MINI-REVIEW

Viral- and fungal-mediated behavioral manipulation of hosts: summit disease

Abolfazl Masoudi¹ · Ross A. Joseph¹ · Nemat O. Keyhani¹

Received: 29 August 2024 / Revised: 9 October 2024 / Accepted: 10 October 2024 / Published online: 23 October 2024 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024

Abstract

Summit disease, in which infected hosts seek heights (gravitropism), first noted in modern times by nineteenth-century naturalists, has been shown to be induced by disparate pathogens ranging from viruses to fungi. Infection results in dramatic changes in normal activity patterns, and such parasite manipulation of host behaviors suggests a strong selection for convergent outcomes albeit evolved via widely divergent mechanisms. The two best-studied examples involve a subset of viral and fungal pathogens of insects that induce "summiting" in infected hosts. Summiting presumably functions as a means for increasing the dispersal of the pathogen, thus significantly increasing fitness. Here, we review current advances in our understanding of viral- and fungal-induced summit disease and the host behavioral manipulation involved. Viral genes implicated in this process include a host hormone-targeting ecdysteroid UDP-glucosyltransferase (apparently essential for mediating summit disease induced by some viruses but not all) and a protein tyrosine phosphatase, with light dependance implicated. For summit disease-causing fungi, though much remains obscure, targeting of molting, circadian rhythms, sleep, and responses to light patterns appear involved. Targeting of host neuronal pathways by summit-inducing fungi also appears to involve the production of effector molecules and secondary metabolites that affect host muscular, immune, and/ or neurological processes. It is hypothesized that host brain structures, particularly Mushroom Bodies (no relation to the fungus itself), important for olfactory association learning and control of locomotor activity, are critical targets for mediating summiting during infection. This phenomenon expands the diversity of microbial pathogen-interactions and host dynamics.

Key points

- Summit disease or height seeking (gravitropism) results from viral and fungal pathogens manipulating insect host behaviors presumably to increase pathogen dispersal.
- Insect baculoviruses and select fungal pathogens exhibit convergent evolution in host behavioral manipulation but use disparate molecular mechanisms.
- Targets for affecting host behavior include manipulation of host hormones, feeding, locomotion, and immune, circadian, and neurological pathways.

Keywords Summit disease \cdot Behavioral manipulation \cdot Entomopathogenic fungi \cdot Baculovirus infection \cdot Host–pathogen interaction \cdot Neurobiological mechanisms

Abolfazl Masoudi amasou7@uic.edu

Ross A. Joseph rossj@uic.edu

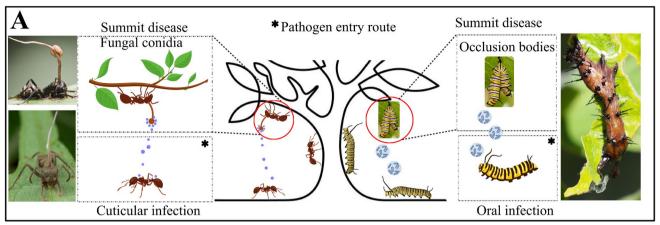
Department of Biological Sciences, University of Illinois, Chicago, IL, USA

Introduction

Insects (*Arthropoda*) are the most populous category of land-dwelling creatures, reigning supreme in sheer numbers and diversity, boasting an estimated 5.5 million distinct species (Perveen et al. 2023). This remarkable order contributes significantly to the natural world by serving, amongst many other roles, as crucial plant pollinators and biological guardians. Insects play vital roles in maintaining the health and balance of almost all terrestrial and aquatic ecosystems, aiding in the recycling of nutrients, and contributing to the

food chain and natural resources (Brown and Paxton 2009). Numerous insect species are also considered serious (animal/human/agricultural) pests, acting as vectors of plant and animal disease-causing agents and threatening almost all agricultural crops and staple food resources (Eggleton 2020). Insects such as mosquitoes, lice, fleas, and bed bugs, along with ticks (Acari), vector and transmit a wide array of pathogens, including bacteria, viruses, nematodes, and protozoa, posing substantial risks (and economic costs) to plant and animal health (Wang et al. 2023). Several groups of organisms can infect and kill insects, including viruses, bacteria, protists, nematodes, and fungi (including microsporidia) (Glare et al. 2012; Hajek and Shapiro-Ilan 2017). Such pathogens can invade and reproduce in insect hosts, often spreading the infection to other insects, including as part of enzootic or epizootic infection cycles that can significantly affect (reduce) insect populations (Jaronski 2010; Joseph et al. 2024a). Microbial entomopathogens display varying degrees of specificity; some are highly specific, infecting one or several insect species, while others have broader host ranges, potentially affecting hundreds of species across different orders and even phyla (Elya and De Fine Licht 2021; Wang et al. 2024). These infectious microorganisms fall into four main categories: (i) opportunistic, (ii) potential, (iii) facultative, and (iv) obligate pathogens. Opportunistic pathogens are typically "harmless" microorganisms that can cause disease under specific conditions, such as when the host is sick, or its immunity is compromised, e.g., the fungus, Aspergillus flavus (Eurotiales, Aspergillaceae) infection of larval and adult bees (Hymenoptera) (Onstad et al. 2006). Potential pathogens lack a direct method of infecting hosts but can multiply and induce disease if they enter through, for instance, a wound; they often thrive in culture and do not target specific hosts, e.g., the bacterium Serratia marcescens (Enterobacterales, Yersiniaceae). Facultative pathogens can infect and multiply within host animals while also thriving in the environment; they are easily cultured in vitro, e.g., the bacterium Bacillus thuringiensis (Bacillales, Bacillaceae) and Hypocrealean fungi such as Beauveria (Cordycipitaceae) and Metarhizium sp. (Clavicipitaceae). Obligate pathogens multiply solely on/within specific hosts, leading to specific disease phenotypes; they typically have a limited host range and are challenging to culture in vitro in the absence of their hosts, necessitating mechanisms for transmission between host generations, e.g., baculoviruses, Paenibacillus popilliae (Bacillales, Paenibacillaceae), microsporidian fungi, and fungi from the Entomophthorales. One central characteristic that distinguishes these groups is their point of entry, i.e., where and how the entomopathogen infiltrates or gains access to an insect host (Vega and Kaya 2012). The primary routes through which pathogens enter an insect host usually involve either the mouth (per os) and/or the protective outer layer of the body, known as

the integument (per cutaneous), although infection via the anus and/or spiracles can also occur (Castagnola et al. 2016). After the microbe multiplies within an infected insect host, infective propagules (e.g., viral particles, spores, conidia) are discharged from the still-living or deceased host into the environment to initiate new infections in other vulnerable hosts (Lovett et al. 2020a). Non-obligate pathogens can often grow saprophytically, some form alternate associations with other organisms, e.g., Beauveria and Metarhizium sp., that can act as epi-/endophytes and/or persist in the rhizosphere, and can have consequences on host immunity and behavior, although not necessarily involving manipulation per se, i.e., impacting pathogen recognition, avoidance, and host sanitation behaviors (Zhang et al. 2024, 2023; Zheng et al. 2023). Many obligate pathogens produce "resting" spores that can persist in the environment (soil) until contact/attachment with a suitable host, which initiates growth and infection, e.g., Massospora sp. that are fungal pathogens of cicadas (Macias et al. 2020).


Within this general context, a particular subset of insect microbial pathogens have evolved the ability to influence the behavior (nervous system) of their hosts, altering normal behavior to maximize the fitness of the pathogen. One example involves manipulating the host such that mortality/ morbidity occurs in locations, geometries, and/or specific times (of the day) that maximize the spread of the pathogen, e.g., daytime or night, at an elevated height, and with the dead or dying host facing downwards so that the infectious particles can "rain" down on unsuspecting hosts during periods in which healthy targets are most active-summit disease (Elya et al. 2023; Malagocka et al. 2015). Such phenomena are sometimes referred to as pathogen-extended phenotypes, i.e., phenotypes in which gene(s) may affect more than the organism within which it is encoded, but can "extend" to those it associates with (Shang et al. 2015). Here, we review one such behavioral manipulation that has occurred convergently by disparate pathogen groups. Knowledge gained from examining host-modulating diseases such as summit disease will impact our understanding of the range of neurological, circadian, immunological, and even musculatory manipulation that microbial pathogens can exert on hosts.

