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Mucosal-associated invariant T (MAIT) cells are unconventional CD3+CD161high T  lym-
phocytes that recognize vitamin B2 (riboflavin) biosynthesis precursor derivatives pre-
sented by the MHC-I related protein, MR1. In humans, their T cell receptor is composed 
of a Vα7.2-Jα33/20/12 chain, combined with a restricted set of Vβ chains. MAIT cells 
are very abundant in the liver (up to 40% of resident T cells) and in mucosal tissues, such 
as the lung and gut. In adult peripheral blood, they represent up to 10% of circulating 
T cells, whereas they are very few in cord blood. This large number of MAIT cells in the 
adult likely results from their gradual expansion with age following repeated encounters 
with riboflavin-producing microbes. Upon recognition of MR1 ligands, MAIT cells have 
the capacity to rapidly eliminate bacterially infected cells through the production of 
inflammatory cytokines (IFNγ, TNFα, and IL-17) and cytotoxic effector molecules (perfo-
rin and granzyme B). Thus, MAIT cells may play a crucial role in antimicrobial defense, 
in particular at mucosal sites. In addition, MAIT cells have been implicated in diseases 
of non-microbial etiology, including autoimmunity and other inflammatory diseases. 
Although their participation in various clinical settings has received increased attention 
in adults, data in children are scarce. Due to their innate-like characteristics, MAIT cells 
might be particularly important to control microbial infections in the young age, when 
long-term protective adaptive immunity is not fully developed. Herein, we review the 
data showing how MAIT cells may control microbial infections and how they discriminate 
pathogens from commensals, with a focus on models relevant for childhood infections.

Keywords: mucosal-associated invariant T  cells, invariant T  cells, innate immunity, antimicrobial defense, 
riboflavin

iNTRODUCTiON

T lymphocytes are mainly categorized into either conventional CD4 or CD8 T cells, or unconven-
tional invariant T  cells. In conventional T  cells, combinations of T  cell receptor (TCR) α and β 
chains are unlimited and adapted for optimal T  cell responses to numerous types of pathogens, 
whereas those of unconventional T cells are much more limited and suited for innate-like immunity. 
Together with this limited diversity, unconventional T  cells are restricted by non-classical MHC 
molecules, while conventional T  cells recognize classical MHC/peptide complexes. In humans, 
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mucosal-associated invariant T (MAIT) cells represent the most 
abundant semi-invariant αβT cell subset (1–3). MAIT cells are 
preferentially localized in mucosal tissues and react against a 
newly identified class of microbial-derived antigen precursors 
presented by the non-classical MHC-I-related molecule, MR1. 
Upon microbial infection, MAIT cells rapidly produce cytokines 
and cytotoxic effectors. MAIT cells are protective in experimental 
models of infection and are decreased in the blood of patients 
with bacterial infections. Here, we review the rapidly evolving 
field of the protective role of MAIT  cell in infectious diseases, 
with a particular emphasis on models that may be of special 
interest in children.

