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ABSTRACT
Background: The electronic medical record (EMR) offers unique possibilities for clinical research, but
some important patient attributes are not readily available due to its unstructured properties. We
applied text mining using machine learning to enable automatic classification of unstructured informa-
tion on smoking status from Swedish EMR data.
Methods: Data on patients’ smoking status from EMRs were used to develop 32 different predictive
models that were trained using Weka, changing sentence frequency, classifier type, tokenization, and
attribute selection in a database of 85,000 classified sentences. The models were evaluated using F-
score and accuracy based on out-of-sample test data including 8500 sentences. The error weight
matrix was used to select the best model, assigning a weight to each type of misclassification and
applying it to the model confusion matrices. The best performing model was then compared to a
rule-based method.
Results: The best performing model was based on the Support Vector Machine (SVM) Sequential
Minimal Optimization (SMO) classifier using a combination of unigrams and bigrams as tokens.
Sentence frequency and attributes selection did not improve model performance. SMO achieved
98.14% accuracy and 0.981 F-score versus 79.32% and 0.756 for the rule-based model.
Conclusion: A model using machine-learning algorithms to automatically classify patients’ smoking
status was successfully developed. Such algorithms may enable automatic assessment of smoking sta-
tus and other unstructured data directly from EMRs without manual classification of complete
case notes.
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Introduction

The use of electronic medical records (EMR) has been
increasingly adopted in past decades and is used today in
most industrialized countries for documentation of patient
care (1). EMR data have become an important and integrated
part of healthcare to facilitate the sharing of information
between healthcare practitioners and document the care of
patients, but can also be a source for epidemiological
research and real-world evidence (RWE). However, data on
many important patient attributes are typically only captured
in free text fields as case notes in special sections in the EMR
systems. Such unstructured properties of EMR data present
an obstacle for RWE and clinical research.

The introduction of advanced analytics such as machine
learning with text mining methods and algorithms offers the
potential for more efficient use of unstructured EMR data for
medical research (2–4). Developing algorithms for automatic
classifications of patient characteristics, exposures such as
smoking, or disease status in defined categories may allow

for easier access to real-world data for studies of safety,
effectiveness, and treatment patterns of pharmaceutical
product use in routine clinical practice (5).

Most of the research specifically addressing the problems
of classifying smoking status based on secondary data sour-
ces was conducted in conjunction with the 2006 ‘Smoking
challenge’ announced by ‘Informatics for Integrating Biology
and the Bedside’ (i2b2), a Centre for Biomedical Computing
funded by the National Institute of Health in USA, and by
those who continued building on that work (5–7). In add-
ition, a recent US study on dental health records developed
a similar model as presented here, but focussing on tobacco
consumption (8). However, despite the recent advancements
in text mining and machine learning, making use of unstruc-
tured information from EMRs such as smoking status still
presents a challenge for researchers. The aim of this project
was to develop a text mining model using machine-learning
techniques to classify the smoking status of patients using
EMR data and to assess the performance attributes of the
best machine-learning model compared to a rule-based
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model. Here, we describe the process to derive the best
machine-learning model and how it compares with a manual
classification.

Methods

The software tools used for pre-processing data were
Microsoft Excel and Notepadþþ, while the Waikato
Environment for Knowledge Analysis software (Weka) was
used for text mining tasks including text classification and
analysis (9).

Smoking classes

We used EMR data including patient level smoking informa-
tion from two observational studies collected during 2014
and 2013 (10,11). The following smoking definitions were
applied, which were also the most common classes used in
the ‘Smoking challenge’ (5):

� Current smoker: Records of explicit statements or details
leading to the obvious conclusion that the patient is
smoking cigarettes, cigars, or pipe (e.g. statements like
‘10 cigarettes/day’; ‘Yes, smokes’). Any explicit smoking
consumption was enough to be classified as current
smoker regardless of quantity or frequency. Short answers
like ‘Yes’ were coded as unknown if the text field was
derived from the tobacco–alcohol fields of the EMR, since
it was not possible to distinguish if it referred to smoking
or alcohol habits.

� Ex-smoker: Records which explicitly state that the patient
used to smoke but is currently not smoking, regardless of
the time since the patient had stopped smoking (e.g.
‘Stopped smoking’; ‘Smoke free since 1998’; ‘Ex-smoker’).