Summit disease

Numerous organisms infect animals and induce them to exhibit specific, unusual behaviors that enhance parasite survival and reproductive success, often at the detriment of the host. For instance, "zombie ant" fungi from the genus *Ophiocordyceps* (*Hypocreales*, *Ophiocordycipitaceae*) manipulate their carpenter ant hosts to leave their nests and deviate from their usual foraging on the surface

or surrounding soil to climb nearby plants or twigs, and, in their final moments, latch onto vegetation where they eventually die at elevated locations (Fig. 1) (Hughes et al. 2011). After a few days, a fungal stalk protrudes from the pronotum of the deceased ant, which is apparently ideally positioned to distribute spores onto unsuspecting ants below (Bekker

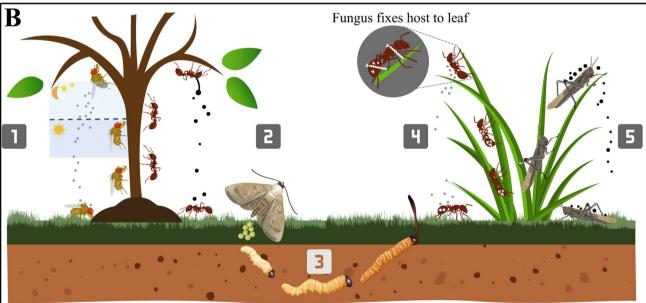


Fig. 1 Summit disease benefits pathogen transmission. A Baculoviruses primarily infect insects through ingestion (per os), whereas entomopathogenic fungi can infect insects by direct penetration of the cuticle (i.e., topical infection, per cutaneous) and via ingestion. B Examples of fungal infection in different hosts: (1) Entomophthora muscae (Entomophthorales, Entomophthoraceae) infects dipteran insects. Infected flies exhibit a behavior known as summiting (height seeking, gravitropism), ascending to a higher point as the infection progresses. Once the elevated point is reached, the dying fly extends its proboscis, becoming affixed to the substrate via sticky secretions, and then raises its wings. This specific posture facilitates the transmission of the fungus to other potential hosts. Death of the host is timed, with E. muscae typically causing host death at sunset. (2) Ophiocordyceps (Hypocreales, Ophiocordycipitaceae)-ant infection system. After fungal spores infect the ant, Ophiocordyceps hijacks the central nervous system of the ant, causing it to leave its colony, climb vegetation, and attach itself to a leaf or twig in a characteristic "death grip." The fungus then consumes the ant's body, using it as a nutrient source. It eventually produces a spore-producing stalk that

emerges from the ant's body, allowing the fungus to release spores into the environment to infect new hosts. (3) Lepidopteran hosts infected with O. sinensis. Insect host nymphs typically burrow and feed underground. Infection results in their displacement upwards to a position a few centimeters below the soil surface. At this point, fungal infection results in death before the host can pupate. The position of the dead cadaver is optimal for the fungal synnema to grow upwards, breaching the soil-air interface to sporulate and complete the fungal life cycle. (4) The fungus Pandora formicae (Entomophthorales, Entomophthoraceae) infects red wood ants (Formica rufa, Linnaeus). Infected ants are often found attached to blades of grass, with a noticeable bundle of fungal rhizoids emerging from the ventral side of their thorax. (5) Grasshoppers (Orthoptera, Latreille) infected with Entomophaga grylli (Entomophthorales, Entomophthoraceae). Infected hosts typically climb to elevated positions, where the fungus grows from the dead cadaver, producing sporulation structures. Summiting aids in the dispersal of fungal spores. Images sourced from Shutterstock and BioRender

et al. 2021). More broadly, this fits into other examples of behavioral manipulation, including the jewel wasp (Ampulex compressa, Fabricius) that incapacitates the American cockroach (Periplaneta americana, Linnaeus) (Rana et al. 2023); protozoans, particularly Toxoplasma gondii (Eucoccidiorida, Sarcocystidae), that dull rodent instinctive fear of cats (Boillat et al. 2020); and hairworms (phylum Nematomorpha) that drive crickets (order Orthoptera) to jump into water, ultimately leading to their demise, that demonstrate how parasites can manipulate host behavior to increase their survival, propagation, and/or transmission (Cunha et al. 2023).

Summit disease, also known as tree-top disease or Wipfelkrankheit, was first reported in modern times in Germany in the late nineteenth century as a behavioral manipulation seen in insects parasitized by specific pathogens or parasites (Hofmann 1891). This phenomenon causes infected insects to climb to higher elevations, such as the tops of plants or trees, where they eventually die, and, as mentioned, with the end result of increasing the dispersal of spores when the host dies (Fig. 1) (Bhattarai et al. 2018b). Summit disease can be triggered by a variety of parasites, including viruses, fungi, and even trematodes (Rand et al. 2023) and certain types of parasitic wasps, impacting a broad spectrum of insects, with particular targets well characterized within ants, beetles, crickets, caterpillars, and flies, but even potentially extending arachnids such as spiders (Elya et al. 2023; Joseph et al. 2024b; Malagocka et al. 2015). Summit disease represents an example of how parasites can exert profound control over their hosts, often altering natural behaviors to enhance their own survival and reproductive success. The most common symptom of summit disease is positioning of the host at a higher elevation just before death (Lovett et al. 2020a; Will et al. 2023). This behavior is considered to provide several benefits to the parasite: first, it can increase the visibility of the dying host, making it more likely to be consumed by a predator, which then acts as the next host and/or carrier/dispersal agent for the pathogen. One example is the infection of host ants by the trematode, Dicrocoelium dendriticum, where infected ants exhibit altered diurnal activities, including nocturnal climbing behavior such as ascending vegetation during the nighttime (Gasque and Fredensborg 2023). This climbing behavior increases the likelihood of predation by grazing mammals, which in turn act as the next host for the parasite, allowing for the completion of the parasite's life cycle. As mentioned previously, the second potential broad benefit to the parasite of summit behavior is that it positions the dying host for optimal dispersal of the next generation of parasite infectious propagules, e.g., spores, occlusion bodies. Examples include baculovirus infection of lepidopteran and other insect larvae (Bhattarai et al. 2018b; Llopis-Giménez et al. 2022) and fungal infection of a range of insects (Will et al. 2023). Microorganisms, including bacteria, fungi, protists, viruses, baculoviruses, and a subset of entomopathogenic fungi, have been characterized as the main agents causing summit disease. Here, we seek to summarize mechanisms of summit disease caused by fungi and viruses, identifying shared traits and unique characteristics to help develop models for understanding why a specific group of microbial pathogens is linked to summit disease. Correlations may be attributed to the production of microbial toxins, which can encompass various classes, including pore-forming toxins, insect ion channel modulators, and psychoactive compounds amongst others (Chalivendra 2021). It is likely that combinations of neuroactive, immunomodulatory, and metabolic compounds function to facilitate the manipulation of insect behavior during summit disease. If true, microbial insect pathogens capable of generating psychoactive and other compounds could be designated as parasitic modulators, offering a conceptual framework to comprehend the mechanisms underlying summit disease. Parasites adapted to control behavior serve as distinct evolutionary experiments, wherein genes from both the host and parasite govern and affect neural processes within the brain (Hughes and Libersat 2019).