MAiN CHARACTeRiSTiCS OF  
MAiT CeLLS

Mucosal-associated invariant T cells represent an abundant pro-
portion of resident T cells in tissues (20–40% in the liver, 1–8% 
in the colon lamina propria, and 10–20% in the lung and female 
genital tract) (4–10). They also represent 1–10% of the entire CD3 
T cell pool in human peripheral blood (7, 11). This compares with 
around 0.1% for invariant Natural Killer T (iNKT) cells, another 
population of unconventional innate-like T  cells. In contrast, 
MAIT cells are 10-fold less abundant in mice than in humans and 
iNKT are more numerous. MAIT cells express a semi-invariant 
TCR made of a canonical TCRα chain (Vα7.2-Jα33/20/12 in 
humans, Vα19-Jα33 in mice) paired with a limited number of 
TCRβ chains (12–15). The MAIT TCR recognizes the conserved, 
monomorphic, MHC class I-related molecule, MR1 (10), which 
binds riboflavin (vitamin B2) biosynthesis precursor derivatives, 
such as 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil 
(5-OP-RU) produced by most, but not all, bacteria and yeasts (16, 
17). MAIT cell activation requires key genes encoding enzymes 
that form an early intermediate (5-A-RU) in bacterial riboflavin 
synthesis. Although 5-A-RU does not bind MR1 or activate 
MAIT cells directly, it forms potent MAIT-activating antigens via 
non-enzymatic reactions with distinct host- or bacteria-derived 
small chemical molecules, such as glyoxal and methylglyoxal, 
derived from other metabolic pathways (16, 17). This represents 
a unique mechanism for creating T-cell ligands from disparate 
metabolite building blocks. A wide range of bacteria and fungi, 
but not mammalian cells or viruses, are able to synthesize 
riboflavin and hence provide MR1 ligands (7, 11, 17). Thus, only 
microbes that possess a riboflavin biosynthetic pathway have a 
direct, MR1-dependent, MAIT-activating capacity. Certain bac-
teria, including Enterococcus faecalis, Listeria monocytogenes, and 
group A Streptococcus do not activate MAIT cells, likely due to the 
lack of an intact riboflavin biosynthetic pathway in these strains 
(7). As humans do not synthesize riboflavin, the MR1–MAIT axis 
accordingly represents a sophisticated discriminatory mechanism 
for targeting microbial antigens while protecting the host.

The vast majority of human MAIT cells are CD8+, although 
some CD4+ and double-negative CD4−CD8− MAIT subsets are 
also detected (2, 14, 18). In addition, MAIT  cells express high 
levels of the C-type lectin CD161 and IL-18 receptor α (IL-18Rα) 
(7, 11, 19). Recently, they have become easily identifiable in 

the peripheral blood by MR1 tetramers loaded with the bacte-
rial ligand 5-OP-RU (available from the NIH tetramer facility) 
(14). MAIT cells also express the CXCR6 and CCR9 chemokine 
receptors, which are involved in trafficking to peripheral tissues, 
especially the intestine and liver (4, 10, 20) but do not express 
CCR7, involved in migration to lymph nodes. Like iNKT cells, 
MAIT  cells express the master promyelocytic leukemia zinc 
finger transcription factor (PLZF), suggesting a common thymic 
differentiation program (3, 21). They also express RORγ, Tbet, 
Helios, and Eomes (22), consistent with their various effector 
functions.

Upon TCR-dependent recognition of microbial antigens, 
MAIT  cells display immediate effector responses, by secreting 
inflammatory cytokines (IFNγ, TNF-α, IL-17, and sometimes 
IL-22) and mediating perforin-dependent cytotoxicity against 
bacterially infected cells (7, 11, 20, 23, 24) (Figure  1). This 
strongly supports their involvement in antimicrobial defense. 
Cytokines produced by MAIT cells may not only act directly on 
infected target cells, but also promote activation of other immune 
cells and orchestrate adaptive immunity through dendritic cell 
(DC) maturation (25, 26). Importantly, human MAIT cells can 
also be activated in vitro in a TCR-MR1 independent fashion in 
response to cytokines such as IL-12, IL-18, IL-15, and/or inter-
feron α/β (27–29). Consequently, MAIT cells can be activated in 
various non-bacterial inflammatory conditions in which these 
cytokines are produced, in particular during acute or chronic 
viral infections such as dengue, influenza virus, HCV, and HIV 
(28, 30–34). For the same reasons, MAIT cells may participate 
in non-infectious pathological conditions, such as autoimmune 
disorders and cancer [for review, see Ref. (35–37)].

Finally, in addition to microbial products derived from vitamin 
B2 synthesis, other MR1-binding ligands have been identified, 
including the non-stimulatory folic acid (vitamin B9) derivative 
6-formyl-pterin (6-FP) (17), and various activating and non-
activating drugs and drug-like molecules (38). So far, the clinical 
relevance of these ligands is yet to be elucidated.