� Non-smoker: Records which explicitly state that the
patient is not a smoker (e.g. ‘Doesn’t smoke’; ‘Non-
smoker’; ‘Never smoked’). Short answers like ‘No’ were

coded unknown if the text field was derived from the
tobacco–alcohol fields of the EMR, if impossible to distin-
guish smoking or alcohol habits.

� Unknown: Records which do not fit in any of the previous
classes (e.g. ‘Didn’t ask’; ‘136/72 Pulse 70’).

As the purpose of this project was to capture data on
smoking habits only, any patient records of snuff without
any evidence of smoking was coded as unknown (snuff is a
moist tobacco powder commonly used in Sweden) (12,13).

Datasets

First, the data were anonymized and cleaned from all patient
information other than the smoking status text field. We
then created different datasets to train and test the models
(Figure 1). The first training dataset (‘NO-Freq’) was derived
from 2014 EMR data and consisted of 85,509 rows and 3 col-
umns where smoking information was present, with the first
column indicating that the row belonged to a smoking sta-
tus text field, the second containing the actual text typed in
the field, and the third described how many times the same
sentence appeared in the dataset (sentence frequency). A
second training dataset (‘Freq’) was generated from the
same study data and included 318,858 rows by repeating
the rows according to the sentence frequency. This dataset
was used to evaluate if sentence frequency may affect the
classification when training the models, i.e. how well the
classification correctly discriminates between the smoking
classes. That may occur in cases where two similar sentences
belong to different classes, because using sentence fre-
quency dramatically increases the term-frequency of the
words in the most common sentences of the dataset. That in
turn influences measures such as the information gain and
thus impact the classifiers, particularly for decision trees
(14,15). This dataset was used to train all models. The

Figure 1. Description of the workflow used to pre-process data, to obtain coherent and manually classified training-sets and test-set.
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proportion of smokers in our datasets was coherent with
national statistics of smoking status in Sweden (16).

We then created two test datasets based on the 2013
study data. The first test dataset included 8551 rows out of a
total of 177,000 rows from that study data and was used to
test all derived models. The second test dataset included
another subset of 10,000 rows from the same study data and
was used to compare the performance of the best perform-
ing model and the rule-based model. We decided to use a
different test-set (i.e. not a 10-fold cross-validation commonly
applied in data mining) because of the availability of a large
amount of data allowing us to test the models on unseen
data. This test data contained up to 603 characters and an
average of 24.5 characters per sentence for the fields with
smoking status information, while the original training data-
set included up to 84 characters per sentence (average 45),
with 90% of the sentences appearing only once.

The training dataset was double-coded manually, i.e. an
additional annotator went through the file correcting any
errors and agreeing with the previous annotator on all pro-
posed changes if in agreement. Both test datasets of 8551
entries and 10,000 entries were assessed by another annota-
tor to agree on a gold standard. Any mismatches were
jointly discussed, and a common agreement was made to
achieve a 100% match of those sentences.

Model development

The model development was based on the variation of dif-
ferent macro-settings of four classification algorithms with
the tool ‘Weka’. We considered the following four classifica-
tion algorithms: Sequential Minimal Optimization (SMO), k-
NN, Naïve Bayes, and J48. SMO is an iterative algorithm used
to solve the quadratic programming problem during support
vector machine (SVM) training, which divides the problem
into smaller sub-problems in order to find the hyperplane
with the maximum margin (17). The k-NN is a classification
algorithm which assigns the class for majority vote

depending on the class of the k nearest neighbours to a test
sample (18). Naïve Bayes is a probabilistic classification algo-
rithm based on Bayes’ theorem which assumes a high inde-
pendence between the training-set attributes (19). J48 is the
Weka implementation of the more known C4.5 classification
algorithm. The algorithm creates a binary decision tree
checking iteratively for each tree node the information gain
ratio of every attribute, in order to evaluate which one to
split on (20). SMO was chosen because it performed best in
the ‘Smoking challenge’, and we included k-NN and J48
because they both performed well in that challenge
(5,21,22), while Naïve Bayes was considered because it is an
algorithm which is robust to irrelevant features and works
well especially in situations with unbalanced classes (23,24).
The classifier-specific settings in Weka were kept as default,
as only the macro-settings (sentence frequency, classifier
type, tokenization, and attribute selection) were of interest.
All Weka settings have been summarized in Table 1.