Baculoviruses: influencing host physiology and behavior

The Baculoviridae family encompasses a broad range of double-stranded DNA viruses, e.g., nucleopolyhedroviruses (NPVs) and granuloviruses, which target insects and are noted for being able to infect over 800 insect species (Liu et al. 2022). Baculoviridae are separated into four genera: Alphabaculovirus and Betabaculovirus, predominantly found targeting Lepidoptera; Gammabaculovirus, primarily infecting Hymenoptera; and Deltabaculovirus, commonly associated with *Diptera* (Nagamine 2022). Baculoviruses infect insects per os, i.e., by being ingested in the form of occlusion bodies, which dissolve in the insect midgut, releasing occlusion-derived virions (ODVs). These ODVs then infect midgut epithelial cells. The virus replicates and spreads to other tissues, often using viral fibroblast growth factors to degrade barriers, facilitating systemic infection (Gelaye and Negash 2023). Baculoviruses employ several strategies to manipulate the physiology and behavior of their host insects, thereby optimizing virus replication and spread (Fig. 2). These strategies include preventing host molting and increasing locomotory activities (Liu et al. 2022). By halting the molting process, the virus extends the feeding period of the host, enhancing viral proliferation. Additionally, these viruses induce: (i) increased activity and movement of the host and (ii) in infected hosts seeking heights (gravitropism), i.e., climbing upwards on various vegetation ("summiting"), where they eventually die, the latter behavior presumably facilitating the dissemination of the virus

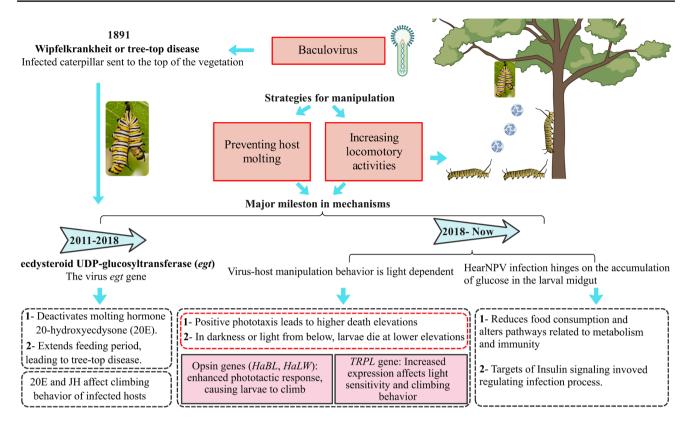


Fig. 2 Basic milestones in understanding baculovirus manipulation of insect hosts

(Hofmann 1891; Wang and Hu 2019). Summiting benefits the virus by increasing viral dispersal to lower vegetation and also potentially by increasing visibility/predation by birds, which may help in the further/wider spread of viral occlusion bodies. Baculoviruses were the initial parasites recognized to demonstrate "genes for the extended phenotype," as described by Dawkins (1982), i.e., genes that exhibit phenotypic effects in host organisms, and their infection of caterpillars has been recognized as an ideal model for exploring how parasites trigger behavioral changes in their hosts (Liu et al. 2022; Ros et al. 2015). Early studies examining European gypsy moth (Lymantria dispar, Linnaeus) larvae infected with nucleopolyhedrovirus, or LdMNPV, revealed distinctive behaviors just before death (D'Amico and Elkinton 1995); whereas healthy L. dispar larvae take refuge in bark crevices or move down to the soil during daylight hours to avoid predation by birds, venturing onto leaves to feed at night, baculovirus-infected larvae climb to the apex of host trees, where they die and liquefy, dispersing millions of infectious virus particles. Such "tree top disease" in L. dispar is triggered by the activation of the baculovirus gene encoding for ecdysteroid uridine 5'-diphosphate (UDP)–glucosyltransferase (egt) ((Hoover et al. 2011). The egt gene product deactivates the insect developmental (molting) hormone, 20-hydroxyecdysone (20E), by adding a carbohydrate moiety from a nucleotide donor to the hydroxyl group on 20E (glucosylation), resulting in the production of 20E-glucoside (O'Reilly et al. 1992). 20E has a broad range of functions, including affecting immunity, and under normal conditions, it can cross the blood-brain barrier, reaching the central nervous system (CNS), where it impacts the production of other developmental hormones, the regulation of nocturnal circadian rhythm, and likely other neurological processes, ultimately acting not only to induce molting and pupation but to do so in locations/conditions that optimize the survival of the organism (Adamo 2019). It is important to note that pupation is not directly caused by 20E alone but occurs when a decrease in the levels of juvenile hormone allows 20E to trigger the metamorphic process (Gelman et al. 2007; Truman 2019). Thus, by reducing (active) 20E levels, baculoviruses reduce/inhibit these normal host behaviors to increase their own fitness. Comparable impacts of a virally encoded egt on mediating tree-top/summit disease were also noted in larvae of the beet armyworm (Spodoptera exigua, Hübner) infected with S. exigua nucleopolyhedrovirus (SeMNPV) (Han et al. 2015a), where infection prolongs the host life span and extends its feeding period, keeping the host in a continuously active feeding state. Genomic analyses have shown that the egt gene is present in nearly all lepidopteran baculoviruses except one specific clade of granuloviruses (Ahn et al. 2012), which may have been acquired via horizontal gene transfer from their insect

hosts (Wang and Hu 2019). However, during infection of the cabbage looper (Trichoplusia ni, Hübner) and S. exigua by the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the egt gene is not required for summiting, suggesting either a lack of a conserved role for the egt gene in inducing summit disease and/or the requirement of other factors (Ros et al. 2015). Climbing behavior in these larvae seems to be linked to molting rather than other biological processes. RNA interference (RNAi) knockdown of viral egt expression has been shown to reduce virus-induced summit disease in cotton bollworm (Helicoverpa armigera, Hübner) larvae infected with HearNPV (Zhang et al. 2018). In this system, not only are 20E levels decreased but juvenile hormone (JH) titers have been shown to increase. Although the exact mechanism by which JH titers are modulated in response to viral infection remains unclear, it is known that periodic releases of ecdysone stimulate molting, and that JH is released at every molt. JH levels typically decrease as larvae develop, and when JH levels decrease below a certain threshold, pupation occurs, with additional epi-endocrinological events likely occurring (De Loof et al. 2013). High levels of JH, however, can maintain larval characteristics by preventing the appearance of adult traits. These findings suggest that egt-induced summit disease may be an indirect consequence of 20E influencing molting processes. Intriguingly, the noctuid-specific fungal insect pathogen, Metarhizium (formerly Nomuraea) rileyi, also targets host 20E levels; however, the fungal enzyme is an ecdysteroid 22-oxidase which inactivates the hormone-preventing molting and dampening immune activation, but infection does not seem to result in summit disease (Zhu et al. 2021).