MAiT CeLL DeveLOPMeNT

MAIT cells are selected on MR1-expressing CD4+CD8+ thymo-
cytes (39) and exit the thymus with a naïve phenotype before 
acquiring memory characteristics and expanding in the periph-
ery (4, 18). As recently demonstrated using MR1 tetramers, the 
intrathymic development of MAIT  cells is divided into three 
stages defined by expression of CD161 and CD27. Immature 
stage 1 and stage 2 MAIT cells (CD161− in the human) predomi-
nate in thymus but represent minor subsets in periphery, where 
mature stage 3 MAIT cells (CD161high) are largely predominant. 
In germ-free mice, immature stage 1 MAIT cells are generated in 
the thymus but mature MAIT cells are absent from the periphery, 
which suggests that colonization by the commensal microbiota 
provides a key maturation signal. Indeed, colonization of the gut 
with even a single type of bacteria, capable of providing a ligand 
for MR1, is enough to restore the normal development of both 
thymic and peripheral MAIT cells (10, 18, 40).

At birth, cord blood MAIT  cells are naïve and represent a 
very small proportion of T cells (less than 0.1% of T cells), while 
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FigURe 1 | MR1-dependent and independent mucosal-associated invariant T (MAIT) cell activation. Bacterial and fungal ligands can be presented by MR1 to 
MAIT cells and induce their activation. MAIT cells can also be activated independently from MR1 by different types of cytokines secreted by infected cells. After their 
activation, MAIT cells proliferate and release cytokines and cytolytic enzymes, which allow infected cell lysis and promote the recruitment and activation of other 
immune cells.
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they are predominant and exhibit mature characteristics in adult 
peripheral blood (4, 18, 20, 40) (Figure  2). This indicates that 
MAIT cell thymopoiesis is complemented by an important post-
natal peripheral expansion. Surprisingly, mature tissue-resident 
MAIT cells are detected in the intestine, lung, and liver (but not 
in the spleen and mesenteric lymph nodes) of second trimester 
human fetuses (41). The nature of MR1 ligands present during 
fetal life remains elusive, as it is believed that the fetus in utero 
is sterile and that colonization with microorganisms starts only 
after birth. Nevertheless, even in the absence of live microbes in 
the placenta, maternal gestational commensals may be a source 
of diffusible metabolites reaching fetal tissues (42). Moreover, 
recent studies indicate that microbial colonization already occurs 
in utero (43, 44). Therefore, early interactions with the maternal 
or fetal microbiome may influence MAIT cell development, as 
suggested for other immune cell subsets (45).

The mechanisms driving postnatal MAIT  cell expansion in 
the human remain unclear. In mice, the presence of B  cells is 
necessary for peripheral expansion of MAIT  cells but not for 
their thymic selection (18). In patients with common variable 
immunodeficiency, some of whom have undetectable circulat-
ing B cells, MAIT cell frequencies are decreased, but there is no 

association between MAIT cell and B cell frequencies (46). It is 
likely that even a small number of B cells in the lamina propria are 
sufficient for driving peripheral MAIT cell expansion, as shown 
in mice with a transmembrane immunoglobulin-μ mutation, in 
which B lymphocytes are absent in the peripheral blood, but some 
immunoglobulin A-producing B lymphocytes are found in the 
intestine (10). This may suggest that the initial proliferation of 
MAIT cells occurs close to the intestine where bacterial-derived 
MR1 ligands are abundant. MAIT cells do not expand in mice 
lacking MR1 in the periphery, or in mice colonized with bacteria 
lacking MR1 ligand (7). Furthermore, variable microbe-mediated 
expansion of peripheral MAIT  cells was demonstrated in dif-
ferent mouse models, in particular a tremendous expansion 
during Francisella tularensis infection (24). Taken together, these 
observations indicate that peripheral MAIT  cell expansion is 
likely dependent on encounters with microbial-derived ligands, 
although this remains difficult to demonstrate in humans. Few 
studies showed that MAIT  cell frequencies gradually increase 
with age in the peripheral blood of healthy children (4, 40). 
Moreover, MAIT cell numbers exhibit very large interindividual 
variability (over one log range) in the blood of both children and 
adults, but the relationship with previous infections has never 
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FigURe 2 | Maturation, proliferation, and migration of mucosal-associated invariant T (MAIT) cells. MAIT cells have a naive phenotype (CD45RAhigh/CD27/CD45ROlo) 
and a low frequency in cord blood compared with adult peripheral blood. Classically, MAIT cell development in the thymus is divided into three stages defined by 
their expression of CD161 and CD27, with stage 3 MAIT cells resembling MAIT cells found in peripheral blood after birth. After the birth, MAIT cells proliferate and 
acquire a mature phenotype. The colonization of different organs starts already during fetal development.
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been documented. It is tempting to speculate that the peripheral 
development of MAIT cells follows a two-step program, in which 
early interactions with the commensal microbiota provide a first 
maturation signal, followed by variable MAIT  cell expansion 
related to encounters with different microbes. Only a careful 
longitudinal analysis of MAIT cells levels in children of various 
ages with documented microbial infection history will confirm 
this hypothesis.

