ensemble 
prediction on the validation set. The best prediction is in the sense of the highest preferred skill score S . There-
fore, by denoting with θ(k) the weights of the trained deep neural network at the k-th random initialization, we 
define the optimal weights as

where Ŷθ(k)

γ  is the ensemble prediction on the validation set obtained at the k-th random initialization of the 
training process.

In the following we show the performance of the ensemble deep learning technique when the LRCN network 
is used for the problem of forecasting extreme rainfall events in Liguria.

(10)τ j = arg max
τ∈[0,1]

S(C(Pτθj (X),Y))).

(11)Pθj (X) := Pτθj (X)

(12)Jα := {j ∈ {1, . . . ,N} : S(C(Pθj (X̃), Ỹ))) > α}.

(13)Ŷ θ = m({Pθj (X) : j ∈ Jα}).

(14)Jγ := {j ∈ {1, . . . ,N} : S(C(Pθj (X̃), Ỹ)) > γ max
l∈{1,...,N}

{S(C(Pθl (X̃), Ỹ))}}.

(15)Ŷ
θ
γ = m({Pθj (X̃) : j ∈ Jγ }).

(16)γ := arg max
γ∈[γ0,γ1)

S(C(Ŷθ
γ , Ỹ))

(17)α := γ max
j∈{1,...,N}

{S(C(Pθj (X̃), Ỹ))}.

(18)θ := arg max
(θ(k))k=1,...,M

S′(C(Ŷθ(k)

γ , Ỹ)),
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Experimental results
In order to assess the prediction reliability of our deep NN model, we considered a historical dataset of CAPPI 
composite reflectivity videos recorded by the Italian weather radar network in the time window ranging from 
2018/07/09 at 21:30 UTC to 2019/12/31 at 12:00 UTC, each video being 90 minutes long. For the training phase, 
we considered the time range from 2018/07/09 at 21:30 UTC to 2019/07/16 at 10:30 UTC and label the videos 
with binary labels concerning the concurrent occurrence of an over-threshold rainfall event from MCM data 
and lightning strikes in its surroundings, as explained in “Constant altitude plan position indicator reflectivity 
data in Liguria” section. The training set contains 7128 samples overall, with 105 samples labeled with 1, i.e. 
corresponding to extreme events according to the definition given in “Constant altitude plan position indicator 
reflectivity data in Liguria” section. For the validation step, we considered the videos in the time range from 
2019/07/19 at 14:30 UTC to 2019/09/30 at 12:30 UTC (the validation set is made of 1296 videos overall, with 48 
videos labeled with 1). Eventually, the test set is made of the CAPPI videos in the time range between 2019/10/03 
at 15:00 UTC and 2019/12/31 at 12:00 UTC (the test contains 1899 videos, and 33 of them are labeled with 1). 
The model is trained over N = 100 epochs using the Adam Optimizer52 with learning rate equal to 0.001 and 
mini-batch size equal to 72. The class balanced cross-entropy defined in (2) is used as the loss function in the 
training phase, where the weights β0 and β1 are defined as the inverse of the number of samples labeled with 0 
and with 1 in each mini-batch, respectively.

As explained in “Ensemble deep learning” section, the statistical significance of the results is guaranteed by 
running the network M = 10 times, each time with a different random initialization of the LRCN weights. We 
report in Fig. 5 the training and validation loss per epoch for the 10 runs. We noticed that the validating loss 
curves have more fluctuations for some runs especially after 60 epochs: this is most probably due to the fact that 
the training and validation sets have different percentages of samples labeled with 1 for the chronological split-
ting. Finally, we applied the ensemble strategy as described in “During the iterative optimization proc” Section, 
using the TSS and wTSS for choosing the epochs with best performance. For sake of clarity, for now on the two 
ensemble strategies will be named as TSS-ensemble and wTSS-ensemble, respectively.

These two strategies have been applied to the test set, and the results are illustrated in Table 1, where we 
reported the average values and the corresponding standard deviations for the entries of the quality-based and 
value-weighted confusion matrices, and for the TSS, CSI, wTSS, and wCSI. The table shows that the score values 

Figure 4.   Pipeline diagram for the ensemble method. The first step consists in training the LRCN model (the 
architecture is shown in Fig. 2) over a fixed number of epochs and computing the classification thresholds 
defined in (10): the outputs of the training process are the estimators (Pθj )j∈I (see (11)) where I is the set 
of epoch indexes. The second step consists in validating the estimators (Pθj )j∈I by selecting the ones which 
provide predictions on the validation set with scores over a level α , which is determined through the procedure 
described in Eqs. (14)–(17). The final step consists in testing the method on a new input: the prediction of the 
ensemble method is given by computing the median of the estimators (Pθj )j∈I applied on a new input x.