Although viral egt appears critical in some cases, this does not appear to be universal, and other mechanisms/ genes may be involved in mediating summit disease in different insect viruses. Such findings suggest that manipulation of host behavior by baculoviruses might have evolved repeatedly and/or functions as an adaptation that exploits the host's natural responses to hormonal signals (Hoover 2019). Another baculovirus gene, protein tyrosine phosphatase (ptp), which acts as a virion structural protein, appears to also facilitate infection of host neuronal tissues, subsequently enhancing locomotory activity, inducing climbing behavior in infected caterpillars (Gasque et al. 2024). Likely a similar (to egt) example of acquisition from an ancestral host via horizontal gene transfer, ptp may substitute and/ or function in concert with egt in promoting the increased movement and climbing behavior observed in baculovirusinfected silk moths (Bombyx mori, Linnaeus) (Katsuma et al. 2012). However, the presence of egt and ptp varies across different baculovirus species, with some having both, one, or neither of these genes (Han et al. 2015a; O'Reilly 1997). These findings indicate that additional as yet unknown mechanisms exist in some viruses, that ultimately result in the same extended phenotype as those that use an apparent egt/ptp mediated mechanism. Daylight can play a critical role in the manifestation of baculovirus-induced summit disease (Bhattarai et al. 2018a; Gasque et al. 2019; Van Houte et al. 2015). Third instar larvae of S. exigua infected with SeMNPV, H. armigera with HearNPV, and L. dispar with LdMNPV demonstrate an attraction to light (positive phototaxis), likely acting to promote summiting/elevation seeking due to illumination from above. This is supported by experiments where infected larvae died at lower elevations when placed in total darkness or when illuminated from below, whereas uninfected larvae exhibited no light preference, showing similar movement patterns in both light and dark environments. Interestingly, not all virus-host interactions result in light-dependent behavior; AcMNPV-infected T. ni larvae have been reported to die at elevated positions even in constant darkness (Han et al. 2015b), suggesting a behavior known as negative geotaxis may be involved in this particular pairing, again indicating that different baculoviruses may employ distinct strategies to manipulate host behavior. HearNPV has been shown to manipulate the visual perception of their caterpillar hosts, i.e., H. armigera, resulting in increased phototaxis, which induces climbing to elevated positions (Liu et al. 2022). This climbing behavior predominantly occurs during daylight and can be manipulated by the distance between the infected insect and the light source. Infection results in the increased expression of the host opsin (light receptor) genes, HaBL and HaLW, whose protein products respond to blue light and long-wave light, respectively, as well as the transient receptor potential-like channel (TRPL) gene, proving a mechanism for the lightinduced summiting behavior. HearNPV infection has also been shown to result in host metabolic reprogramming via the insulin signaling pathway (Tian et al. 2023). Infected larvae treated with insulin resulted in reduced viral replication and climbing behavior. Conversely, suppression of the insulin receptor gene resulted in increased climbing behavior. In addition, inhibition of glycolysis using dichloroacetate (DCA) enhanced viral replication but reduced climbing behavior, whereas inhibition of the tricarboxylic acid (TCA) cycle did not significantly affect climbing behavior. Furthermore, dietary restriction led to decreased viral replication and reduced climbing behavior, while glucose supplementation had the opposite effect, promoting both climbing behavior and viral replication. These findings provide mechanistic links between metabolic processes and the increased locomotion and subsequent climbing behavior seen during these infections.

Neuropeptides, small protein-like molecules that function as neurohormones, neurotransmitters, and neuromodulators, are essential components of the central nervous system (CNS), regulating insect physiology and behavior (Zup et al. 2022). It is not too surprising that some of these molecules

are targeted by baculoviruses as part of their host manipulation strategy. SeMNPV infection of S. exigua larvae has been shown to decrease expression of the neuropeptide, proctolin, involved in modulating muscle contractions and motor functions, which are crucial for the larvael movement and other physiological processes (Llopis-Giménez et al. 2022). In S. exigua larvae, AcMNPV particles are detectable in the CNS as early as 3 days post-infection (Gasque et al. 2024). In this instance, the viral ptp gene implicated in mediating summit disease does not appear to be required for CNS infection. Instead, the virus enters the CNS via the trachea, spreading from the caudal to the frontal regions, progressing from the outer CNS cell layers towards the inner cell layers, independent of ptp involvement (Gasque et al. 2024). A summary of the major viral insect pathogens resulting in summit disease is included in Table 1.

Behavior-modifying entomopathogenic fungi

Entomopathogenic fungi employ diverse strategies to exploit insects for nutritional purposes. These fungi typically infect insects through direct contact (per cutaneous), but some can also infect hosts via oral routes (per os) (Mannino et al. 2019). Cuticular or topical infection begins when fungal spores attach to the insect cuticle (Holder and Keyhani 2005), which then germinate and, depending upon the species, produce penetrating hyphae or appressoria, which breach the cuticle via enzymatic degradation and mechanical pressure (Ortiz-Urquiza and Keyhani 2013; Pedrini et al. 2013). Once the integument is breached, the fungus elaborates yeast-like cells termed hyphal bodies that are free-floating within the hemocoel, proliferating on hemolymph and surrounding tissue nutrients (Lewis et al. 2009; Wanchoo et al. 2009). As the insect succumbs to the infection, the fungus reverts to hyphal growth to work its way out of the insect body to grow and sporulate on the insect cadaver in processes that include suppression of competing microbes both during sporulation and by conidia as they initially infect hosts (Fan et al. 2017; Shang et al. 2024; Tong et al. 2020). Some entomopathogenic fungi are generalists, capable of infecting a wide range of host species (e.g., members of the Beauveria, Metarhizium, and Isaria genera) (Masoudi et al. 2018; Ortiz-Urquiza and Keyhani 2016). However, infection by these generalists typically does not result in significant manipulation of host behavior as defined herein. Typically, it is specialist entomopathogenic fungi, whose members typically target a limited array of host species, that engage in host behavioral manipulation. These fungi have been popularly referred to as "zombie-inducing fungi," which are predominantly found in the fungal phyla Ascomycota (most in the order Hypocreales, with the members of the *Ophiocordyceps* genera being the most widely studied) and within the *Zoopagomycota* (most in the order Entomophthorales) (Bekker et al. 2021; Elya 2024), and aspects of their natural history have been documented in the scientific literature since the mid-nineteenth century (Thaxter, 1888). Such zombie-inducing fungi generally employ one of two strategies to access new hosts: (i) cadaver transmission or (ii) active host transmission (Lovett et al. 2020a). In cadaver-transmitting systems, the fungus manipulates the host such that death occurs in an elevated location, at which time the fungus grows outwards from the host and sporulates, utilizing the high vantage point to disperse spores. In this case, transmission occurs to the host from dead infected members. Examples of these include Ophiocordyceps spp., the zombie ant fungus that infects carpenter ants (Petch 1937) and Entomophthora muscae infects various dipterans (true flies) (Krasnoff et al. 1995). Active host transmission involves horizontal transmission of the fungus from one (living) infected member to non-infected hosts (Lovett et al. 2020a). Examples include Massospora infection of periodical cicadas, in which the fungus grows extensively on the lower abdomen of the host and is transmitted to other hosts via contact/sexual activity (Cooley et al. 2018). Such fungal-insect behavioral manipulation and colonization strategies include mechanical and chemical mechanisms (Fig. 3). Mechanical manipulation encompasses physical alterations such as tissue-specific colonization, changes in internal (insect) physiology, and targeted spore production, with chemical manipulation involving the production of fungal biomolecules that disrupt and control host cellular, immunological, and neurological processes (Bekker et al. 2021; de Bekker and Das 2022). Generally, two basic chemical signaling mechanisms implicated in behavior manipulation by zombie-making fungi have been distinguished: (i) direct neuromodulation, where fungal factors act directly on neural circuits, and (ii) indirect neuromodulation, where fungal factors alter upstream inputs to neural circuits. Hypocrealean fungi (e.g., Ophiocordyceps) do not appear to directly invade host nervous tissue, suggesting an indirect mechanism of CNS manipulation. In contrast, many Entomophthoralean fungi (e.g., Entomophthora) directly grow in host nervous tissues (Bekker et al. 2021) and colonize brain tissues while the host is still alive (Bekker et al. 2021; Brobyn and Wilding 1983; Csata et al. 2021; Elya 2024; Elya et al. 2018; Funk et al. 1993). Conversely, Ophiocordyceps species invade the nervous tissue after host death despite their extensive colonization of muscle tissue (Fredericksen et al. 2017; Hughes et al. 2011; Mangold et al. 2019). These two groups also exhibit different rates of disease progression. Ophiocordyceps infections progress slowly over several weeks, allowing a greater length of time for behavioral manipulations (2017a; de Bekker et al. 2015; Will et al. 2020). In contrast, Pandora (Entomophthora, Entomophthoraceae) species colonize internal tissues of their ant hosts within days, leading to behaviors including mound biting and/or

