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SUMMARY

Cancer stem cells (CSCs) are responsible for tumor initiation, chemoresistance, metastasis, and

relapse, but the underlying molecular origin of CSCs remains elusive. Here we identified that metasta-

tic phosphatase of regenerating liver 3 (PRL-3) transcriptionally upregulates SOX2 in the expansion of

CSC sub-population from normal cancer cells. Mechanistically, SOX2 upregulation is attributed to the

binding of the acetylated myocyte enhancer factor 2A (MEF2A) to SOX2 promoter in tumor cells. In

parallel, PRL-3 competitively binds to Class IIa histone deacetylase 4 (HDAC4) to facilitate HDAC4

translocation, leading to the disassociation of HDAC4 from MEF2A and histones. The released

MEF2A and histones thus remain acetylated and render the subsequent accessibility of the acetylated

MEF2A to SOX2 promoter region. Clinical relevance among PRL-3, SOX2, and HDAC4 is validated in

ovary cancer samples. Therefore, this PRL-3-HDAC4-MEF2A/histones-SOX2 signaling axis would be a

potential therapeutic target in inhibiting ovarian cancer metastasis and relapse.

INTRODUCTION

Acquisition of extra stem cell-like features by cancer cells greatly limits the clinical utility of most anticancer

drugs. Relapse is also driven by this small sub-population of cells, althoughmost of the tumor cells are rapidly

killed upon drug exposure. Recent evidence indicates that the emergence of relapse is unlikely due to all the

mutation events in tumor cells (Menon et al., 2015; Sharma et al., 2010), but in part to the occurrence and

enrichment of this small sub-population of cancer (stem) cells that is intrinsically heterogeneous and refractory

to anti-cancer drugs (Roesch et al., 2013; Trumpp andWiestler, 2008). This non-mutual scenario proposes that

there are non-mutational transitionmechanisms under cancer cells to obtain the native or acquired drug toler-

ance (RavindranMenon et al., 2015; Sharma et al., 2010; Su et al., 2017). However, the underlyingmechanismof

this heterogeneous cancer cell state’s transition/plasticity remains elusive.

Epithelial ovarian cancer is the most deadly gynecologic malignancy; patients undergoing routine surgery

and chemotherapy often suffer from recurrence of disease as the treatment becomes ineffective and tumor

migrates to metastatic sites (Vetter and Hays, 2018). Phosphatase of regenerating liver 3 (PRL-3) is found

upregulated in metastasis sites of various cancers, and a higher PRL-3 level is related to poor prognosis

in several cancers including colon, ovarian, and breast cancer and leukemia (Al-Aidaroos and Zeng,

2010; Peng et al., 2004). Beside its phosphatase function, PRL-3 is also involved in several crucial pathways

for carcinogenesis as a multifunctional molecule. Studies already manifest that PRL-3 modifies cell growth,

migration, and invasion through Rho, vascular endothelial growth factor, and KCNN4 in different cell lines

(Fiordalisi et al., 2006; Zimmerman et al., 2014; Lai et al., 2011). More importantly, PRL-3 causes epithelial-

mesenchymal transition (EMT), a key step that leads to cell invasion in carcinogenesis, by inhibiting PTEN

expression and activating PI3K-AKT signaling (Wang et al., 2007). Given that EMT and PTEN downregula-

tion are important in breast cancer stem cell (CSC) formation and drug resistance (Sun et al., 2016), we

suspect that PRL-3may promote the transition of cancer cells to CSCs. In line with this hypothesis, it is docu-

mented that PRL-3 renders chemoresistance in acute myeloid leukemia (AML) (Zhou et al., 2011). However,

whether PRL-3 really plays a driving role in CSC formation remains unknown.

In this study, we disclose that PRL-3 plays a switchable role in tumor cell plasticity of ovarian cancer cells. In

this process, PRL-3 enhances SOX2 upregulation via epigenetic modulations of both a transcription factor,

MEF2A, and histones H3 and H4 for the efficient MEF2A binding to SOX2 promoter.

1Centre for Translational
Medicine, the First Affiliated
Hospital, Sun Yat-sen
University, Guangzhou
510080, China

2Department of
Biochemistry, Zhongshan
School of Medicine, Sun
Yat-sen University,
Guangzhou 510080, China

3Institute of Immunology and
Molecular Medicine, Jining
Medical University, Jining,
Shandong 272067, China

4Guangdong Engineering &
Technology Research Center
for Disease-Model Animals,
Sun Yat-sen University,
Guangzhou 510006, China

5Center for Stem Cell Biology
and Tissue Engineering, Key
Laboratory of Ministry of
Education, Sun Yat-sen
University, Guangzhou
510080, China

6These authors contributed
equally

7Lead Contact

*Correspondence:
yangshl3@mail.sysu.edu.cn
(S.Y.),
wanghaih@mail.sysu.edu.cn
(H.W.)

https://doi.org/10.1016/j.isci.
2019.100766

iScience 23, 100766, January 24, 2020 ª 2019 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:yangshl3@mail.sysu.edu.cn
mailto:wanghaih@mail.sysu.edu.cn
https://doi.org/10.1016/j.isci.2019.100766
https://doi.org/10.1016/j.isci.2019.100766
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.100766&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A B
)

%( ycneiciffe erehpS

Sp
he

re
 e

ffi
ci

en
cy

(%
)

A2780GFP PRL-3

Sp
he

re
 e

ffi
ci

en
cy

(%
)

F

Passage No.

NS NS
NS

NS
NS

H

C

G

Ad. TransiƟon

E DAPI GFP Nanog

G
FP

PR
L-

3

Isotype IgGDAPI GFP

G
FP

PR
L-

3

0.5 1.0 2.0       Dox

PRL-3

D

Dox.0           0.5 1.0 2.0 

-

kDa
65-
45

Figure 1. PRL-3 Enhances the Cell State Transition of Normal Ovarian Cancer Cells to CSC

(A) Tumor cell spheres formed from both GFP parental and PRL-3-overexpressing cells; 5,000 cells were seeded in six-well

plate pre-treated with poly(2-hydroxyethyl methacrylate) coating to prevent cell attachment. Representative images were

taken after 5 days induction.
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RESULTS

PRL-3 Enhances the Cell State Transition of Normal Ovarian Cancer Cells to CSC State

To directly investigate whether PRL-3 functions in the formation of ‘‘stem-like’’ cancer cells, we first forced

expressed GFP-PRL-3 fusion protein in human ovarian cancer cell lines A2780 and SK-OV-3 and Chinese

hamster ovary (CHO) cells (Figure S1A). Serum-free in vitro sphere formation assay showed that PRL-3

enhanced higher sphere efficiency than those of GFP parental cells, and the spheres induced by PRL-3-

overexpressing cells were tighter than those in parental GFP cells (Figures 1A, 1B, and S1B). Moreover,

ALDEFLUOR assay showed that aldehyde dehydrogenase (ALDH) activity, a stem-like character, is higher

in PRL-3-overexpressing cells than in GFP cells under both adherent condition and the suspension transi-

tion state (Figure 1G). In contrast, knockdown of endogenous PRL-3 with specific short hairpin RNAs

(shRNAs) in A2780 cells (Figure S1C) reduced the cell sphere formation efficiency (Figure 1C) and the

ALDH activity in cells (Figure 1G). To exclude the possible effect of cell type on PRL-3 in enhancing cell

sphere efficiency, we established an inducible PRL-3 expression system in CHO cells that have marginal

endogenous PRL-3. With the increase of PRL-3 expression by doxycycline induction, the efficiency of

cell sphere formation accordingly increased; however, when PRL-3 expression level reaches a threshold,

the extra induced PRL-3 will not contribute to further cell sphere formation (Figure 1D). Immunofluores-

cence staining of Nanog, a key stem cell marker that functionally maintains cell stemness, demonstrated

similar staining intensities of Nanog between the spheres induced by PRL-3-overexpressing cells and GFP

parental cells (Figure 1E), indicating that when cell sphere is induced, there is no obvious phenotypical

difference between the two types of spheres. To verify if there is renewal ability distinction between these

two types of spheres, we performed serial passages of these spheres and ALDEFLUOR assay analysis of

tumor spheres. Results showed that there was no clear difference in both renewal ability and sub-popu-

lation percentage between the PRL-3-positive and the normal control spheres (Figures 1F and S1D).