In text mining, tokenization is the act of breaking up a
sequence of strings into pieces such as words, and we
applied two different models for tokenization in order to
structure the data by transforming the original text string
into a collection of word vectors and binary values (25), one
using unigrams (single words) and another combining unig-
rams and bigrams (single words or two consecutive words).
In Weka, when the ARFF file (Weka format of input) is
loaded, only ‘text’ and ‘SmokingStatus’ are present as attrib-
utes, and the filter ‘StringToWordVector’ was used, as it scans
the rows in the training-set and creates tokens which
become the attributes, according to the specified settings.
Thus, a word vector was created for each training-set row
which contained the binary value 1 corresponding to an
attribute present in that sentence or 0 otherwise.

When the training-set was tokenized and the attributes
ready, we created another test selecting a lower number of
attributes in the training-set to reduce dimensionality. To
select only the attributes with a higher predictive power, the
Weka filter ‘SelectAttributes’ was used. The algorithm used
for the attribute selection was the ‘InfoGainAttributeEval’

Table 1. Summary of features and weka settings used to create the models.

Feature Option/setting

Sentence frequency � Yes
� No

Classifier � SMO
� k-NN
� Naïve Bayes
� J48

Attribute selection � Yes
� No

Tokens � Unigrams
� Unigramsþ bigrams

Classifiers settings � All classifier specific settings were kept as default except for k-NN k value which was set to 1
� To determine the optimal k, a 10-fold cross-validation was run on both training datasets ‘Freq’ and ‘NO-Freq’, both

for unigrams and unigramsþ bigrams, testing k equal to 1, 3, 5, and 10
SelectAttributes settings � Attribute Evaluator was set to ‘InfoGainAttributeEval’

� Search Method was set to ‘Ranker’
� The Ranker setting threshold was set to 0.0 in order to discard attributes with a negative Information Gain
� All other settings were kept as default

StringToWordVector settings � ‘WordsToKeep’ was set to 15,000 in order to take into account all the single word tokens as attributes
� The tokenizer was set on ‘Word tokenizer’ for unigrams or ‘N-gram tokenizer’ with minimum size equal to 1 and

maximum size equal to 2 for unigramsþ bigrams, depending on the chosen model
� All other settings were kept as default
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with the ‘Ranker’ function since it demonstrated good per-
formance overall using different classifiers on diverse data-
sets (26). The Ranker setting threshold was set to 0.0 to
discard attributes with a negative information gain.

After the previous tests were executed in Weka, 32 mod-
els were produced. To evaluate and compare the models,
several statistical measures were used, including positive pre-
dictive value (PPV) (true positives/[true positivesþ false posi-
tives]), sensitivity (true positives/[true positivesþ false
negatives]), F-score (2� [PPV� sensitivity]/[PPVþ sensitivity]),
accuracy ([true positivesþ true negatives]/[true positivesþ
true negativesþ false positivesþ false negatives]), and
receiver operating characteristic (ROC) area (27). The ROC
curve is a plot of sensitivity on the y axis and false positive
rate (FPR) on the x axis (27). It is an effective method for the
evaluation of the performance, where a higher ROC area
indicates a better performing model. An area under the ROC
curve equal to 1 is considered the perfect case since it
means the FPR is 0 and the sensitivity is 1 (27). Finally, in the
second part of the study, the Error cost was used as discrimi-
nating factor, which is defined as the cost assigned to each
kind of sentence misclassification based on the expected
relative importance.

F-score and ROC area were calculated by Weka and con-
sisted of the weighted average of the individual class meas-
ures, while accuracy was calculated dividing the correctly
predicted number of records by the total number, independ-
ently by the class-specific accuracy.

All 32 models were evaluated on the test dataset (4 meth-
ods with 8 options) with 8551 entries (Figure 2). The test
datasets were created semi-randomly, i.e. about 20,000
entries from the original test-set were manually classified
and randomly picked by classes and narrowed down to 8551
and 10,000, recreating the same class distribution as in the
sentence frequency dataset. This was done to obtain more
realistic results that would make the model more relevant for
future use (Table 2).