Table 1 Key aspects of viral and fungal pathogens leading to summit disease

Pathogen	Host	Note on infection: gene(s)/effector(s) Proposed host target hormone/implicated	Proposed host target hormone/ pathway	Reference(s)
Virus				
Lymantria dispar Nucleopolyhedrovirus (LdMNPV)	European gypsy moth (<i>Lymantria dispar</i> , Linnaeus)	The egt gene (Ecdysteroid uridine 5'-diphosphate (UDP)–glucosyl-transferase)	Alters molting hormone (20-hydrox- Hoover et al. (2011) yecdysone) affects circadian rhythm, induces climbing (summit disease)	Hoover et al. (2011)
Spodoptera exigua nucleopolyhedrovirus (SeMNPV)	Spodoptera exigua nucleopolyhedro- Beet armyworm (Spodoptera exigua, virus (SeMNPV) Hübner)	The <i>egt</i> gene	Alters molting hormone (20-hydrox-yecdysone) and infection prolong the host life span and extend its feeding period	Han et al. (2015a)
Autographa californica multiple nucleopolyhedrovirus (AcMNPV)	Cabbage looper (<i>Trichoplusia ni</i> , Hübner) S. exigua	The <i>egt</i> gene is not required for summiting	Climbing behavior in these larvae seems to be linked to molting rather than other biological processes	Ros et al. (2015)
HearNPV	Cotton bollworm (Helicoverpa armigera, Hübner)	The combination of the egt gene and unknown mechanism	20E levels decreased, but juvenile hormone (JH) titers have been shown to increase	Zhang et al. (2018)
Bombyx mori nucleopolyhedrovirus (BmNPV)	Silk moth (Bombyx mori, Linnaeus)	Protein tyrosine phosphatase (ptp)	ptp plays a crucial role in virus infection of brain tissues	Katsuma et al. (2012)
AcMNPV	S. exigua	ptp virus particles were detected in the CNS	ptp is needed for the expression of hyperactivity	Gasque et al. (2024)
SeMNPV	S. exigua	Unknown mechanisms	An attraction to light (positive phototaxis) and likely acting to promote summiting/elevation seeking	Van Houte et al. (2014)
HearNPV	H. armigera	Unknown mechanisms	1	Bhattarai et al. (2018a)
LdMNPV	L. dispar	Phototransduction and circadian entrainment pathways	An attraction to light (positive phototaxis) and likely acting to promote summiting/elevation seeking	Bhattarai et al. (2018b)
AcMNPV	T. ni	Unknown mechanisms	Light-independent behavior (negative geotaxis)	Han et al. (2015b)
HearNPV	H. armigera	Light receptor genes (HaBL and HaLW) and transient receptor potential-like channel (TRPL) gene	Light-induced summiting behavior	Liu et al. (2022)
HearNPV	H. armigera	Metabolism, immunity, and insulin signaling pathways	Infected larvae treated with insulin resulted in reduced viral replication and climbing behavior	Tian et al. (2023)
SeMNPV	S. exigua	Neuropeptide proctolin; ptp gene involvement in CNS infection	CNS, muscle contractions, and motor functions	Llopis-Giménez et al. (2022)

Table 1 (continued)				
Pathogen	Host	Note on infection: gene(s)/effector(s) Proposed host target hormone/implicated pathway	Proposed host target hormone/ pathway	Reference(s)
Fungus				
Ophiocordyceps spp.	Carpenter ants (Camponotini tribe)	Enterotoxins, Small Secreted Proteins (SSPs), Alkaloid compounds	Indirect neuromodulation: CNS and muscle tissue	de Bekker et al. (2015); Elya (2024), Fredericksen et al. (2017), Hughes et al. (2011), Mangold et al. (2019), Will et al. (2020)
Ептоторћићота тиѕсае	Various dipterans (true flies)	Direct growth in nervous tissue, Mechanical alterations, Sesquiterpenes, visual cues, endogenous pheromones, Direct neuromodulation; Brain tissue and attraction of healthy hosts	Direct neuromodulation: Brain tissue	Bekker et al. (2021), Elya et al. (2023), Krasnoff et al. (1995), Naundrup et al. (2022)
Pandora spp.	Ants (Formica spp., Linnaeus)	Rapid tissue colonization, Mechanical manipulation	Rapid tissue colonization, Mechani- Mechanical alteration: Muscle tissue Csata et al. (2021) cal manipulation	Csata et al. (2021)
Eryniopsis lampyridarum	Goldenrod soldier beetles (Chauli- ognathus pensylvanicus, DeGeer)	Mechanical factors likely responsible Mechanical alteration: Musculature for wing-raising behavior		Steinkraus et al. (2017)

gripping of grass blades near the ant mound, typically occurring several days post-infection. The exact timing of these behaviors can vary depending on environmental factors like temperature and humidity, as well as the specific fungal Pandora species and the ant host involved (Csata et al. 2021).

Behavioral manipulation by entomopathogenic fungi can include various combinations of hyperactivity, gravitropism (summiting), phototaxis, dying-phase positional adjustments (DPPA), circadian timing, and/or sexual attraction (Elva 2024). Hyperactivity typically precedes summitting and is a hallmark of several fungal insect pathogens, particularly within the Ophiocordyceps genera (Hughes et al. 2011) as well as those observed in Entomophthora muscae infections (Krasnoff et al. 1995), and is one of the most consistently observed behavioral patterns in these cadavertransmitting fungal parasites. Field studies have shown that Ophiocordyceps-infected ants are more likely to die in sunlit areas than in shaded ones (Andriolli et al. 2019), and their heads (once dead) are often oriented toward canopy openings (Chung et al. 2017). As summit behavior involves climbing, these fungi disrupt normal neuronal responses via mechanisms that differ from their viral counterparts.

Fungal-induced hyperactivity likely arises from general physiological changes that may include starvation-like states induced as the fungi proliferate within the host, leading to increased locomotion (Elya et al. 2018; Will et al. 2020). Hyperactivity may be driven by compounds secreted by the fungus, including enterotoxins and small secreted proteins (SSPs) that have been shown to be produced, for example, by Ophiocordyceps during infection of host ants. Enterotoxins may disrupt host chemosensory functions (de Bekker et al. 2017a), and SSPs are believed to influence host behavior by affecting neurobiological processes (Bekker et al. 2021). This is supported by gene expression data which has shown that expression of enterotoxin and SSPs genes, as well as a gene cluster responsible for the synthesis of the alkaloid compound related to the tremorgenic compound, aflatrem, remains high during the biting phase induced by Ophiocordyceps, which represents the penultimate step of the infection (before sporulation) as summiting peaks (de Bekker et al. 2015; Elya 2024; Will et al. 2020). However, genetic confirmation and/or direct testing of the roles of these proteins remain to be performed. Insects infected by behavior-manipulating fungi often display significant DPPA (dying-phase positional adjustments), with positioning/ fixing of mouthparts (on leaves, twigs, grass blades, and other substrates) and the splaying of legs and wings (Elya 2024), which occur after ascension to elevated positions, and represents a behavior hallmark of cadaver-transmitting infection mechanisms (Bekker et al. 2021). For instance, Ophiocordyceps-infected ants exhibit "lockjaw," where they bite onto a substrate before death, facilitated by fungal structures penetrating their muscles (Fredericksen et al.

Fig. 3 Mechanical processes in host manipulation by facultative (generalist) non-manipulators and specialized behavioral manipulating ("zombie-making") fungi. Generalists such *Metarhizium (Hypocreales, Clavicipitaceae*) and *Beauveria* sp. (*Hypocreales, Cordycipitaceae*) follow a complete consumption strategy. Entomophthoralean fungi often cause rapid progression of symptoms and manipulation,

Pandora formicae

whereas Hypocrealean fungi (*Ophiocordyceps* species infect different hosts, such as ants and spiders) exhibit a slower progression. Images: infected Asian long-horned beetle (*Anoplophora glabripennis*, Motschulsky) with *B. bassiana* and infected yellow mealworm (*Tenebrio molitor*, Linnaeus) larvae with *Metarhizium* (Masoudi et al. 2020)