Thus, we concluded that PRL-3 might play an important role in the expansion of general tumor cells to

CSCs, but not in the formed stem-like cells.

In vivo limiting dilution assay of tumor cells is considered as the gold standard to validate CSC stemness.

Using this strategy, we observed that PRL-3 enhances tumorigenic efficiency of ovary tumor cells under

normal adhesion culture condition at 104 cells inoculation per mouse, compared with that of the parental

cells. When we examined the tumorigenic efficacy of the cells dispersed from the formed spheres, we

found that there was no discrepancy in xenografted tumor formation between the two types of the

spheres at all the indicated cell number-diluted inoculations (Figure 1H). These results are further indic-

ative of the role of PRL-3 in promoting stem-like tumor sphere formation under suspension culture induc-

tion, but no effect on the formed stem-like cells. All above-mentioned results indicated that PRL-3

expanded the CSC-like sub-population possibly by promoting the transition of general tumor cells to

stem-like tumor cells.

Figure 1. Continued

(B) Sphere formation efficiency of cells in (A). Tumor spheres were counted and sphere efficiency was calculated as in

Transparent Methods section. The assay was performed in triplicate; data are represented as mean G SEM, **p < 0.01,

unpaired t test.

(C) Tumor cell spheres formed by A2780 and A2780 PRL-3 KD cells. The induction condition and sphere efficiency were

similarly conducted as (A) and (B), respectively. *p < 0.05, unpaired t test.

(D) Cell sphere formation in PRL-3-inducible system of CHO cells. PRL-3 expression was induced by doxycycline (Dox) at

the indicated concentrations (upper panel). The induction condition and sphere efficiency were similarly conducted as (A)

and (B), respectively. **p < 0.01, unpaired t test.

(E) Immunofluorescence staining of tumor spheres from A2780 GFP and A2780 PRL-3 cells to stain Nanog expression.

Spheres were fixed with 4% paraformaldehyde and analyzed by Olympus BX63. The isotype mouse kappa light chain

antibody (IgG) was used as a negative control. Scale bar, 100 mm.

(F) Sphere passage was conducted with the re-dispersed cells from spheres formed. Individual cell from each type of

spheres was seeded to check the sphere formation efficiency. Every 5 days were counted as a ‘‘passage.’’ The first batch of

spheres was designed as passage ‘‘0,’’ the second as passage ‘‘1,’’ and so on.

(G) ALDEFLUOR Assay of A2780 GFP or A2780 PRL-3 cells under adherent culture condition (Ad.) or in the middle of

suspension sphere formation stage (Transition). Amount of fluorescent product is proportional to the ALDH activity in the

cells and is measured using a CytoFLEX flow cytometer. Data are represented as mean G SEM, *p < 0.05, **p < 0.01,

unpaired t test.

(H) Xenograft of tumor formation by A2780 GFP and A2780 PRL-3 cells. The indicated number of cells (cell dose) was

subcutaneously implanted into flanks of NOD/SCID mice. Tumor incidence (number of mice with formed tumor/number

of mice inoculated) was indicated as an index for tumor formation ability.

iScience 23, 100766, January 24, 2020 3



GAPDH

SOX2

Nanog

OCT-4

CD133

Cell Sphere
GAPDH

SOX2

Nanog

OCT-4

CD133

SphereCell

PRL-3

0.5 1.0 2.0

GAPDH

PRL-3

SOX-2

Dox.

** **)
%(ycneiciffe erehpS

E

A B

DC

GAPDH

SOX2

F

PRL-3 PRL-3/
SOX2 KD

Cell Type Cell Dose
Tumor incidence

Ad. Cells 104 5/8 0/8

Effect of SOX2 in Tumor Incidence

G
GFP PRL-3

2.65% 10.14%

3.94% 2.02%

SOX2 KDPRL-3+SOX2 KD

ALDH acƟvity

SS
C

kDa
50-
41-

35-

-41

kDa

-35

kDa

35-
40-
41-
45-
50-

133-

Figure 2. SOX2 Is an Indispensable Player in PRL-3-Enhanced CSC Transition

(A) RT-PCR analyses of the indicated stem cell markers. Total RNA was isolated fromA2780 GFP, A2780 GFP-PRL-3, A2780

GFP sphere, and A2780 PRL-3 sphere. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading

control.
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SOX2 Is an Indispensable Player in PRL-3-Enhanced CSC Transition

To investigate how PRL-3 enhances the normal tumor cells to the stem-like cells, we first examined the

general cell stemness markers. SOX2 and OCT-4 mRNA levels were increased in PRL-3-overexpressing

cells in the normal culture condition (adhesion), but there was no obvious discrepancy between the formed

stem-like spheres in terms of all the key stemness factors checked, including Nanog, OCT4, and CD133

(Figure 2A). Immunoblotting results further clearly confirmed that Sox2 protein level was exclusively

upregulated in cells with PRL-3 overexpression under normal culture state, whereas in the spheres formed

from the parental and PRL-3 cells, all stem markers showed similar expression levels, especially Sox2

(Figure 2B). The same results were observed from SK-OV-3 cells (Figures S2A and S2B). To check if

PRL-3 works in a dose-dependent manner, the inducible PRL-3 expression CHO cell model was used again.

Results showed that the increased PRL-3 level was accompanied by the increased Sox2 expression (Fig-

ure 2C), validating the above dose-dependent sphere formation efficiency with PRL-3 induction. In

contrast, when the endogenous PRL-3 was knocked down by shRNAs (Figure S2C), Sox2 expression was

reversely reduced on both mRNA and protein levels (Figures 2D, S2A, and S2B). Our results indicate

that PRL-3 plays an important role in cell state transition of ovarian tumor cells to the cancer stem-like cells,

possibly via SOX2 upregulation.

Given that Sox2 is one of crucial stemness driver in the induced pluripotent stem cells, we further unveiled if

PRL-3 endows this cell-state transition via SOX2 upregulation effect. By additional knockdown of SOX2 in

PRL-3-overexpressing cells (Figures S2D and S2F), tumor sphere induction assay and ALDEFLUOR assay

showed that silencing of SOX2 almost blocks PRL-3’s effect (Figures 2E and 2G). In vivo tumor formation

assay also confirmed this effect of SOX2 that mediates PRL-3’s function in stem-like tumor sphere formation

(Figure 2F), indicating that SOX2 is a possible master player in PRL-3-induced expansion of CSC sub-

population.

PRL-3 Increases MEF2A Binding to SOX2 Promoter for SOX2 Upregulation

As Sox2 is transcriptionally regulated on multiple levels by various effectors, including cis-elements, en-

hancers, transcription factors, microRNA (miRNAs), or long non-coding RNAs (Wiebe et al., 2000; Tomioka

et al., 2002; Zhou et al., 2014; Jia et al., 2012; Rutenberg-Schoenberg et al., 2016), to characterize how SOX2

is upregulated by PRL-3, we first carried out a luciferase assay. We fused SOX2 promoter sequence (nt +226

to �1320) with luciferase-encoding gene, and results showed that PRL-3 overexpression evidently

increased luciferase activity, manifesting a transcriptional regulation of Sox2 expression (Figure 3A-WT;

Figure S3A). Serial deletions of the SOX2 promoter region showed a potential fragment (nt-501–

1000 bp) that may be responsible for the PRL-3-induced luciferase activity or Sox2 expression (Figure 3A,

D501–1000). With bioinformatic analysis of this region, we predicted transcription factor MEF2A with the

highest binding probability in this SOX2 promoter region, especially in the nt-645–656 portion (Figure S3B).

As only MEF2A and MEF2D were indeed detected in A2780 cells, we first knocked down transcription

factor MEF2D and found no effect on Sox2 expression (Figure S3C), hinting the possible MEF2A effect

here. Deletion of MEF2A-binding site nt-645–656 portion almost mimicked the deletion of nt-501–

1000 bp, suggesting that MEF2A is indispensable for PRL-3-induced Sox2 expression (Figure 3B). To

exclude the tumor cell context effect of SOX2 expression, we also conduct this luciferase reporter assay

in 293T cells and found similar crucial role of nt-645–656 for SOX2 expression (Figure 3C), suggesting

general regulation of SOX2.