ANTiMiCROBiAL FUNCTiON OF MAiT 
CeLLS

In vitro, MAIT  cells are activated in the presence of MR1-
expressing cells loaded with bacterial preparations (fixed 
Escherichia coli and Mycobacterium tuberculosis lysate) or cells 
experimentally infected with various strains of bacteria and 
yeasts (E. coli, Salmonella typhimurium, M. tuberculosis, and 
Candida albicans). Such activated MAIT  cells produce inflam-
matory cytokines and cytolytic molecules (7, 11, 23, 27, 47) and 
can kill infected epithelial cells (22, 23, 27). MAIT cells are also 
able to inhibit Mycobacterium bovis bacillus Calmette–Guérin 
(BCG) growth in infected macrophages (12, 48), suggesting that 
they may control microbial burden in vivo.

A better understanding of the role of MAIT cells in the control 
of microbial infections has been obtained through several mouse 
models, in particular transgenic mice overexpressing MAIT cells 
and MR1-deficient mice, compared with wild-type mice. In 
MAIT transgenic mice, activated MAIT cells accumulate at the 
site of E. coli or Mycobacterium abscessus infection and promote 
bacterial clearance, except if mice are MR1-deficient (7). A low 
dose of M. bovis aerosol results in a much stronger infection in 
MR1-deficient mice compared with control mice, indicating the 
important role of MAIT cells in the early control of mycobacte-
rial infection in the lung (48). An increase in bacterial load is 
also observed in MAIT-deficient mice infected with Klebsiella 
pneumonia (49). MAIT cells accumulate in the lung of mice after 
intranasal inoculation of S. typhimurium (50). The contribution 
of MAIT  cells is best demonstrated in a model of pulmonary 
infection with F. tularensis (24, 51) MAIT cell numbers progres-
sively increase in the lung reaching their peak of expansion in 
the late phase of bacterial clearance. High MAIT cell numbers 
persist even after bacterial clearance, suggesting that they par-
ticipate in the long-term control of infection. Interestingly, in 
MR1-deficient mice, not only bacterial clearance is delayed, but 
there is also a delay in the recruitment of conventional CD4 and 
CD8 T lymphocytes into the lung, indicating that MAIT cells also 
contribute to the establishment of adaptive immune responses. 
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Indeed, F. tularensis-infected macrophages activate MAIT  cells 
which produce GM-CSF, driving the differentiation of inflam-
matory monocytes into monocyte-derived DCs in the lung (51). 
These results show that MAIT  cells are able to influence early 
activation and recruitment of T cells through DC maturation.

Altogether, these experimental models indicate that MAIT cells 
accumulate at the site of bacterial infection and are protective in 
various experimental infection models. However, studies in mice 
are not always contributive to understand the role of MAIT cells 
in humans, because of fundamental differences regarding their 
frequency and repertoire diversity. Classical mouse laboratory 
strains have very few, oligoclonal, MAIT cells while transgenic 
mice which have a high amount of monoclonal MAIT  cells  
(52, 53). In contrast, humans exhibit high numbers of oligoclonal 
MAIT cells.