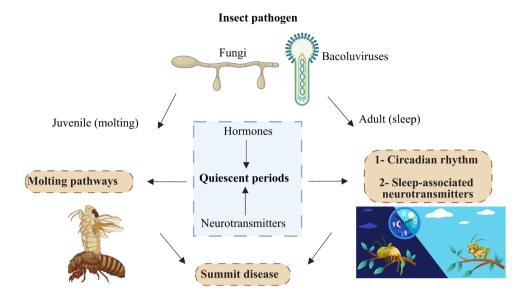
Ants

2017; Hughes et al. 2016; Mangold et al. 2019). Similarly, *Entomophthora*-infected flies extend their proboscis onto their perched substrate, becoming "glued" to place by fungal secretions (Brobyn and Wilding 1983). This proboscis extension might be mechanically driven by body cavity pressure and/or influenced by fungal interactions with motor neurons (Elya et al. 2018). Such positioning and fixation are influenced by circadian clock/timing and/or, in some instances, signals/attraction aimed towards healthy, uninfected hosts. For example, after summiting, both *E. muscae*-infected flies and *Eryniopsis lampyridarum* (*Entomophthorales*, *Entomophthoraceae*) infected goldenrod soldier beetles (*Chauliognathus pensylvanicus*, DeGeer) elevate their wings presumably to facilitate spore dispersal from the dorsal abdomen. The rapid wing-raising in flies (completed in

about 15 min) may result from fungal growth impinging on musculature and/or alterations in motor neuron activity (Krasnoff et al. 1995). Infected soldier beetles exhibit a slower wing-raising process, with mechanical factors likely responsible (Steinkraus et al. 2017). Interestingly, similar DPPAs are observed in insects parasitized by non-fungal organisms. Ants infected by the trematode *D. dendriticum* also maintain elevated positions by biting down, though they remain alive for several days to increase the likelihood of being consumed by herbivores, benefiting the parasite by transferring it to its next host (Martín-Vega et al. 2018). The specific mechanisms behind this behavior in trematode-infected ants remain unclear, although the presence of trematode flukes in the subesophageal ganglion (SOG) might play a role (Martín-Vega et al. 2018).

"Zombie" fungi commonly induce behavioral changes and subsequent death in their hosts as a function of light/ dark circadian rhythms. Flies infected with E. muscae exhibit summit disease and DPPAs, specifically at sunset (Elya et al. 2018; Krasnoff et al. 1995), while Ophiocordyceps-infected ants summit and die within a 3-h window at dawn or in the mid-late morning (solar noon), depending on the species (Hughes et al. 2011; Westwood et al. 2019). This timing involves the interaction of two molecular clocks: one from the host and one from the fungus. Molecular clocks can maintain circadian rhythms, in part, independent of environmental cues, and are driven by a set of core transcription/translation feedback loops that have been observed in some form in almost all eukaryotic organisms (Doležel 2023; Dunlap and Loros 2017). In E. muscae-infected flies, the timing of death appears to be driven by the fungal rather than the host clock. Evidence for this includes the lack of rhythmic timing of death in flies infected under constant darkness, despite the host maintaining circadian periodicity in such conditions (Krasnoff et al. 1995). Additionally, flies exposed to darkness 72-h post-infection show rhythmic timing of death, indicating that the fungal machinery can synchronize its internal clock with the host's environment after the infection has begun. This synchronization process, known as entrainment, allows the fungus to adjust its circadian rhythm to match external cues, ensuring that the timing of critical events, such as host death, maximizes completion of the fungal life cycle and spore dispersal (Krasnoff et al. 1995). Although the presence of a fungal clock in E. *muscae* is likely, it has not been conclusively demonstrated. In Ophiocordyceps-infected ants, timing is hypothesized to be manipulated by fungal influence/interference of the host clock. Transcriptomic studies revealed perturbations in the expression of various clock genes in Ophiocordyceps parasitism of ants during the infection process (de Bekker et al. 2015; Will et al. 2020), with infected ants losing their typical foraging rhythms (Trinh et al. 2021). Expression of circadian transcription patterns in *Ophiocordyceps* when grown in vitro on media in the absence of the host has confirmed that the fungus has its own molecular clock (de Bekker et al. 2017b). These data suggest that *Ophiocordyceps* exhibits gene expression cycles that follow an approximate 24-h period, even without external environmental cues such as light and temperature changes. The exact mechanisms linking fungal clock activity to host behavior remain unclear, but it is proposed that the fungus secretes compounds that alter host physiology, potentially affecting neuronal populations or triggering internal state changes that lead to altered behaviors (de Bekker and Das 2022).

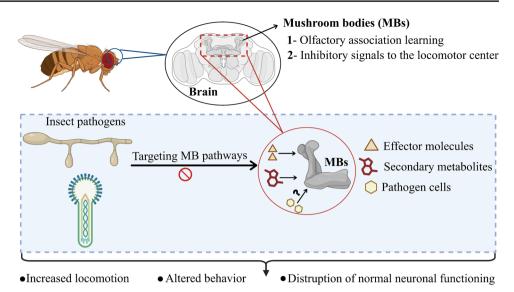
The critical aspect of summit disease is for the pathogen to find the next host. Expelling spores to "rain" down on unsuspecting hosts is one means; however, conceptually, the ability to (additionally) lure healthy hosts to the fungus would provide significant advantages and would be highly adaptive. In support of this, it has been shown that E. muscae enhances transmission by attracting healthy hosts to infected flies. Male house flies are drawn to late-stage female cadavers, with a number of potential factors contributing to this attraction, including via (i) fungal-produced compounds (notably sesquiterpenes), (ii) visual cues from the death pose that may mimic sexual availability, and/or (iii) fungal-induced production of endogenous female pheromones (Naundrup et al. 2022). Since the host is dead, this attraction clearly benefits the fungus and mirrors the activities of other fungi that employ chemical mimicry to attract hosts, e.g., the luring of Caenorhabditis elegans nematodes (Rhabditida) by the predatory fungus Arthrobotrys oligospora (Orbiliales, Orbiliaceae) (Hsueh et al. 2017) and by the pathogenic bacterium B. nematocidal (Bacillales, Bacillaceae) (Zhang et al. 2020).


Overall, while these behavioral changes are seen to benefit the parasites, it is possible that some of these behaviors exhibited by hosts (if still alive) are attempts to increase (or at least engage in) reproductive output before death, avoid spreading the infection to healthy conspecifics, and/or fight disease progression. With respect to reproductive output, in many cases, because of infection, the host is rendered sterile; thus, it is unclear whether such behaviors would represent engagement in futile reproductive efforts or another aspect of the pathogen-host manipulation. In addition, it is known that some fungal insect pathogens, e.g., Massospora sp., actively promote (increased) sexual activity/contact as a mechanism for their horizontal transfer to healthy hosts; however, these fungi do not cause summit disease (Lovett et al. 2020a). A summary of the major fungal insect pathogens resulting in summit disease is included in Table 1.

Summit disease and insect neuroanatomy

Summit disease represents an example of the convergent evolution of an extended phenotype by phylogenetically diverse pathogens. As such, these viral and fungal insect pathogens have evolved independently to manipulate sequential behavioral levers in their respective hosts. However, as part of this selective evolutionary process, these pathogens may have exploited ancestral behaviors shared by their respective hosts (Lovett et al. 2020b). These shared behaviors have been suggested to be (i) periods of quiescence during molting in immature insects and/or (ii) sleeping in adult insects, both of which are highly conserved across many insect species. In this context, a distinction between two types of summit disease, juvenile and adult, has been proposed (Fig. 4). In insects, the putative sleep-wake centers are located in higher-order brain centers and are indirectly connected to the circadian clock network (Helfrich-Förster

Fig. 4 Types of summit disease: juvenile and adult, exploiting behaviors of infected insects during periods of quiescence. Image adapted from (Lovett et al. 2020b)