The models were built with the two best performing clas-
sifiers (n¼ 16). They were then compared using an error cost

matrix, in which a weight was given to the different combi-
nations of possible types of misclassification to account for
the between-class hierarchy (e.g. an ex-smoker classified as
smoker would be considered a less serious error compared
to a smoker classified as a non-smoker). We considered the
hierarchy of decreasing importance for the error in the fol-
lowing sequence: YES!NO and NO!YES, followed by
NO!EX and EX!NO, and then YES!EX and EX!YES. A dir-
ection of misclassification from any of the smoking classes to
unknown was assumed to only decrease the statistical
power, while misclassifying an unknown record to any of the
smoking classes might introduce bias and hence were
assigned a double cost. The cost of each type of misclassifi-
cation was then multiplied by the values in the defined cost
matrix as described in Table 3, to obtain the model total
cost. The model with the lowest cost or error was considered
the best performing model, regardless of its accuracy. The
best model and the original rule-based model were com-
pared by testing their individual performance on a final test
dataset as described in the workflow in Figure 2. The rule-

Figure 2. Evaluation workflow.

Table 2. Training-set class distribution.

Training-set NO-Freq Training-set Freq

Number Percent Number Percent

Current smoker 40,743 47.6% 77,401 24.3%
Non-smoker 8217 9.6% 185,456 58.1%
Ex-smoker 28,694 33.6% 38,791 12.2%
Unknown 7855 9.2% 17,210 5.4%
Total 85,509 100% 318,858 100%

Table 3. Error cost matrix with assigned weights to each type of prediction
misclassification.

Manually classified as

Predicted as Smoker Non-smoker Ex-smoker Unknown

Smoker 0 20 5 1
Non-smoker 20 0 10 1
Ex-smoker 5 10 0 1
Unknown 2 2 2 0
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based model was constructed based on expert opinion using
a manual classification of all combinations of smoking in the
text fields.

Ethical considerations

Data for this study received ethics approval from the author-
ized Ethical Review Board (ERB) (Dnr.2014/54–31/3 and
Dnr.2013/267–31/3) (10,11).

Results

The inter-annotator agreement was 99.9% (958 records classi-
fied differently out of 104,060) on both the training and test
datasets after the individual classification. There were 85,509
text strings containing any information of smoking in the
EMRs, which were classified as smoking in 40,743 entries, as
non-smoking in 8217 entries, and as ex-smoking in 28,694
entries (Table 2). There were in total 318,858 entries of smok-
ing-related sentences in the dedicated EMR fields, which
were classified as 77,401 smoking, 185,456 non-smoking, and
38,791 ex-smoking. The sentence ‘No’ occurred in 93,358 dif-
ferent records of smoking text fields and appeared in an
equal number of rows in the second training-set, while only
once in the first. The proportion of text strings that could
not be manually classified (Unknown) was 9.2% for the first
training-set and 5.4% for the second.

Ranking all 32 models run on the test dataset showed
that the SMO model with no frequency and both unigrams
and bigrams as tokens achieved the highest accuracy, fol-
lowed by the same classifier with the frequency feature com-
bined with both unigrams and bigrams as tokens (Figure 3).
The third best accuracy was achieved with the k-NN model

with no unigrams and bigrams, followed by the same classi-
fier with no frequency but unigrams only. For the J48 mod-
els, the highest accuracy was achieved with the features
frequency, unigrams/bigrams, and attribute selection, fol-
lowed by the one with frequency and unigrams only. The
Naïve Bayes models which performed the worst, displayed
the highest accuracy with frequency and unigrams/bigrams
features, followed by the same features together with attri-
bute selection.

Models with SMO and k-NN classifiers had an average
accuracy of 97.22% and 97.19%, F-score of 0.972, and ROC
area of 0.988 (Table 4). Models with the J48 classifier dis-
played a similar ROC area result as the SMO and k-NN mod-
els, but noticeably lower accuracy and F-score. The Naïve
Bayes models presented the lowest results on average on all
measures in comparison with the other classifiers.

Applying the cost matrix described in Table 3 to the con-
fusion matrix of the models with the two best classifiers
based on the assessment above (i.e. SMO and k-NN) demon-
strated that the lowest cost of the remaining 16 models was
scored by the SMO classifier and both unigrams and bigrams
as tokens, without any selection based on the information
gain (Table 5).

Comparing the performance of the best model and the
rule-based model on the final test dataset demonstrated that
the machine-learning model achieved a higher PPV (98.10%),

Figure 3. Accuracy of the models. The abbreviation ‘Uniþ bi’ refers to the utilization of a combination of unigrams and bigrams as features in the training-set. The
abbreviation ‘Attr. sel.’ refers to the selection of the most relevant attributes in the training-set.