To date, no selective MAIT-cell deficiency has been reported 
in the human. Therefore, the contribution of MAIT cells to anti-
microbial defense indirectly relies on correlation studies showing 
modifications of MAIT cell numbers in infected patients com-
pared with healthy controls. MAIT cell frequencies are decreased 
in the blood of patients with various bacterial infections, including 
active tuberculosis (TB) (7, 11, 54–57), Vibrio cholera (58), and 
Helicobacter pylori (59). MAIT cell frequencies are decreased in 
cystic fibrosis patients with lung bacterial infections, in particular 
with Pseudomonas aeruginosa, and notably, frequencies are even 
lower in patients with higher inflammation and correlate with the 
severity of the lung disease (60). In critically ill patients with severe 
non-streptococcal bacterial infections, a prolonged MAIT  cell 
depletion is associated with further development of intensive 
care unit-acquired infections, suggesting that MAIT cells might 
be protective in such a clinical setting (61). All these studies were 
conducted in adult patients.

As indicated earlier, MAIT  cell activation can occur during 
various viral infections. Since viruses are unable to directly stimu-
late MAIT cells via MR1, it is likely that such MR1-independent 
activation is related to cytokines released from other virus-
infected cells (34). In HIV infection, MAIT cells show signs of 
exhaustion and decline in numbers, both in the peripheral blood 
and gut mucosa (31, 33, 62, 63). This may leave patients particu-
larly vulnerable to opportunistic infections. Moreover, depletion 
of gut mucosal MAIT cells may contribute to microbial transloca-
tion due to a compromised mucosal barrier. Upon antiretroviral 
treatment (ART), MAIT  cells appear to be restored in the gut 
mucosa but not in the peripheral blood in adult patients. In HIV 
children, however, peripheral MAIT  cells recover after ART, 
even more so if the treatment is started at a younger age (64). 
These observations support the hypothesis that the dynamics of 
MAIT cell peripheral expansion and tissue distribution may vary 
throughout life.

The case of M. tuberculosis infection is discussed here in 
more details, because it deserves particular interest for children. 
Indeed, the risk of rapid progression to active TB is higher in 
children than in adults, but in the absence of reliable biomark-
ers it remains very difficult to differentiate children at risk 
to develop active TB from those who will remain healthy and 
develop a latent TB infection. MAIT cells are decreased in the 
peripheral blood of adult patients with active TB compared with 

patients with latent infection and subjects without a history of M. 
tuberculosis exposure (11, 56). In addition to their low frequency, 
MAIT cells from patients with active TB exhibit high expression 
of programmed death-1 (PD-1), suggesting that they have been 
persistently stimulated in vivo, and blockade of the PD-1 pathway 
improves their IFNγ production in response to stimulation with a 
BCG vaccine (54). MAIT cells from patients with active TB have 
also impaired functional capacities in response to M. tuberculosis 
compared with those from patients with latent TB and healthy 
controls (55). Altogether, these data suggest that the degree of 
peripheral MAIT cell depletion correlates with disease outcome. 
However, MAIT cell frequencies show a high variability between 
individuals (healthy controls as well as infected patients), mak-
ing it unlikely to use them as a clear-cut biomarker of disease 
outcome, unless longitudinal studies in large cohorts of patients 
provide convincing results.

It is usually proposed that the reduced MAIT cell numbers in 
the peripheral blood of infected patients is a consequence of their 
recruitment to the infected tissues. However, data on MAIT cell 
accumulation in the tissues remain controversial, owing to the 
difficulty to perform longitudinal studies in patients. Thus, 
MAIT cells are detected in the lungs of patients with active TB 
(7, 11). At contrast, MAIT cell frequencies are reduced in pleu-
ral effusions, but increased in ascitic fluids from patients with 
tuberculous peritonitis, suggesting that MAIT levels may vary 
depending on the tissues (54). So far, one cannot exclude that a 
low frequency of MAIT cells in some individuals may, by itself, 
favor bacterial colonization and promote disease progression. 
As recently shown, a polymorphism in the human MR1 gene, 
associated with MR1 expression, is associated with susceptibility 
to meningeal TB in Vietnamese adult patients (65). It will be 
crucial to know if such association is observed in other microbial 
infections in various populations, to determine if impaired MR1-
antigen presentation is involved in susceptibility to infection.