Table 1.   Results on the test set obtained by using the TSS-ensemble and wTSS-ensemble strategies. The 
entries are the average values of the scores over 10 runs of the network for 10 random initializations of the 
weights. The standard deviations are also included.

Strategy Confusion matrix TSS CSI wFP wFN wTSS wCSI

wTSS
TN = 
1725.40(±21.98)

FP = 140.60(±21.98)
 0.78(±0.04) 0.17(±0.02)  243.88(±41.34)  6.79(±1.64)  0.68(±0.04)  0.10(±0.02)

FN = 4.70(±1.25) TP = 28.30(±1.25)

TSS
TN = 
1727.60(±32.42)

FP = 138.40(±32.42)
 0.77(±0.05)  0.17(±0.03)  240.99(±60.57)  7.24(±2.60)  0.67(±0.06)  0.10(±0.02)

FN = 5.10(±1.85) TP = 27.90(±1.85)
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are all rather similar, although the averaged TSS and wTSS values are slightly higher when the wTSS-ensemble 
strategy is adopted.

Since, according to the ensemble strategy, the prediction for a specific test set is made by using the weights 
corresponding to the best run in the validation set, in Fig. 6 we show the behavior of TSS and wTSS for the 
TSS-ensemble and wTSS-ensemble strategies, in the case of 10 runs of the network corresponding to 10 random 
initializations of the weights.

The results in Fig. 6 imply that, in the case of the wTSS-ensemble strategy, the best score values in validation 
correspond to the best score values in the test phase. Figure 7 illustrates the same analysis in the case when the 
scores used for assessing the prediction performance are CSI and wCSI and shows that, also in this case, the 
wTSS-ensemble strategy should be preferred. We pointed out that the gap between validation and test scores is 
most probably due to the heterogeneity of the data used in training, validation and test sets: the test set represents 
mainly the autumnal period whereas the validation comprises mainly data of the summer period. We think that 
a better practice could be using data of the autumnal period of many past years for training and validating the 
network in order to have a better prediction on the next autumn.

Table 2 contains the values of confusion-matrix entries and scores obtained by using the weights associ-
ated to the best runs of the network selected during the validation phase by means of the TSS-ensemble and 

Figure 5.   Learning curves showing the behaviour of the training (left panel) and validation (right panel) loss 
along epochs for the ten runs.

Figure 6.   From right to left: TSS values on the validation set (dashed lines) and test set (continuous lines) 
obtained on each run by applying the wTSS-ensemble strategy (first panel) and the TSS-ensemble strategy 
(second panel); wTSS values on the validation set (dashed lines) and test set (continuous lines) obtained on each 
run by applying the wTSS-ensemble strategy (third panel) and the TSS-ensemble strategy (fourth panel).

Figure 7.   From left to right: CSI values on the validation set (dashed lines) and test set (continuous lines) 
obtained on each run by applying the wTSS-ensemble strategy (first panel) and the TSS-ensemble strategy 
(second panel); wCSI values on the validation set (dashed lines) and test set (continuous lines) obtained on each 
run by applying the wTSS-ensemble strategy (third panel) and the TSS-ensemble strategy (fourth panel).
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wTSS-ensemble strategies. Please consider that in the case of the TSS-ensemble strategy, the best run is always 
the k = 10 one.

In order to show how the use of value-weighted scores performs in action, in Fig. 8 we enrolled over time the 
predictions corresponding to the test set, when the wTSS-ensemble and TSS-ensemble strategies are adopted 
and when wTSS, TSS, wCSI and CSI are used for selecting the best run (we point out again that using wTSS and 
TSS for the wTSS-ensemble strategy always leads to k = 7 and that using wCSI and CSI for the same ensemble 
strategy always leads to k = 9).

We remind that the labeling procedure depends on the rain rate and on the presence of lighting, as described 
in “Constant altitude plan position indicator reflectivity data in Liguria” Section. The blue bars represent the 
events labeled with 1, i.e. events which satisfy the condition on both the rain rate and the presence of lighting, 
whereas the green bars are events that satisfy only the condition on the rain rate.

We first point out that when the wTSS-strategy is used and k = 7 is selected, the prediction tends to system-
atically anticipate the events characterized by high rain rate. Further, for sake of clarity, Fig. 9 contains a zoom 
around the November 22 2019 time point, when a dramatic flood caused significant damage in many areas of 
Liguria. This zoom shows that the wTSS-ensemble strategy for k = 7 is able to correctly predict the thunder-
storms occurring in the time interval from 00:00 to 02:00 UTC on November 22 2019 and to anticipate the other 
catastrophic thunderstorm occurring between 10:00 and 11:00 UTC (this last thunderstorm is marked with a 
blue arrow in all panels of Fig. 9). No anticipated alarm is sounded by the other two predictions.