Figure 2. Continued

(B) Immunoblots of the indicated stem cell markers in A2780 GFP, A2780 GFP-PRL-3, A2780 GFP sphere, and A2780 PRL-3

sphere with their specific antibodies.

(C) Immunoblots of the inducible PRL-3 and SOX2 expressions in CHO cells with the indicated dose of doxycycline (Dox.)

induction. Cells were transfected with a doxycycline-inducible PRL-3 expression plasmid to establish a stable cell line.

(D) RT-PCR detection and immunoblot of Sox2 expression in PRL-3 knockdown cells.

(E) Tumor spheres formed by A2780 GFP, A2780 PRL-3, and A2780 PRL-3 SOX2 KD cells were counted and sphere

efficiency was calculated as previously described.

(F) In vivo xenograft tumor formation comparison of A2780 PRL-3 cells with PRL-3 cells with additional Sox2 knockdown.

(G) ALDEFLUOR assay of A2780 GFP, A2780 PRL-3, A2780 GFP SOX2 KD, and A2780 PRL-3 SOX2 KD cells. The fluorescent

ALDH activity in the cells is measured by a CytoFLEX flow cytometer. The left panel shows the representative plots of the

ALDHbr sub-population in the indicated cells, and the right panel shows the statistical analyses based on at least three

independent experiments. Data are represented as mean G SEM, **p < 0.01, unpaired t test.
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Figure 3. PRL-3 Increases MEF2A Binding to SOX2 Promoter for SOX2 Transcriptional Upregulation

(A) Luciferase reporter analysis of SOX2 transcription in both A2780 GFP and A2780 PRL-3 cells parallelly. The indicated

full-length SOX2 promoter construct (WT) and its serial deletion mutants (D) were transfected into cells. After 48 h, the

luciferase activities were robustly measured as described in Methods. The secreted alkaline phosphatase (SEAP) was used

as an internal control to normalize the results. All experiments were triply performed. Data are represented as mean G

SEM, ***p < 0.001, **p < 0.01, unpaired t test.

(B) Luciferase reporter assay of the full-length (WT) and a deletion mutant (D645-656) of SOX2 promoters as in (A).

Nucleotides (nt) 645–656 is a predicted crucial MEF2A-binding sequence. **p <0.01, unpaired t test.

(C) Luciferase reporter assay of the full-length (WT) and a deletion mutant (D645–656) of SOX2 promoters in 293T or 293T

PRL-3 cells, assayed as in (B). ****p < 0.0001, unpaired t test.

(D) Chromatin immunoprecipitation of MEF2A-bound SOX2 promoter fragments with specific MEF2A antibody in both

A2780 GFP and A2780 PRL-3 cells. IgG was used as a negative control. The bound Sox2 promoter fragment flanking

nt-645–656 (fragment #1) was examined by quantitative PCR. The 8-kb far upstream fragment (fragment #2) was used as a

negative control. Data are represented as mean G SEM, **p < 0.01, unpaired t test.

(E) Chromatin immunoprecipitation of MEF2A-bound SOX2 promoter fragment (fragment #1) in both A2780 GFP and

PRL-3 cells as in (D), ****p < 0.0001, ***p < 0.001, unpaired t test.
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On further knockdown of MEF2A with two specific small interfering RNAs, we observed a decrease in

PRL-3-induced Sox2 expression (Figures S3D and S3E). Similarly, after overexpressing MEF2A protein (Fig-

ure S3F), an obvious increase in Sox2 expression was detected in both parental control and PRL-3-overex-

pressing cells, but higher SOX2 level still existed in PRL-3 cells (Figure S3G). More importantly, chromatin

immunoprecipitation (ChIP) with MEF2A antibody precipitated more enriched Sox2 promoter fragments

flanking nt-645–656 portion in PRL-3 cells, compared with GFP parental cells (Figure 3D, fragment #1).

The same results were obtained from normal 293T cells with chromatin immunoprecipitation (Figure 3E),

indicating that MEF2A did bind to SOX2 promoter region, especially in the nt-645–656 region, to transcrip-

tionally upregulate SOX2 expression.

HDAC4 Bridges the Role of PRL-3 in MEF2A-Triggered SOX2 Transcription

The metastatic role of PRL-3 is often linked to its function as a tyrosine phosphatase (Saha et al., 2001;

Alonso et al., 2004; Guo et al., 2004; Kim et al., 2004). Therefore, we sought to know whether PRL-3’s phos-

phatase function participates in Sox2 upregulation. Both sphere formation and luciferase reporter assays

showed that catalytically inactive PRL-3 (D72A and C104S) exerted the same enhancive effects on Sox2 pro-

moter activity and sphere formation efficiency as the wild-type PRL-3 (Figures 4A and S4A), indicating the

phosphatase-independent function of PRL-3 in CSC-like transition. Meanwhile, a mutant with deletion of

native PRL-3 prenylation motif (DCAAX), from which PRL-3 loses its inner cell membrane localization,

enhanced the luciferase activity and tumor sphere formation (Figures 4A and S4A). Likely, Sox2 mRNA

levels remained the same in the phosphatase-inactive mutants as that of wild-type PRL-3, but increased

in the prenylation-defect mutant (Figure 4B), suggesting a possibility that it is the cytoplasmic translocation

of PRL-3 that enhances Sox2 expression, rather than its phosphatase activity. We detected theMEF2A level

and observed an unexpected result that PRL-3 overexpression had no influence on MEF2A protein level

(Figure 4C), but MEF2A overexpression indeed could evidently further increase the luciferase activity in

PRL-3-overexpressing cells, compared with the parental cells (Figure 4D). These results prompted us to sus-

pect that PRL-3 may work somehow in an indirect manner on SOX2 expression by MEF2A.

The accessibility of MEF2 transcription factors to their target genes promoters for gene expression can be

contributed by the nuclear export of Class IIa histone deacetylases (HDACs) to cause chromatin relaxation

(Lu et al., 2000; Smith et al., 2007). HDAC4 has been shown to bind MEF2A directly to repress its transcrip-

tion activity by the deacetylation modulation (Miska et al., 1999; Clocchiatti et al., 2013; Di Giorgio and

Brancolini, 2016), and the nuclear imports of HDACs are phosphorylation regulated by phosphatase (Mar-

tin et al., 2008; Paroni et al., 2008). To clarify this possibility, we first straightforwardly silenced HDAC3,

HDAC4, and HDAC7 in A2780 cells (Figure S4B). Depletion of HDAC4 could almost mimic the effect of

PRL-3 overexpression, although HDAC7 has a somewhat similar influence, simultaneous knockdown of

HDAC4 and HDAC7 led to a significant higher SOX2 expression, hinting that Class II deacetylases may

be involved in this process in a redundant manner (Figure 4E). Therefore, HDAC4 was chosen as the key

factor for the following study.

To check if there is a physical interaction between HDAC4 and MEF2A, HEK293T cells were co-transfected

with both MEF2A and HDAC4-FLAG for co-immunoprecipitation analysis. Mutual immunoprecipitation

with either MEF2A or HDAC4 antibody clearly validated the true interaction between MEF2A and

HDAC4 (Figure 4F). Immunoprecipitation also showed that HDAC4 overexpression (Figure S4C) increased

the MEF2A-bound HDAC4 amount in A2780 cells (Figure 4G). Overexpressing HDAC4 decreased SOX2

transcription in PRL-3-overexpressing cells, further confirming this notion (Figure 4H). This result was

also confirmed by luciferase reporter assay (Figure S4D).

Together, the results here manifested that Class II HDAC4 played a mediating role in PRL-3-induced SOX2

expression through the interaction between MEF2A and HDACs.