2018). Structures termed mushroom bodies (MBs) found in the insect brain are considered to be crucial areas responsible for cognitive processing, including integrating mental and sensory inputs (Rubin and Aso 2024). MBs are essential for olfactory association information, walking-related locomotion, and predatory/enemy avoidance (Smith and Lei 2023), and enable insects to adapt to their environments, remember past experiences, and execute complex behaviors (Lin 2023). Intriguingly, blockage of MB activity leads to an increase in locomotor activity in crickets and grasshoppers (Orthoptera) (Huber 1960; 1974). Similarly, male fruit flies exhibit increased activity levels after their MBs were destroyed using hydroxy urea (Helfrich-FÖRster et al. 2002). In addition, fruit flies without functional MBs are not only more active but also sleep less than control flies (Joiner et al. 2006). MB neurons affected by serotonergic and GABAergic neurons (gamma-aminobutyric acidergic) promote wakefulness and are inhibited by either GABA, serotonin, or both. Consequently, activating these serotonergic neurons has a strong sleep-promoting effect (Haynes et al. 2015). This finding is consistent with evidence showing that fruit flies with a loss of 5-hydroxytryptamine (d5-HT1) serotonin receptors in their MBs experience less sleep (Yuan et al. 2006). In a series of elegant experiments using a highthroughput approach to measure summiting, the increased locomotory activity in E. muscae-infected flies was shown to integrate host circadian responses with specific neurosecretory systems, that included the DN1p circadian neurons, the pars intercerebralis to corpora allata projecting (PI-CA) neurons, and the corpora allata (CA, site of JH synthesis) (Elya et al. 2023). Further analyses showed that PI-CA neurons and the CA were intact in summiting animals, despite other regions of the brain (and the insect as a whole) showing fungal penetration and proliferation. Increased permeabilization of the blood-brain barrier of flies was noted during the infection progression and transfusion of fungal-infected fly hemolymph into non-summiting flies resulted in a "burst of locomotion." These data coupled to potential life-stage parameters suggest that irrespective of the insect life stage, insect-behavior modifying pathogens (in summiting and beyond) target a range of host brain structures, potentially centered on MB neurons, which may account for generalized phenotypes of hyperactivity and less sleep (Fig. 5). Understanding if and how these fungal pathogens and their distinct but related "extended phenotypes" target MB neurons to modify insect behavior will provide insights into the shared and unique neurological mechanisms behind how these varied pathogens "control" their different hosts. Furthermore, identifying the commonalities and differences in how circadian rhythms are manipulated in summit diseases across various stages and pathogen systems will allow for a more comprehensive understanding of behavior-manipulating phenotypes (Westwood et al. 2019).

Future directions

Advancing the understanding of summit disease and pathogen-induced behavioral manipulation in insects requires investigating both the natural history and molecular mechanisms of the process. As the systems that result in summit disease are widely disparate (viral to fungal), it is possible that a unified theory is not possible and that these are essentially different diseases that share a superficial commonality. Conversely, considering constraints on host physiology (neuronal functioning), even though the (parasite molecular) mechanisms may be unrelated, the (host) targets may be shared. This insight could allow for the integration of various summit disease systems with their manipulated behavioral outputs. We propose that such a nexus, affecting

Fig. 5 Simplified potential general mechanism of enhanced insect locomotion through pathogen targeting of mushroom bodies (MBs). Targeting of MBs can alter olfactory association learning and inhibitory signals to the locomotor center, resulting in increased locomotion. The neuroanatomy of the sequence of E. muscaeinduced summiting of host flies on a much more refined scale is presented in Elya et al. (2023)

hyperactivity, phototaxis, and gravitaxis, via targeting/neuromodulation of MBs (and other brain structures) may be a common feature of summit disease caused by insect pathogens. Research examining the functioning and targeting of MBs during infection is warranted. In addition, coupling of cell physiology/biology with molecular manipulation of pathogen genes implicated in altering neural circuitry and neurotransmitter dynamics is needed. Such functional genetics, including global gene expression responses (in both the host and the pathogen) coupled to metabolomics, should also be employed to examine host processes induced during summit disease progression with attention to circadian rhythms and neurological processes. Additional aspects that remain largely unexplored include host immunological effects, including in brain (immune) cells, effects/interactions with insect endosymbionts and cuticular and gut microbiome, resistance mechanisms on the host, and the nature of the host specificity of most summit disease-causing insect pathogens.

Author contribution AM conducted the literature review, prepared images, and drafted the manuscript. RJ revised the manuscript, and NK conceptualized the content framework and revised the manuscript.

Funding This research was funded in part by the US National Science Foundation (NSF), grant number IOS-2418026 to N.O.K.

Declarations

Ethics approval This article contains no studies performed by authors with human participants or animals.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adamo SA (2019) Turning your victim into a collaborator: exploitation of insect behavioral control systems by parasitic manipulators. Curr Opin Insect Sci 33:25-29. https://doi.org/10.1016/j.cois. 2019.01.004

Ahn S-J. Vogel H. Heckel DG (2012) Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem Mol Biol 42(2):133–147. https://doi.org/10.1016/j.ibmb. 2011.11.006

Andriolli FS, Ishikawa NK, Vargas-Isla R, Cabral TS, de Bekker C, Baccaro FB (2019) Do zombie ant fungi turn their hosts into light seekers? Behav Ecol 30(3):609-616. https://doi.org/10. 1093/beheco/araa133

Bekker Cd, Beckerson WC, Elya C (2021) Mechanisms behind the madness: how do zombie-making fungal entomopathogens affect host behavior to increase transmission?. mBio 12(5):10-1128. https://doi.org/10.1128/mbio.01872-21

Bhattarai MK, Bhattarai UR, Feng J-n, Wang D (2018a) Effect of different light spectrum in Helicoverpa armigera larvae during HearNPV induced tree-top disease. Insects 9(4):183. https://doi. org/10.3390/insects9040183

Bhattarai UR, Li F, Katuwal Bhattarai M, Masoudi A, Wang D (2018b) Phototransduction and circadian entrainment are the key pathways in the signaling mechanism for the baculovirus induced tree-top disease in the lepidopteran larvae. Sci Rep 8(1):17528. https://doi.org/10.1038/s41598-018-35885-4

Boillat M, Hammoudi P-M, Dogga SK, Pagès S, Goubran M, Rodriguez I, Soldati-Favre D (2020) Neuroinflammation-associated

- aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep 30(2):320-334.e6. https://doi.org/10.1016/j. celrep.2019.12.019
- Brobyn PJ, Wilding N (1983) Invasive and developmental processes of Entomophthora muscae infecting houseflies (Musca domestica). Trans Br Mycol Soc 80(1):1-8. https://doi.org/10.1016/S0007-
- Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40(3):410-416. https://doi.org/10.1051/ apido/2009019
- Castagnola A, Mulley G, Davis N, Waterfield N, Stock SP (2016) Transcript abundance of Photorhabdus insect-related (Pir) toxin in Manduca sexta and Galleria mellonella infections. Toxins 8(10):287. https://doi.org/10.3390/toxins8100287
- Chalivendra S (2021) Microbial toxins in insect and nematode pest biocontrol. Int J Mol Sci 22(14):7657. https://doi.org/10.3390/ ijms22147657
- Chung T-Y, Sun P-F, Kuo J-I, Lee Y-I, Lin C-C, Chou J-Y (2017) Zombie ant heads are oriented relative to solar cues. Fungal Ecol 25:22-28. https://doi.org/10.1016/j.funeco.2016.10.003
- Cooley JR, Marshall DC, Hill KBR (2018) A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Sci Rep 8(1):1432. https://doi.org/10.1038/s41598-018-19813-0
- Csata E, Billen J, Barbu-Tudoran L, Markó B (2021) Inside Pandora's box: development of the lethal myrmecopathogenic fungus Pandora formicae within its ant host. Fungal Ecol 50:101022. https:// doi.org/10.1016/j.funeco.2020.101022
- Cunha TJ, de Medeiros BA, Lord A, Sørensen MV, Giribet G (2023) Rampant loss of universal metazoan genes revealed by a chromosome-level genome assembly of the parasitic Nematomorpha. Curr Biol 33(16):3514-3521.e4. https://doi.org/10.1016/j. cub.2023.07.003
- D'Amico V, Elkinton JS (1995) Rainfall effects on transmission of gypsy moth (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus. Environ Entomol 24(5):1144–1149. https://doi.org/10. 1093/ee/24.5.1144
- Dawkins R (1982) The extended phenotype, vol 8. Oxford University Press, Oxford
- de Bekker C, Das B (2022) Hijacking time: how Ophiocordyceps fungi could be using ant host clocks to manipulate behavior. Parasite Immunol 44(3):e12909. https://doi.org/10.1111/pim.12909
- de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I, Merrow M, Brachmann A, Hughes DP (2015) Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics 16(1):620. https://doi.org/10.1186/s12864-015-1812-x
- de Bekker C, Ohm RA, Evans HC, Brachmann A, Hughes DP (2017a) Ant-infecting Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes and a possible major role for enterotoxins. Sci Rep 7(1):12508. https://doi.org/10. 1038/s41598-017-12863-w
- de Bekker C, Will I, Hughes DP, Brachmann A, Merrow M (2017) Daily rhythms and enrichment patterns in the transcriptome of the behavior-manipulating parasite Ophiocordyceps kimflemingiae. PLoS ONE 12(11):e0187170. https://doi.org/10.1371/journ al.pone.0187170
- De Loof A, Boerjan B, Ernst UR, Schoofs L (2013) The mode of action of juvenile hormone and ecdysone: towards an epi-endocrinological paradigm? Gen Comp Endocrinol 188:35-45. https://doi.org/ 10.1016/j.ygcen.2013.02.004
- Doležel D (2023) Molecular mechanism of the circadian clock. In: Numata H, Tomioka K (ed) Insect Chronobiology. Singapore, Springer Nature Singapore, pp 49–84. https://doi.org/10.1007/ 978-981-99-0726-7_4