HOw MAiT CeLLS DiSTiNgUiSH 
PATHOgeNS FROM COMMeNSALS?

Because MAIT cells are activated in the presence of microbial-
derived MR1 ligands and are able to kill infected cells, their 
activation must be tightly controlled to avoid inappropriate 
responses to commensals. This is particularly crucial in mucosae 
(gut and lung) where MAIT  cells are abundant and in close 
vicinity to the microbiota. Several lines of evidence indicate that 
MAIT cells can adapt their proliferative and effector responses 
depending on the amount, nature, and location of microbial 
ligands, and on the presence of co-stimulatory signals (66–69). 
Thus, MR1-mediated presentation of microbial ligands may not 
be sufficient to optimal MAIT  cell responses. MR1 transcripts 
are detected in multiple tissues, but MR1 expression at the cell 
surface is very low in the absence of infection. MR1 is retained 
in the endoplasmic reticulum until ligand binding occurs, at 
which time it is rapidly transported to the cell surface (70). In 
antigen-presenting cells, uptake of intact bacteria is required for 
efficient MR1-mediated MAIT cell activation, while stimulation 
with soluble ligand is inefficient. In addition, the amount of MR1 
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at the cell surface is differentially regulated in different cell types. 
Toll-like receptor (TLR) stimulation may modify MR1 expres-
sion on antigen-presenting cells and B cells (71, 72). In mice, the 
administration of the synthetic MR1 ligand 5-OP-RU alone causes 
MAIT cell activation but does not result in MAIT proliferation, 
while the addition of TLR agonists causes high levels of activation 
and proliferation of the MAIT cell pool (50). Altogether, these 
data may explain why the mere presence of commensal-derived 
ligands is not sufficient to induce surface MR1 expression and 
MAIT cell activation in the gut. It is likely that a high infiltra-
tion of pathogen bacteria, due to the disruption of the intestinal 
barrier, together with strong inflammatory signals, is required. 
Moreover, compared with peripheral blood, MAIT  cells from 
mucosae have increased expression of certain genes, such as TNF, 
IL23R, and CD40L, that would allow them to respond quickly 
to bacterial infiltration (69). Finally, active compounds produced 
by some commensals may maintain a state of suppression of gut 
MAIT cells, as suggested by the decreased IFNγ production by 
MAIT cells in response to Staphylococcus aureus stimulation if 
commensal Lactobacilli bacteria are present (73). The produc-
tion of folic acid by Lactobacillus plantarum was involved in the 
maintenance of regulatory T cells (74). Interestingly, the folic acid 
derivative, 6-FP, is able to bind MR1 but acts as an antagonist 
ligand for MAIT cell activation (17). Whether L. plantarum has 
an intact riboflavin biosynthetic pathway able to produce activat-
ing MR1 ligands that compete with 6-FP remains an open issue. 

The recent success of a synbiotic trial associating L. plantarum to 
fructooligosaccharides to prevent sepsis in rural Indian newborns 
paves the way for such investigation (75).

CONCLUSiON

Our knowledge of MAIT  cells and their role in the control of 
microbial infections has grown substantially in the recent years. 
In humans, numerous studies were conducted in adults, but 
studies regarding MAIT cell function in children are still lacking. 
Whether blood MAIT cell frequency could be used as biomarker 
for disease outcome requires further investigation in longitudi-
nal cohorts. A better knowledge of MAIT cell interactions with 
pathogens and cross talk with other immune cells will also be 
crucial for the development of new therapeutic or vaccine strate-
gies to prevent the development of infectious diseases.
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