HDAC4 Coordinately Deacetylates MEF2A and Renders Histones H3 and H4 Relaxation to

Promote MEF2A Accessibility to SOX2 Promoter

Class II HDAC, including HDAC4, functioning as an instinct deacetylase, can remove MEF2A-acetylated

groups upon their interaction, whereas the disassociation of HDAC4 from MEF2A inversely could increase

MEF2A acetylation, leading to active transcriptional events of target genes (Spange et al., 2009; Joseph

et al., 2017; Yuan et al., 2014; Smith et al., 2008; Ishikawa et al., 2010). To clarify whether HDAC4 can

modulate MEF2A acetylation in SOX2 expression regulation event, we first checked MEF2A acetylation

iScience 23, 100766, January 24, 2020 7
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Figure 4. HDAC4 Mediates PRL-3 with MEF2A for SOX2 Transcription

(A) Luciferase reporter assays of SOX2 promoter activity affected by PRL-3 (WT) or PRL-3 mutants. PRL-3 mutants include

D72A (ATP-binding inactive), C104S (catalytically inactive), and DCAAX (cell membrane prenylation motif deletion,

leading to the cytosol translocation). All experiments were conducted three times independently. Data are represented

as mean G SEM, *p < 0.05, unpaired t test.

(B) Quantitative RT-PCR detection of Sox2 mRNA expression levels influenced by PRL-3 (WT) or PRL-3 mutants as in (A) in

A2780 cells. Data are represented as mean G SEM, *p < 0.05, unpaired t test.

(C) Immunoblot of MEF2A protein levels in A2780 and PRL-3-overexpressing cells. GAPDH was used as a loading

control.

(D) Luciferase reporter assay of SOX2 promoter activity affected by MEF2A overexpression. All measurements were

conducted three times independently. Data are represented as mean G SEM, **p < 0.01, unpaired t test.

(E) Quantitative RT-PCR detection of SOX2 transcripts upon knockdown (KD) of HDAC3, HDAC4, and HDAC7 with their

small interfering RNAs. Data are represented as mean G SEM, *p < 0.05, unpaired t test.

(F) Co-immunoprecipitation (IP) of HDAC4 or MEF2A with respective MEF2A or HDAC4 antibody in HEK293T cells to

validate the interaction between MEF2A and HDAC4. Cells were transfected with both pCGN-MEF2A and pcDNA-

HDAC4-FLAG vectors.

(G) Immunoprecipitation of HDAC4 with MEF2A antibody in A2780 cells with additional HDAC4 overexpression.

(H) Quantitative RT-PCR examination of SOX2 transcription in A2780GFP and PRL-3 cells, after forced HDAC4 expression.

Data are represented as mean G SEM, *p < 0.05, unpaired t test.
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status. Immunoprecipitating with MEF2A and checking with the acetylated lysine antibodies revealed a

pronounced acetylated MEF2A level in PRL-3 cells (Figure 5A), indicating the positive modulation of

MEF2A acetylation by PRL-3. Once HDAC4 overexpression was committed in PRL-3 cells, MEF2A acetyla-

tion state was clearly decreased (Figure 5B), verifying the blockade effect of HDAC4 on PRL-3-mediated

MEF2A acetylation. We then conducted additional ChIP analysis and demonstrated that the additional

HDAC4 overexpression in PRL-3 cells suppressed MEF2A binding to SOX2 promoter region (fragment

#1) (Figure 5C), verifying the favorable effect of MEF2A acetylation on its accessibility to SOX2 promoter.

HDAC4 not only deacetylates transcription factors but also promotes gene transcription through the

coordinated histone deacetylation for chromosome remodeling in another side, especially via H3 and
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Figure 5. HDAC4 Concurrently Deacetylates MEF2A and Histones H3 and H4 to Facilitate MEF2A Binding to

SOX2 Promoter

(A) Immunoprecipitation (IP) detection of the acetylated MEF2A in A2780 GFP or A2780 GFP-PRL-3 cells. MEF2A

acetylation was examined by immunoblot of the immunoprecipitated MEF2A with an anti-acetylated lysine antibody.

(B) Immunoprecipitation detection of the acetylated MEF2A in A2780 GFP-PRL-3 cells with or without additional HDAC4

overexpression as in (A).

(C) Chromatin immunoprecipitation of MEF2A-bound SOX2 promoter region in both A2780 GFP and PRL-3 cells with or

without HDAC4 overexpression (OE), respectively, as before. MEF2A-bound Sox2 promoter fragment (fragment #1) was

valued by quantitative PCR.

(D–F) Histone acetylation status of promoter region examined with chromatin immunoprecipitated fragments of Sox2

promoter region in both A2780 GFP and PRL-3 cells by acetylated histone 3 (AcH3), or histone 4 (AcH4), in both A2780

GFP and PRL-3 cells as in (C). (D) MEF2A-bound fragment (fragment #1) precipitated. (E) MEF2A flanking region (fragment

#2) precipitated. (F) The 8-kb far upstream fragment (fragment #3) precipitated showed no difference in histone

acetylation. Data are represented as mean G SEM, **p < 0.01, *p < 0.05, unpaired t test.
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H4 deacetylations (Groth et al., 2007; Shahbazian and Grunstein, 2007; Tse et al., 1998; Wang et al., 2001;

Shogren-Knaak et al., 2006; Davie et al., 2008). Therefore, alteration of HDACs would collectively cause uni-

versal chromatin relaxation for transcription factors’ entry and binding. To confirm this possibility, we per-

formed ChIP analysis on MEF2A binding to SOX2 promoter region again. ChIP results confirmed that there

was increased amount of the acetylated histone H3 and H4 linked with the MEF2A binding fragments in

Sox2 promoter regions (Figure 5D, fragments #1; 5E #2 fragments), whereas the far upstream regions could

not be precipitated by the acetylated histones H3 and H4 (Figure 5F, fragment #3). Either HDAC4 knock-

down or its overexpression indeed significantly increased or decreased the precipitation of MEF2A frag-

ments with acetylated histones H3 and H4, respectively, indicating the negative effect of HDAC4 on

gene transcription via chromatin remodeling (Figure S5F).

Altogether, our results supported the suspect that HDAC4 represses MEF2A-dependent transcription of

SOX2 and the deacetylations of MEF2A and histones H3 and H4, which may render effective MEF2A access

and binding to Sox2 promoter region.

PRL-3 Interacts with and Attracts HDAC4 Translocation to Degradation

Considering the above-mentioned results that PRL-3 phosphatase activity was not involved in SOX2 expres-

sion, but the prenylation defect PRL-3mutant was (Figures 4A and S4A), as well as that PRL-3 increasedMEF2A

acetylation (Figure 5A), we speculated the probability that PRL-3 and HDAC4 might compete with each other

to bind with MEF2A through their interaction. To confirm the hypothesis, we first tentatively detected HDAC4

expression and found that HDAC4was reduced in PRL-3-overexpressing A2780 cells (Figure 6A). Furthermore,

in the inducible PRL-3 system, we also observed that HDAC4 level decreased clearly, along with PRL-3 level

increase (Figure 6A), indicating that PRL-3 downregulates HDAC4 expression. When treating the cells with

the proteasome inhibitor, MG132, the reduced HDAC4 levels by PRL-3 overexpression were restored back

to those in various parental cells (Figure 6B), hinting that PRL-3 exerted the proteasome-dependent

HDAC4 degradation. Ubiquitination analysis really demonstrated the heavily ubiquitinated HDAC4 in PRL-3

overexpressing cells (Figure 6C).

Class II HDAC4 is known to shuttle between the cytoplasm and nucleus to quickly respond to environment

change of cells (Nishino et al., 2008; Grozinger and Schreiber, 2000). Given that HDAC4 actively exports

from the nucleus to cytoplasm (Miska et al., 1999; Borghi et al., 2001; Di Giorgio and Brancolini, 2016), there

are very high chances for interaction between the cytosolic PRL-3 and HDAC4.We sought to check whether

this sort of interaction exists; we performed mutual immunoprecipitations and found that PRL-3 and

HDAC4 were really precipitated by each other (Figure 6D), although relatively small amount of PRL-3

was precipitated with respect to the total input, which might be due to the low level of endogenous

HDAC4 protein in the cells. Immunofluorescence staining also showed that PRL-3 overexpression indeed

co-localized with HDAC4 in the cytosol; in contrast, HDAC4 is located in the nuclei of PRL-3-null cells (Fig-

ure 6E), suggesting that PRL-3 overexpression attracts HDAC4 export from the nucleus to cytoplasm. To

confirm this translocation, we sub-fractioned cytoplasmic and nuclear contents of the cells, and immuno-

blotting detection showed much more HDAC4 in the nuclei of PRL-3-null cells, whereas the majority of

HDAC4 in the cytoplasm of PRL-3-overexpressing cells (Figure 6F). These results are consistent with the

previously reported ones in HeLa cells (Miska et al., 1999).