Table 4. Average of the statistical measures of the models by classifier.

Model

Classifier SMO Naïve Bayes k-NN J48

F-score 0.972 0.879 0.972 0.959
ROC area 0.988 0.961 0.988 0.989
Accuracy 97.22% 87.45% 97.19% 95.72%
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sensitivity (98.10%), and F-score (0.98), with an accuracy of
98.14% compared to the rule-based model which had an
accuracy of 79.32% (Table 6). To maximize the new model
performance, the macro-settings which need to be adopted
are the SVM SMO classifier and the unigramsþ bigrams toke-
nization. Sentence frequency and attributes selection did not
improve the model.

Discussion

We developed an algorithm to enable automatic classifica-
tion of smoking status based on patients’ EMR data using
machine-learning techniques. Our results demonstrated bet-
ter performance compared to a rule-based model, with close
to 20% improved accuracy on the same test dataset. Thus,
our study provides further understanding of how to make
use of unstructured EMR data for large-scale real-world evi-
dence and epidemiological research by applying more effi-
cient modern machine-learning techniques and more
specifically adds to the literature of how to automatically
classify smoking status for patients using secondary
data sources.

Most of the previous work addressing the methods for
classifying patients’ smoking status has been conducted as a
result of the ‘Smoking challenge’ (7,21,22,28–32), and by
others who continued building on that work (5,6,33). A
recent US study on dental health records developed a similar
model based on machine learning (8). However, to our
knowledge, there is no such prior work performed on
Swedish data. In accordance with the ‘Smoking challenge’,
we applied the most frequently used smoking categories, i.e.
‘Current smoker’, ‘Past smoker’, ‘Non-smoker’, ‘Unknown’,

while some have also considered a more generic class of
‘Smoker’ (5). Similarly to previous publications on this topic,
we took advantage of the most commonly used text mining
tool ‘Weka’ (9), which is expected to make our results and
model development described here more relevant also
for others.

An SVM was also used as classifier in previous smoking
classification studies, including the two Health Information
Text Extraction (HITEx) studies (2,5), and in the best model
from the ‘Smoking challenge’ (5), by Clark et al. (30). They
achieved 90% accuracy and 0.83 F-score, and 96% accuracy
and 0.90 F-score, respectively, while the model in our study
achieved an accuracy of 98.14% and an F-score of 0.981. The
results obtained by those two models can be directly com-
pared to the ones obtained in the current study since the
models entail the same action of classifying a sentence
regarding the patients’ smoking status. However, some differ-
ences should be acknowledged. For instance, in the two pre-
vious models, the text was collected from different parts of
the EMR and different techniques were used to isolate the
sentences relevant for the patients’ smoking status. In this
study, however, only the information in the ‘smoking’ or
‘smoking/alcohol’ field of the EMR case notes was used. In
addition, the text language in the two previous models was
English, which may influence the effectiveness of a setting
over another—for instance, tokenization with unigrams,
bigrams, or trigrams could have a more or less enhanced dif-
ference in results depending on the structure of the adopted
language. Also, the training-set of the two previous models
was tokenized using unigrams only, and in the ‘Smoking
challenge’ the EMRs where annotated by two pulmonolo-
gists. In the ‘Smoking challenge’, 398 annotated EMRs of
complete case notes were used in the training-set, whereas
85,509 (only smoking text field) were used in our study.

The performance of the classifiers used in this work can
be compared with the results obtained in previous studies
and with the expectations related to their classifier-specific
characteristics. SMO appeared more valid and reliable as clas-
sifier for the automated smoking status classification in this
study as well as in the ‘Smoking challenge’, with a higher
accuracy and F-score because of its characteristics of being
able to perform better with a large quantity of input data
(34). In fact, SVM SMO divides the initial quadratic program-
ming problem into the smallest possible sub-problems and
solves them analytically one by one. It allows the algorithm
to always converge without regard of the dimensionality
(17). A recent study on dental health records from the US
found that SVM performed best to classify patients according
to smokers, non-smokers, and unknowns, with a PPV and
sensitivity of 98% and F-score of 0.98 (8). In addition, that
study included an assessment of the patient’s tobacco con-
sumption, but it was limited to three classifiers instead of
four as in our study and there was no consideration of the
cost matrix.