Conclusions and future work
The realization of warning machines able to sound binary alarms along time is an intriguing issue in many areas 
of forecasting53–56. The present paper shows for the first time that a deep CNN exploiting radar videos as input 
can be used as a warning machine for predicting severe thunderstorms (in fact, previous CNNs in this field 
have been used to synthesize simulated radar images at time points successive to the last one in the input time 
series). It is worth noticing that the aim here is not the prediction of the exact location and intensity of a heavy 
rain event, but rather the probable occurrence of a severe thunderstorm over a reference area in the next hour.

The crucial point in our approach relies on the kind of evaluation metrics adopted. In fact, the TSS can be 
considered a good measure of performance in forecasting, since it is insensitive to the class-imbalance ratio. 
However, such a skill score, as all the ones computed on a classical quality-based confusion matrix, does not 
account for the temporal distribution of alarms. Therefore, we propose to focus on value-weighted skill scores, 
as the wTSS, which account for the distribution of the predictions over time while promoting predictions well in 
advance. We focused on the problem of forecasting extreme rainfall events on the Liguria region, and we showed 
that the performance of our ensemble technique in the case when wTSS is optimized, is significantly better than 
the performance when the model is trained to optimize a standard quality-based score.

Next in line in our work will be the application of a class of score-driven loss functions57, whose minimization 
in the training phase allows the automatic maximization of the corresponding skill scores. Possible future studies 
of this work concern (1) the investigation of other ensemble techniques as58,59, (2) the use of feature selection 
methods which allow individuating the most relevant subset of features extracted by CNN models as in60, (3) 
the use of dynamic graph modeling approaches to learn spatial-temporal representations in radar reflectivity 
videos61. Further, deep hashing methods62 could be used to exploit more information for the prediction, like the 
density and type of lightning (such as cloud-to-cloud and cloud-to-ground strikes).

Table 2.   Results on the test set obtained by using the wTSS-ensemble strategy when the run is selected with 
respect to the best TSS or wTSS ( k = 7 run), the wTSS-ensemble strategy when the run is selected with respect 
to the best CSI or wCSI ( k = 9 run) and the TSS-ensemble strategy when the run is selected with respect to the 
best TSS or wTSS or CSI or wCSI ( k = 10 run). In bold the best results are highlighted.

Score

Strategy

wTSS ensemble TSS ensemble

S
′
=TSS/wTSS (run k = 7) S

′
=CSI/wCSI (run k = 9)

S
′
=TSS/wTSS/CSI/wCSI 

(run k = 10)

Confusion matrix
TN = 1730 FP = 136 TN = 1765 FP = 101 TN = 1767 FP = 99

FN = 4 TP = 29 FN = 4 TP = 29 FN = 6 TP = 27

TSS 0.8059 0.8247 0.7651

CSI 0.1716 0.2164 0.2045

wFN 4.75 8 8

wFP 229.83 166.58 171.67

wTSS 0.742 0.6975 0.6829

wCSI 0.11 0.1425 0.1306
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Figure 8.   Predictions for the testing period obtained by applying the wTSS-ensemble strategy at k = 7 run (top 
panel), the wTSS-ensemble strategy at k = 9 run (central panel) and the TSS-ensemble strategy at k = 10 run 
(bottom panel).



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20049  | https://doi.org/10.1038/s41598-022-23306-6

www.nature.com/scientificreports/

Figure 9.   Predictions valid from 2019/11/18 at 08:00 UTC to 2019/11/25 at 00:00 UTC obtained by applying 
the wTSS-ensemble strategy at k = 7 run (top panel), the wTSS-ensemble strategy at k = 9 run (central panel) 
and the TSS-ensemble strategy at k = 10 run (bottom panel). The grey boxes correspond to times when the 
input data are missing.
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Data availability
The data that support the findings of this study are available from the Italian Civil Protection Department (radar 
data) and the Italian Military Aeronautic (lightnings data) but restrictions apply to the availability of these data, 
which were used under license for the current study, and so are not publicly available. Data are however avail-
able from the authors upon reasonable request and with permission of the Italian Civil Protection Department 
(radar data) and the Italian Military Aeronautic (lightnings data). However, the radar data can be downloaded 
from https://​mappe.​prote​zione​civile.​gov.​it/​it/​mappe-​rischi/​piatt​aforma-​radar and we put at disposal the code of 
the deep neural network and the ensemble procedure in the github repository https://​github.​com/​Sabri​naGua​
stavi​no/​Ensem​ble-​deep-​learn​ing.
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