Upon inhibition of HDAC4 proteosome degradation with MG132, we observed a decreased interaction

between HDAC4 and MEF2A in PRL-3-overexpressing cells, compared with the parental cells (Figure S6B).

In addition, in the inducible PRL-3 expression system, we also found that with the increasing PRL-3 amounts,

increasing amounts of HDAC4 bound to PRL-3; in contrast, less HDAC4 bound to MEF2A upon MG132

treatment to stop HDAC4 degradation (Figure 6G). Similarly, the decreasing amount of HDAC4 bound to

MEF2A along with the increasing amounts of PRL-3 induction was also confirmed in CHO cells (Figure S6C),

and more HDAC4 bound to the increased PRL-3 once HDAC4 degradation was inhibited (Figure S6D), vali-

dating the dissociation of HDAC4 from MEF2A to bind to PRL-3 for the eventual ubiquitination-mediated

degradation.

Taken together, results here demonstrated that PRL-3 overexpression could attract HDAC4 to translocate

from the nuclei to cytoplasm for their interaction and the subsequent proteasome degradation, leading to

the release of individually acetylated MEF2A that can bind onto Sox2 promoter region.
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Figure 6. PRL-3 Interacts with HDAC4 to Attract HDAC4 Translocation and Degradation

(A) Immunoblots of HDAC4 in both A2780 and PRL-3-inducible 293T cells.

(B) Immunoblots of HDAC4 in A2780 GFP and A2780 PRL-3 cells with or without MG 132 treatments.

(C) Ubiquitination of HDAC4 affected by PRL-3. Immunoprecipitation (IP) of HDAC4 in both A2780 GFP and A2780 GFP-

PRL-3 cells with HDAC4 antibody, and detected with ubiquitin antibody by immunoblotting (IB). Cells treated with or

without MG 132.

(D) Mutual immunoprecipitation (IP) of PRL-3 and HDAC4 in A2780-GFP-PRL-3 cells and examined by the indicated

antibodies (immunoblotting [IB]).

(E) Immunofluorescence staining of HDAC4 in A2780 GFP and A2780 GFP-PRL-3 cells. Nuclei were stained with DAPI.

Scale bars, 10 mm.
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Relevance of PRL-3, SOX2, and HDAC4 in Clinical Ovarian Tumors

To validate if PRL-3-high tumors really have high level of SOX2 in clinical samples, we collected and exam-

ined both PRL-3 and Sox2 expressions in 37 fresh ovarian cancer samples. All samples were classified into

PRL-3-low (with score 0, 1, 2) and PRL-3-high (with score 3, 4) groups, based on the robust immunohisto-

chemical (IHC) staining intensity. IHC analysis showed not only that SOX2 expression was significantly

higher in the PRL-3-high group than in the PRL-3-low group but also that both expression patters were

well co-localized (upper panel, a pair of serially sliced samples) and there was a tight correlation between

PRL-3 and SOX2 expression in these tumor samples (Figure 7A). In addition, The Cancer Genome Atlas

datasets of ovarian cancer clinical samples analysis validated a good correlation between PRL-3 and

SOX2 expressions at mRNA levels (Figure 7B, n = 295).

Moreover, we analyzed HDAC4 expression in the PRL-3-low and PRL-3-high fresh ovarian cancer groups.

IHC results also manifested that HDAC4 expression was inversely correlated with PRL-3 in these tumor

samples (Figures 7C and 7D). This information further confirmed the real bridge role of HDAC4 in PRL-3-

induced SOX2 expression.

DISCUSSIONS

Stem-like cancer cells are recognized as a small subset of cells that has the ability to repopulate multiple

tumors in different sites. EMT and drug resistance are believed to be the key characters of these CSCs. We

have revealed that PRL-3 can induce EMT through PTENdownregulation (Wang et al., 2007) and can lead to

drug resistance of AML, implying the possibility of PRL-3 in tumor stem-like cell transition. Here we exper-

imentally demonstrated that PRL-3 can promote the expansion of CSC sub-population via the coordinated

regulations of both acetylation states of a transcription factor MEF2A for the key stemness factor SOX2

transcriptional expression and histones for chromatin relaxation. In this process, PRL-3 binds to HDAC4

to render its translocation and degradation, leading to both acetylated MEF2A and histones for effective

MEF2A binding to Sox 2 promoter region (Figure 7E). Thus, we here disclosed amechanistic understanding

of cancer relapse, which extends the metastatic PRL-3 to be a cancer relapse driver. Cancer stem-like cells

have been recognized to be critical for cancer dormancy upon chemotherapies, and now they are the main

targets for developing second-line therapeutic methods, due to their abilities in self-renewal, tumor initi-

ation, metastasis, and relapse (Clevers, 2011). Ovarian cancer cells with CD44+/CD24-, CD133, or ALDH

show higher likelihood of recurrence, resistance to standard chemotherapy and radiotherapy, and poor

prognosis (Meng et al., 2012; Zhang et al., 2012; Stemberger-Papic et al., 2015; Landen et al., 2010). In

line with this, PRL-3 overexpression results in more ALDH-positive sub-population, indicating that patients

with higher PRL-3 level may tend to develop drug resistance and recurrence. Thus, we propose PRL-3 as a

promising therapeutic target for thorough eradication of dormant cancer cells.

PRL-3 is known as a tyrosine phosphatase linked to metastasis of various cancers, strictly dependent on its

phosphatase activity (Al-Aidaroos and Zeng, 2010). However, the specific substrate of PRL-3 is still elusive

by far, hinting the possible multifunction of PRL-3 in cancer progression. Our results here showed that

PRL-3 works as an adaptor, which is independent of its phosphatase activity, to promote expansion of

CSC sub-population possibly via the transition from normal ovarian cancer cell to the stem-like cancer cells.

In this process, the cellular localization of PRL-3 indeed is critical (Figures 4A and 4B), enlightening an

important consideration of a key protein’s location with its specific function in cancers or other diseases,

for instance, of p27 and p53, whose locations are linked to various outcomes in cancer progression (Larrea

et al., 2009; Muller and Vousden, 2014). Therefore, the non-enzymatic manner of such key phosphatases

should not be ignored in a particular scenario. PRL-3 was found in the nucleus of colorectal cancer cells

(Liu et al., 2013b) and can promote telomere deprotection to maintain chromosomal instability (Lian

et al., 2017). Our results currently further show that PRL-3 independent of its phosphatase activity binds

to the deacetylase HDAC4, in the cytosol, to attract the disassociation of HDAC4 from MEF2A to export

to cytoplasm, leading to the consequent HDAC4 degradation. The underlying mechanism of how PRL-3

Figure 6. Continued

(F) Sub-cellular fractions and immunoblots of HDAC4 and MEF2A in A2780 GFP and A2780 GFP-PRL-3 cells. Nuclear (N)

and cytoplasmic (C) proteins are indicated. Lamin B1 and a-actin were used as nuclear and cytoplasmic protein markers,

respectively.

(G) IP of HDAC4 with either MEF2A or PRL-3 antibody in PRL-3-inducible expression 293T cells with MG 132 pre-treatment

to inhibit HDAC4 degradation. Binding of HDAC4 to MEF2A or PRL-3 was examined by IB.
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attracts and brings HDAC4 export from nucleus, and how HDAC4 undergoes ubiquitination degradation,

needs to be further investigated. Tentatively, we proposed a possibility that when the cytoplasmic PRL-3

increased to a certain level, it would attract the dynamic HDAC4 from the nucleus like a sponge or directly

enter into the nucleus to bind to MEF2A with higher affinity, resulting in a one-way shuttle of HDAC4 to the

cytosol for ubiquitination and degradation (Figure 6).