The k-NN classifier performed better than expected in our
study. The k value was set to 1, thus the used classifier was
the nearest neighbour (NN). Good results achieved using the
NN classifier imply the almost total absence of outliers in the

Table 5. Result of the application of the cost matrix to the remaining
16 models.

Classifier Feature

Model SMO k-NN Freq Unigrams only Attribute selection Cost

1 � – – � – 1751
2 � – – � � 1983
3 � – – – – 1059
4 � – – – � 1467
5 � – � � – 2139
6 � – � � � 2322
7 � – � – – 1627
8 � – � – � 1921
9 – � – � – 1949
10 – � – � � 1990
11 – � – – – 1970
12 – � – – � 1873
13 – � � � – 2182
14 – � � � � 2327
15 – � � – – 2060
16 – � � – � 2073

Table 6. Statistical measures of the best model and the rule-based model.

Measure Best model Rule-based

Positive predictive value (PPV) 98.10% 79.90%
Sensitivity 98.10% 79.30%
F-score 0.981 0.756
Accuracy 98.14% 79.32%
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training-set (18). This could be due to the orderly structure
of the Swedish EMRs which contain a specific text field for
the smoking status (1). On the other hand, Naïve Bayes was
the simplest of the four algorithms used, and it can achieve
better results on fewer data (20), especially with unbalanced
classes (23), since it is robust to irrelevant features (24). Our
results, however, illustrate that with a larger amount of data,
Naïve Bayes does not achieve as high accuracy as the other
algorithms. J48 performed better than in the ‘Smoking chal-
lenge’, probably also because of the orderly structure of the
Swedish EMRs with a specific smoking text field (1). On the
other hand, when training the algorithm, the quickest classi-
fier was NN (min. 5 s) followed by Naïve Bayes, SVM SMO,
and J48 (up to 7 days), while the quickest classifier during
testing was J48 (1 s minimum) followed by SVM SMO, NN,
and Naïve Bayes (up to 20min).

All the 32 models we developed using machine learning,
even the worst-performing one using the Naïve Bayes classi-
fier which achieved an accuracy of 85.63%, appeared better
than the rule-based SAS model which reached a 79.32%
accuracy. This confirms that if enough training data are avail-
able, a machine-learning classification model generally has
the capability of performing better than the analogue rule-
based model (35,36). This is mainly due to the increasing dif-
ficulty of creating a comprehensive rule-based model as the
size and diversity of the dataset increase. However, one of
the issues with developing algorithms to capture data from
case notes is the risk of grammatical errors and typos in the
text and the presence of diverting sentences, e.g. ‘The
mother is a heavy smoker’ or ‘The father smoked for 20
years’, which complicates the development of a rule-based
approach to define which sentence is related to the cur-
rent patient.

After a first analysis of the 188 sentences misclassified by
the best model in this study out of the 10,000 in the ‘Final
test-set’, the most common mistakes were related to other
tobacco types such as snuff. For example, the model appears
to give a considerably higher priority to ex-smoker class key-
words compared to the unknown class keywords, which is
likely caused by the fact that sentences regarding non-cigar-
ette tobacco such as snuff are not always considered
unknown since a reference to smoking can be present as
well, while keywords used for ex-smokers are mainly adopted
for that class only. This means that a sentence referring to a
patient who had stopped using snuff in December (original
text string: ‘Slutade snusa i december’) may be wrongly clas-
sified as ex-smoker because of the presence of ‘stopped’,
regardless of the presence of any reference to snuff use.
That may be caused by low numbers of examples of ex-snuff
consumers in the training-set. Another situation involves sen-
tences with combinations of tobacco–alcohol text fields with
discordant evidence about tobacco and alcohol or reference
to alcohol only. Correspondingly, if the model gives a higher
priority to a keyword referred to the alcohol consumption,
compared to the keyword referred to the smoking habit, a
sentence such as ‘Doesn’t smoke, wine sometimes’ (original
text string: ‘R€oker inte, vin ibland’) may be misclassified as
‘smoker’ because of the word sometimes. For the same