Acetylation and deacetylation modifications, as main epigenetic regulations, play mutual balances in cell

physiology and homeostasis. HDAC4 is one of the key deacetylases to modulate both transcription factors

and histones, leading to a large event of cell differentiation or differentiation in cell fate (Di Giorgio and

Brancolini, 2016). Here we unexpectedly observed that this small phosphatase PRL-3 even could participate

in such complex process, especially in the modulation of the transcription of a stem-cell factor, SOX2,

based on the acetylation status of its transcription factor, MEF2A, and the corresponding chromatin locus

accessibility for MEF2A entry and binding. Other concomitant events should be checked to indicate the

specific physiological effect of PRL-3 and HDAC4 in the cancer cell state transition. Thereafter, PRL-3 itself

again may be considered as a potential therapeutic target in diseases due to epigenetic abnormal regu-

lation, including various types of cancer, rather than HDAC4 that would raise generally intrinsic side effect

if targeted.

PRL-3 Sox2

So
x2

 e
xp

re
ss

io
n ****

A
Lo

g2
 (S

O
X2

 T
PM

)

Log2 (PTP4A3 TPM)

B

C

HD
AC

4 
ex

pr
es

sio
n **D

PRL-3 HDAC4

#1

#2

**

Figure 7. Relevance of PRL-3, SOX2, and HDAC4 in Clinical Ovarian Tumors

(A) Immunohistochemistry analyses of PRL-3 and Sox2 expressions in 28 freshly collected ovarian cancer samples. The

statistical expression of SOX2 in PRL-3-high and PRL-3-low groups is clustered, Data are represented as mean G SEM,

****p < 0.0001, unpaired t test. Scale bar, 50 mm.

(B) Correlationship between PRL-3 and SOX2 expression in clinical data. The Cancer Genome Atlas database of ovary

cancer was analyzed with GEPIA, **p < 0.01, Spearman test.

(C) Immunohistochemistry analyses of HDAC4 and PRL-3 expressions in ovarian cancer samples by serial sections in (A).

Inserts showing the amplified regions to show the opposite expression pattern of PRL-3 to HDAC4 in the same cells.

#1 Scale bar, 100 mm, #2 scale bar, 50 mm.

(D) The statistical analysis of HADC4 expression in PRL-3-high and PRL-3-low groups, Data are represented as

mean G SEM, **p < 0.01, unpaired t test.
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SOX2 is aberrantly expressed in various cancers (Liu et al., 2013a). Given its key stemness factor character,

the Sox2 expression regulation is necessary to be figured out. Besides basal promoter and distal

enhancers, miRNAs and long non-coding RNAs are also involved in the transcriptional control of Sox2

expression (Wiebe et al., 2000; Zappone et al., 2000; Tomioka et al., 2002; Miyagi et al., 2006; Leis et al.,

2011; Zhou et al., 2014). In this study, we found PRL-3 working as an upstream effector to upregulate

Sox2 at the transcriptional level. This study shows that the influence of PRL-3 alone on stemness is limited;

only when cells are cultured in non-adherent and serum-free conditions it promotes the numbers

of spheres, which is consistent with the observed fact that PRL-3 is often detected in metastatic sites. How-

ever, the other key factors, including Nanog, OCT4, or CD133, have not been impaired, to reason the accel-

erated transition of stem-like tumor cell formation, but not the formed tumor stems cells. Likewise, others

studies have shown that Sox2 expression plays key role in sphere formation efficiency (Rodriguez-Pinilla

et al., 2007; Hagerstrand et al., 2011; Wu et al., 2012; Rita et al., 2009; Basu-Roy et al., 2011; Bourguignon

et al., 2012; Leis et al., 2011; Singh et al., 2012). Thus, PRL-3 could be a potential player in normal tissue stem

cell homeostasis, for instance, in the expansion of pluripotent stem cell population. To bypass the poten-

tially undesired effect of SOX2-targeting therapy, PRL-3 could be alternatively focused on. Interestingly,

the continuous elevation of PRL-3 can induce increased Sox2 expression, but there is no further sphere ef-

ficiency increase, indicating a threshold amount of Sox2 in stem-like cell transition.

Limitations of the Study

� The expansion of CSC-like sub-population in PRL-3-positive cells could be due to other mechanisms,

such as the blocked differentiation or a more active stem cell division.

� Given the general effect of histone acetylation, other factors may also be modulated when HDAC4

undergoes translocation or degradation.

� The sample size of patients with ovarian cancer is relatively small.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.100766.
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Figure S1. PRL-3 promotes cancer stem-like spheres, Related to Figure 1

A. Immunoblots of GFP-PRL-3 in A2780, SK-OV-3 and CHO cells.

B. Sphere formation efficiencies of SK-OV-3 and CHO cells transfected with GFP empty

vector or GFP-PRL-3. After 3-5 days of seeding, efficiencies were calculated as described

in Transparent Methods. Data are represented as mean±SEM, **p<0.01, unpaired t-test.

C. Immunoblots and RT-PCR of endogenous human PRL-3 after knocking down endogenous

PRL-3 (KD), compared to the wild type cells or cells transfected with GFP vector.

D. Aldefluor assay of A2780 or A2780 PRL-3 cells under adherent culture condition or after

sphere formation. Data are represented as mean±SEM, *p<0.05, unpaired t-test.

D

kDa

35-

50-

kDa

35-

50-



A

GAPDH

PRL-3

SOX2
GAPDH

SOX2

C

D

A2780 PRL-3 A2780 PRL-3

PRL-3 
PRL-3 SOX2 KD 

E

B

kDa

35-

45-

40-

41-

50-

kDa

35-

41-

kDa

35-

41-



Figure S2. PRL-3 upregulates SOX2 expression, Related to Figure 2

A. RT-PCR analyses of the indicated stem cell markers. Total RNA was isolated from SK-OV-3

GFP, SK-OV-3 GFP-PRL-3, SK-OV-3 GFP sphere, and SK-OV-3 PRL-3 sphere.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading control.

B. Immunoblots of the indicated stem cell markers in A with their specific antibodies.

C. RT-PCR of Sox2 in A2780 GFP and PRL-3 cells transfected with specially designed

shRNAs that stably knockdown the expression of PRL-3.

D. Immunoblots and RT-PCR of Sox2 in A2780 cells transfected with specially designed

shRNAs that stably knockdown the expression of Sox2.

E. Growth curve of A2780 PRL-3 and A2780 PRL-3 SOX2 KD cells.
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Figure S3. MEF2A trancriptionally upregaulates SOX2, Related to Figure 3

A. Luciferase reporter analysis of SOX2 transcription in both HEK 293T cells affected by PRL-3

expression as described in Transparent Methods section. Data are represented as mean

±SEM, **p<0.01, unpaired t-test.

B. Possible transcription factors’ binding sites on Sox2 promoter region and their scores were

predicted. Website: http://biomed.org.ua/COTRASIF/

C. RT-PCR detection of SOX2 in A2780 GFP and PRL-3 cells transfected with 2 siRNAs

targeting MEF2D.

D. RT-PCR detection of MEF2A in A2780 cells transfected with siRNAs targeting MEF2A

expression.

E. RT-PCR detection of SOX2 in A2780 GFP and PRL-3 cells transfected with siRNAs targeting

MEF2A expressions.

F. Immunoblots of MEF2A in A2780 cells transfected with pCGN-MEF2A plasmid.

G. RT-PCR of Sox2 in A2780 GFP and PRL-3 cells transfected with pCGN-MEF2A plasmid.

http://biomed.org.ua/COTRASIF/
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Figure S4 . HDAC4 is involved in PRL-3-mediated tumor sphere formation, Related to Figure 4

A. Sphere efficiency analysis of SOX2 transcription in A2780 cells transfected with wild type (WT) or

the indicated PRL-3 mutants. Data are represented as mean±SEM, **p<0.01, unpaired t-test.

B. RT-PCR detection of HDAC3, HDAC4 and HDAC7 in A2780 cells transfected with siRNAs targeting

HDAC3, HDAC4, HDAC7 or scrambled control siRNAs. Total RNA was extracted and analyzed with

RT-PCR to examine the expression of HDAC3, HDAC4 and HDAC7.

C. Immunoblots of HDAC4 in A2780 cells transfected with pcDNA-HDAC4-FLAG plasmid.

D. Luciferase reporter analysis of SOX2 transcription in A2780 GFP and PRL-3 cells transfected with

pcDNA-HDAC4-FLAG vector. Data are represented as mean±SEM, **p<0.01, unpaired t-test.
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Figure S5. HDAC4 modulates MEF2A accessibility to SOX2 promoter, Related to Figure 5

A. Chromatin immunoprecipitation of MEF2A-bound SOX2 promoter fragments in both A2780

cells affected by PRL-3. The diagram of Sox2 promoter regions and the fragments for

detection are indicated. The MEF2A binding site (fragment #1), negative far upstream

fragment (#3) were examined by semi-quantitative RT–PCR.

B. Chromatin immunoprecipitation of MEF2A-bound SOX2 promoter fragments in both 293T

and 293T PRL-3 cells as in A.

C. RT-PCR detection of SOX2 mRNA levels in A2780 GFP and PRL-3 cells transfected with

wild type or the indicated PRL-3mutants.

D. RT-PCR detection of SOX2 mRNA in A2780 GFP transfected with siRNAs targeting HDAC3,

HDAC4, HDAC7 expressions and PRL-3 cells.

E. RT-PCR detection of SOX2 in A2780 GFP and PRL-3 cells upon HDAC4 overexpression.

F. Chromatin immunoprecipitation of the acetylation state of SOX2 promoter region by the

indicated acetylated histone 3 (AcH3), or histone 4 (AcH4) in both A2780 GFP and PRL-3

cells, with HDAC4 knockdown (KD) and overexpression (OE), respectively.
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Figure S6. PRL-3 competitively binds to HDAC4 for its degradation, Related to Figure 6

A. Immunoblots of HDAC4 in 293T cells with PRL-3 expression (R3) with or without MG132

treatment.

B. Immunoprecipitation of HDAC4 in both A2780 GFP and A2780 GFP-PRL-3 cells with MG

132 pre-treatment. Binding of HDAC4 to MEF2A was examined by immunoblotting (IB).

C. Immunoprecipition of HDAC4 by MEF2A along with the induction of PRL-3 in CHO cells.

Total cell lysates (Input) and precipitated proteins were detected by immunoblots (IB). IgG

was used as a negative control for immunoprecipitation.

D. Immunoprecipitations of HDAC4 with PRL-3 in PRL-3-inducible expression 293T cells.

Binding amounts of HDAC4 to PRL-3 was examined by immunoblotting (IB).



Target Forward Reverse

PRL-3 5’-TACAAACACATGCGCTTCCTC-3’ 5’- CTGTTTGGGCCGGTATTTCT-3’

SOX2 5’-CATGGACAGTTACGCGCACA-3’ 5’-CCCTCCCATTTCCCTCGTTT-3’

OCT4 5’ GACAACAATGAGAACCTTCAGGAGA-

-3’

5’- CTGGCGCCGGTTACAGAACCA-3’

Nanog 5’-GTCTTCTGCTGAGATGCCTCACA-3’ 5’- CTTCTGCGTCACACCATTGCTAT-3’

CD133 5’-AAGCATTGGCATCTTCTATGG-3’ 5’- AAGCACAGAGGGTCATTGAGA-3’

MEF2A 5’-TGCGGAATCATAAAATCGCACC-3’ 5’- GGACTGCTTCCAGCTCCATT-3’

MEF2B 5’-GACCGTGTGCTGCTGAAGTA-3’ 5’- AGCGTCTCGAGGATGTCAGT-3’

MEF2C 5’-TCCACCTCCCAGCTTTGAGAT-3’ 5’- TGCCAGGTGGGATAAGAACG-3’

MEF2D 5’-GGGGGTGACCTGAACAGTGC-3’ 5’- GTGATGACTCGCAGGTCGGG -3’

HDAC4 5’-GGTGGTGTTGGGGTGGACAG-3’ 5’- GCTCTCCTCCGCATGGTGTC-3’

HDAC3 5’-CCCTGCGGGATGGCATTGAT-3’ 5’- GGCCTCTTCTACCAGCAGCG-3’

HDAC5 5’-TGTGACAGTGGAGGTGAAGC-3’ 5’- GTGGGAGGGAATGGTTGAGG-3’

HDAC7 5’-TGCCGACAGTGTCCTTGCTG-3’ 5’- ACTGGGCAAAGTGGAAGGGC-3’

HDAC9 5’-CTGGGCAGTATGGAGGCAGC-3’ 5’- GGCAAAGGTGCAGACTGGGT-3’

1# 5’-GGTTCTCAGCTCTAGAGTCTGCC -3’ 5’- CTTCCTTGCTTCCACGTAACTTGC -3’

2# 5’-GTTTGAGCCCCAGGCTTAAGCC -3’ 5’- CTTCCCTCCTCCTCTGGCCG-3’

3# 5’-CGTGCAATAGCAGAGTCCTGG -3’ 5’- CAACAACCTGCTACCCCACAGGC -3’

GAPDH 5’-CGGAGTCAACGGATTTGGTCGTAT-3’ 5’-AGCCTTCTCCATGGTGGTGAAGAC-3’

Supplemental Table S1. Primers used in this study, Related to Figure 2 and Figure 4



Transparent Methods

Cell culture and sphere formation assay

Human A2780 ovarian cancer cells, Human SK-OV-3 ovarian cancer cells, Chinese Hamster

Ovary (CHO) cells were purchased from American Type Culture Collection (ATCC, Rockville,

MD) and maintained in RPMI-1640 medium supplemented with 10% heat-inactivated fetal

bovine serum and 1% antibiotics (Sigma) at 37 oC with 5% CO2. For sphere induction formation

assay, we added the recombinant EGF (10 ng/ml) and bFGF (5 ng/ml) to DMEM/F12 medium

with B27 as supplement, namely as sphere culture medium. When induction of tumor cell

sphere, we used trypsin to detach the proper cultured adhesion cells to prepare the single cell

suspension, and seeded 5000 cells from the suspensions into each well of 6-well plates

containing 2 ml sphere culture medium. Meanwhile, 0.4% (weight/volume) of poly 2-

hydroxyethyl methacrylate (pHEMA) dissolved in 95% ethanol was added into the each well for

blockade of cell attachment to plates. After 5 days, sphere efficiency was calculated as (sphere

numbers*100/5000) %.

Plasmids construction and cell transfection

The pEGFP-PRL-3, PRL-3 mutants and PRL-3 knockdown shRNA expression plasmids were

constructed as previously described (Qu et al. 2014). The dose-dependent PRL-3 induction

expression system with doxycycline was constructed as before (Zeng et al. 1998). PCGN-

MEF2A (Cat No. #32958) and pcDNA-HDAC4-FLAG (Cat. No. #30485) plasmids were

acquired from Addgene. For knockdown of SOX2, the specific shRNAs were synthesized and

constructed into the same vector as those of PRL-3 knockdown shRNAs, just replacing PRL-3-

targeted sequences with “CTGCCGAGAATCCATGTATAT” or

“AGGAGCACCCGGATTATAAAT”. For the luciferase analysis, SOX2 reporter construct was

purchased from GeneCopoeia Inc., in which 1546 bp of SOX2 promoter region fused to

luciferase-encoding gene. The indicated serial of the deleted mutants of the SOX2 promoter

were generated by PCR method, following the QuikChange™ Site-Directed Mutagenesis Kit

protocol (Agilent, CA, USA) with specifically designed primers (Supplementary Table S1).

Assayed cells were tranfected with Lipofectamine® 2000 Reagent (Invitrogen) following the

supplier’s manual instruction, except for 293T cells with calcium chloride.

Luciferase reporter assay

Cells in 6-well plate were transiently transfected with 3 μg of the full-length or the indicated

deletion mutants of SOX2 promoter-luciferase constructs. After 24 hours of transfection, 1 ml

medium from each well was collected and measured with Secrete-PairTM Dual Luminescence

Assay Kit (GeneCopoeia), according to the supplied manual.

siRNA oligos

The small interference RNAs (siRNAs) of MEF2A and MEF2D, HDAC3, HDAC4, and HDAC7

were synthesized by synbio-tech.