reason, in cases where there is only a reference to alcohol
present in the text field, a sentence such ‘1 glass of wine
sometimes in the weekend’ (original text string: ‘1 glas vin
ibland på helgen’) may be misclassified as ‘Smoker’.
Additionally, the single word sentence ‘Not’ was classified as
Unknown by the model even though it was classified as ‘No’
in the training-set. This misclassification could be due to dif-
ferent reasons such as the scarce presence of the two words
in the training-set, their combination with other words in
longer sentences, or because the model considers their
absence more relevant than their presence. Nevertheless,
assessing all possible causes of this misclassification was not
within the scope of this work. Another example involves sen-
tences with the character ‘/’ between two words. Sentences
such as ‘Party smoker/Moderate’, in this case referring to
smoking/alcohol habits, may be misclassified as ‘Unknown’
as the tokenization process did not remove the ‘/’ character
and therefore it was considered as a single word. This mis-
classification could be avoided by removing the ‘/’ character;
however, sentences such as ‘10 cigarettes/day’ are correctly
classified independently of the number present in the sen-
tence, precisely because of the presence of this character.
The last example involves sentences which would have been
interpreted with difficulty even by a human reader. For
instance, the exact meaning of the sentence ‘Smoked 10–20
cig for 45 years. Stopped for 3 years but started again after
2 years and smoked for about 1 year, now stopped for some
weeks’ may be difficult to understand, and such sentences
may need to be read more than once. With this kind of sen-
tence, the model would make a prediction which in most of
the cases is expected to be wrong, due to the presence of
repeated contrasting keywords.

It is important to consider the impact of such measure-
ment error and misclassification of covariates based on
machine learning when used in regression models in epi-
demiological studies of exposure–disease associations.
Methods to account for bias due to misclassification of
exposure covariates such as smoking have been described
by others (37). A sensitivity of 79.3% in a rule-based classifi-
cation means that in a study of 10,000 patients we would
misclassify 621 smokers as non-smokers, including 518 smok-
ing cases and 104 controls misclassified as non-smokers. The
improvement by applying our algorithm with a sensitivity of
98.1% means that we would only misclassify 57 smokers as
non-smokers, including 48 smoking cases and 10 controls
misclassified as non-smokers. Assuming a smoking preva-
lence of 30% and a true odds ratio (OR) for smoking-related
lung cancer of 9.00 would translate into an OR of 8.85 and
7.63 using these models, respectively, which is of similar
magnitude as other simulations (38). This was assuming a
non-differential misclassification, but if the likelihood of
being classified as a smoker depends on disease status, e.g.
if lung cancer patients were more likely to report historical
smoking, the misclassification would cause overestimation of
the relative risk. Such fixed-parameter-bias sensitivity analy-
ses are, however, simplistic, and probabilistic bias analysis or
Bayesian analyses are recommended for risk assessment to
account for all sources of uncertainty (39).
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Limitations of this study include that the algorithms have
been applied on a rather short text field where smoking
information is entered. Moreover, the models were selected
only using macro-settings (sentence frequency, classifier
type, tokenization, and attribute selection). However, each
classifier has its specific parameters which for the purpose of
this study were not considered and therefore kept as default
values in Weka (except for k-NN k value). A selection of the
optimal values for these settings (parameters optimization),
using for instance a grid-search algorithm, could have further
improved the models’ accuracy (37). In addition, multiple
local language speaking annotators might have further
decreased any possibility of human misclassification in the
test-set or in the training-set. Thus, further improvements
might be possible by finding the optimal classifier-specific
parameters for the best performing model. The SVM SMO
classifier used in the best model has as specific settings: the
exponent of the polynomial kernel and the complexity value
‘C’ which is set to 1 by default. ‘C’ is a trade-off value
between the classifier generalization and the training error.
Hence, further improvements might be possible through
optimization of ‘C’, since the complexity parameter is a posi-
tive number between zero and infinite (40). Another possibil-
ity would be to use innovative techniques like ‘deep
learning’, which consists of a convolution of artificial neural
networks with a high number of hidden layers (41). That
appears promising for data mining, but the scientific body of
evidence may still be limited.

In conclusion, the machine-learning model performed
best when using the SVM SMO classifier and selecting both
unigrams and bigrams in the training-set, with an accuracy
of 98.14% compared to 79.32% using a rule-based model on
the same test-set. These results illustrate the possibilities of
using machine-learning techniques for automatic health-
related text classification in EMRs, enabling the transform-
ation of unstructured information to structured format with
good accuracy.
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