Semi-and quantitative RT-PCR

Total RNA was extracted from cells using Qiagen RNeasy kit (QIAGEN), following the

manufacturer’s instructions. cDNAs were synthesized with SuperScript™ II Reverse

Transcriptase (Invitrogen) with Oligo dT at 42 oC for 1 hour, with the extracted total RNA as

template. GAPDH amount was used as an internal loading control. Image J software was used to

quantitatively analyze the relative expression levels of target genes. The primers used in

experiments are listed in supplementary data (Table S1).



Cellular fraction of cytosol and nuclear proteins

Cells were washed with 1 ml of ice-cold PBS, harvested and suspended in the cellular fraction

reagent A (Beyotime). After Votex briefly, cells were put on ice for 15 minutes. Cellular fraction

reagent B was added to the mixture and centrifuged at 12,000 g for 5 minutes at 4°C. The sediment

contains the nuclei, while the supernatant contains cytosol protein. Further, the nuclei pellet was

mixed with RIPA protein extraction reagent (Genestar) for 30 min (votex every 20 seconds) and

centrifuged at 10,000 g for 10 min at 4 °C to collect the supernatant as nuclear protein.

Antibodies

Antibodies used were as follows: anti-GAPDH Rabbit mAb (#2118, Cell Signaling Technology),

anti-Sox2 rabbit polyclonal antibody (11064-1-AP, Proteintech), anti-Nanog (1E6C4)(sc-293121,

Santa Cruz Biotechnology), anti-OCT4 antibody (#2750, Cell Signaling Technology), anti-IgG

(3E8)( sc-69786, Santa Cruz Biotechnology), anti-MEF2A mouse monoclonal antibody (sc-17785,

Santa Cruz Biotechnology), anti-HDAC4 rabbit polyclonal antibody (17449-1-AP, Proteintech),

anti-acetylated-Lysine antibody (#9441, Cell Signaling Technology), anti-GFP rabbit mAb (#2956,

Cell Signaling Technology), anti-Ubiquitin Antibody (#3933, Cell Signaling Technology), anti-PRL-

3 mouse monoclonal antibody (sc-130355, Santa Cruz Biotechnology).

Immunofluorescence staining and Immunohistochemistry

For Immunofluorescence, cells less than 50% of confluency were seeded and grown on coverslips

overnight. Spheres were precipitated and washed according to Sasaki’s method (Sasaki et al. 2010).

Cells or spheres were fixed with 4% paraformaldehyde and permeabilized with Triton-100. After

blocking in 5% goat serum, samples were incubated with the appropriately diluted primary and

secondary antibodies. Mouse IgG antibody (same IgG1 Kappa light chain as Nanog mouse antibody

from Santa Cruz) was used as an isotype negative control. Eventually, cells were observed and

photographed by fluorescence microscopy (Nikon C2). For immunohistochemistry, the paraffin-

embedded tissues were sectioned into slices in 5-7 μm thickness with a microtome (Leica), and

mounted onto the adhesive microscope slides in warm water (40°C). Sections were allowed to dry

overnight at room temperature. After deparaffinization and rehydration, sections were subjected to

the specific primary antibody incubation overnight at 4°C. Sections were then incubated and stained

using PV-6000 goat anti-mouse or rabbit IHC kit (Zsbio). Sections were examined and the photos

were captured with an inverted fluorescent microscope (Nikon). The staining intensity was scored

with the following rules: 0, <10%, 1, 10-25%, 2, 25-50%, 3, 50-75%, 4, >75%. Clinical samples

were divided into two groups: PRL-3 low (with score 0, 1 and 2) and PRL-3 high (with score 3 and

4).

Co-Immunoprecipitation and Western Blotting

Cells with 70-85% of confluency were washed with ice-cold PBS and lysed in cold lysis buffer (10

mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.5% NP-40, 1mM EDTA, 0.2 mM Sodium

orthovanadate, 0.2 mM PMSF and protease inhibitor cocktail) on ice for 30 min. Total lysates were

collected with rubber scrapers into tubes on ice, and then clarified at 14,000 rpm for 15 min at 4 oC.

Total protein concentration was determined by BCA protein assay (Bio-Rad). For co-

immunoprecipitation (Co-IP), Pierce® Crosslink Immunoprecipitation Kit was used accordingly.

Briefly, the clarified cell lysates were incubated with protein G-agarose beads cross-linked with

respective antibody (2 μg) or mouse IgG (30000-0-AP, Proteintech), overnight at 4°C on a rotator.

After incubation, the bound proteins were washed extensively with lysis buffer, prior to boiling in 2

x SDS loading buffer for loading analysis. For western blotting, total lysates or IP eluates were run

on a 10% SDS-PAGE gel, and transferred into a PVDF membrane (Amersham). The blots were

blocked in 5% milk in PBS with 0.01% Tween 20 for 2 hours.



After incubation with primary antibodies for overnight at 4 oC, blots were washed and incubated

with HRP-labeled anti-rabbit (Cell Signaling Technology) or anti-mouse antibody (Cell

Signaling Technology) for 2 h and developed using an enhanced chemiluminescence kit (Pierce).

Images were acquired by ChemiDoc™ Touch Imaging System (Bio-Rad).

Chromatin immunoprecipitation

Chromatin immunoprecipitation was performed according to the method described by Nelson

(Nelson et al. 2006) with slight modifications. In brief, cells were fixed with formaldehyde and

collected. After sonication, cell lysates were incubated with protein A+G agarose beads and

specific antibodies respectively. After incubation, beads were carefully collected and washed for

several times. The bounded DNA was isolated by boiling and precipitated.

In vivo xenograft tumor formation assay

Monolayer (adhesion cells) or tumor sphere cells (dispersed) were trypsinzied and suspended in

PBS/Matrigel mixture (2:1 in v/v), followed by implantation of 0.2 ml of this mixture

subcutaneously (s.c.) into flanks of 8-week-old female NOD/SCID mice (The Jackson Lab). The

inoculated mice were well feed to record tumor formation and progression, until the tumor sizes

were apparent or to a limit of 1.5 cm3 in volume. At end of experiments, the mice were

humanely sacrificed. All animal studies were approved by the Institutional Animal Care and Use

Committee (IACUC) and were carried out under the policies of Sun Yat-sen University, China.

Aldefluor Assay for FACS

The ALDEFLUOR kit (StemCell Technologies, Catalog #01700) was used to analyze the

population with a high ALDH enzymatic activity based on Ginestier’s research (Ginestier et al.

2007). 106 PRL-3+ or PRL-3- cells were suspended in 1 ml ALDEFLUOR assay buffer

containing 5 μl ALDH substrate (BAAA) and incubated for 40 min at 37 degree. As negative

control, the same number of cells were treated with 5 μl ALDH substrate (BAAA) and incubated

for 40 min at 37 degree. As negative control, the same number of cells were treated with 5 μl

diethylaminobenzaldehyde (DEAB), a specific ALDH inhibitor. The sorting was established

using gate on all nucleated cells to exclude RBCs and debris (R1), then gate the rightmost edge

of the stained DEAB control population with the second log decade on the FL1 axis (R2). Then

analyze the corresponding sample tubes with the above gate R2.

Cell Proliferation Assay

Cell Counting Kit-8 (Dojindo) was used to analyze the proliferation of A2780 PRL-3 or A2780

PRL-3 SOX2 KD cells. Dispense 100 μl of cell suspension (5000 cells/well) in a 96-well plate.

Incubate the plate for an appropriate length of time (24, 48, 72 ,96 or 120 hours) in the incubator

(at 37°C, 5% CO2). Add 10 μl of CCK-8 solution to each well of the plate and Measure the

absorbance at 450 nm using a microplate reader (TECAN).

TCGA data mining and statistics

The GraphPad Prism 6.0 were adopted to perform the statistical analysis and the statistical data

are presented as mean ± SEM. Comparisons between groups were analyzed using Student’s t-

test. The TCGA data acquired from GEPIA (http://gepia.cancer-

pku.cn/detail.php?clicktag=correlation#iframe). The correlation between PRL-3, SOX2 and

HDAC4 were assessed using Spearman correlation analysis. Differences were considered to be

statistically significant with *p<0.05, **p<0.01, and ***p<0.001, respectively. Sox2 and

HDAC4 expression levels in the PRL-3-high and -low groups were respectively compared with

unpaired t- test.
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