- Dunlap JC, Loros JJ (2017) Making time: conservation of biological clocks from fungi to animals. Microbiol Spectr 5(3):10-1128. https://doi.org/10.1128/microbiolspec.FUNK-0039-2016
- Eggleton P (2020) The state of the world's insects. Annu Rev Environ Resour 45(1):61-82. https://doi.org/10.1146/annurev-envir on-012420-050035
- Elya C (2024) When a mind is not its own: mechanisms of host behavior control by parasitic fungi. In: Hsueh Y-P, Blackwell M (eds) Fungal Associations. Springer International Publishing, Cham, pp 293-307
- Elya C, De Fine Licht HH (2021) The genus Entomophthora: bringing the insect destroyers into the twenty-first century. Ima Fungus 12(1):34. https://doi.org/10.1186/s43008-021-00084-w
- Elya C, Lok TC, Spencer QE, McCausland H, Martinez CC, Eisen M (2018) Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. eLife 7:e34414. https://doi.org/10.7554/eLife.34414
- Elya C, Lavrentovich D, Lee E, Pasadyn C, Duval J, Basak M, Saykina V, de Bivort B (2023) Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila. eLife 12:e85410. https://doi.org/10.7554/eLife.85410
- Fan Y, Liu X, Keyhani NO, Tang G, Pei Y, Zhang W, Tong S (2017) Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proc Natl Acad Sci 114(9):E1578-E1586. https://doi.org/10.1073/ pnas.1616543114
- Fredericksen MA, Zhang Y, Hazen ML, Loreto RG, Mangold CA, Chen DZ, Hughes DP (2017) Three-dimensional visualization and a deep-learning model reveal complex fungal parasite networks in behaviorally manipulated ants. Proc Natl Acad Sci 114(47):12590-12595. https://doi.org/10.1073/pnas.1711673114
- Funk CJ, Ramoska WA, Bechtel DB (1993) Histopathology of Entomophaga grylli pathotype 2 infections in Melanoplus differentialis. J Invertebr Pathol 61(2):196–202. https://doi.org/10. 1006/jipa.1993.1035
- Gasque SN, Fredensborg BL (2023) Expression of trematode-induced zombie-ant behavior is strongly associated with temperature. Behav Ecol 34(6):960-968. https://doi.org/10.1093/beheco/arad064
- Gasque SN, van Oers MM, Ros VID (2019) Where the baculoviruses lead, the caterpillars follow: baculovirus-induced alterations in caterpillar behaviour. Current Opinion in Insect Science 33:30-36. https://doi.org/10.1016/j.cois.2019.02.008
- Gasque SN, Han Y, van der Ham I, van Leeuwen D, van Oers MM, Haverkamp A, Ros VI (2024) Baculovirus entry into the central nervous system of Spodoptera exigua caterpillars is independent of the viral protein tyrosine phosphatase. Open Biol 14(2):230278. https://doi.org/10.1098/rsob.230278
- Gelaye Y, Negash B (2023) The role of baculoviruses in controlling insect pests: a review. Cogent Food & Agriculture 9(1):2254139. https://doi.org/10.1080/23311932.2023.2254139
- Gelman DB, Pszczolkowski MA, Blackburn MB, Ramaswamy SB (2007) Ecdysteroids and juvenile hormones of whiteflies, important insect vectors for plant viruses. J Insect Physiol 53(3):274-284. https://doi.org/10.1016/j.jinsphys.2006.11.006
- Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30(5):250-258. https://doi.org/10.1016/j. tibtech.2012.01.003
- Hajek AE, Shapiro-Ilan DI (2017) General concepts in the ecology of invertebrate diseases ecology of invertebrate diseases, pp 1-17. https://doi.org/10.1002/9781119256106.ch1
- Han Y, Van Houte S, Drees GF, Van Oers MM, Ros VID (2015a) Parasitic manipulation of host behaviour: baculovirus SeMNPV EGT facilitates tree-top disease in Spodoptera exigua larvae by

- extending the time to death. Insects 6(3):716–731. https://doi.org/10.3390/insects6030716
- Han Y, van Oers MM, van Houte S, Ros VID (2015b) Virus-induced behavioural changes in insects. In: Mehlhorn H (ed) Host manipulations by parasites and viruses. Springer International Publishing, Cham, pp 149–174
- Haynes PR, Christmann BL, Griffith LC (2015) A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 4:e03868. https://doi.org/10.7554/eLife.03868
- Helfrich-FÖRster C, Wulf J, De Belle JS (2002) Mushroom body influence on locomotor activity and circadian rhythms in Drosophila melanogaster. J Neurogenet 16(2):73–109. https://doi.org/10.1080/01677060213158
- Helfrich-Förster C (2018) Sleep in insects. Annu Rev Entomol 63(1):69-86. https://doi.org/10.1146/annurev-ento-020117-043201
- Hofmann R (1891) Insektentötende pilze mit besonderer berücksichtigung der "Nonne". P. Weber, Frankfurt, p 31
- Holder DJ, Keyhani NO (2005) Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71(9):5260–5266. https://doi.org/10.1128/aem.71.9.5260-5266.2005
- Hoover K (2019) Editorial overview: insect behavior and parasites: from manipulation to self-medication. Curr Opin Insect Sci 33:vi-viii. https://doi.org/10.1016/j.cois.2019.06.012
- Hoover K, Grove M, Gardner M, Hughes DP, McNeil J, Slavicek J (2011) A gene for an extended phenotype. Science 333(6048):1401–1401. https://doi.org/10.1126/science.12091
- Van Houte S, van Oers MM, Han Y, Vlak JM, Ros VID (2015) Baculovirus infection triggers a positive phototactic response in caterpillars: a response to Dobson et al. (2015). Biology Letters 11(10):20150633 https://doi.org/10.1098/rsbl.2015.0633
- Hsueh Y-P, Gronquist MR, Schwarz EM, Nath RD, Lee C-H, Gharib S, Schroeder FC, Sternberg PW (2017) Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife 6:e20023. https://doi.org/10.7554/eLife.20023
- Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. Z Vgl Physiol 44:60–132
- Huber F (1974) Neural integration (central nervous system). In: The physiology of insecta. Academic Press, pp 3–100. https://doi.org/10.1016/B978-0-12-591604-2.50008-6
- Hughes DP, Libersat F (2019) Parasite manipulation of host behavior. Curr Biol 29(2):R45–R47. https://doi.org/10.1016/j.cub.2018. 12.001
- Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (2011) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol 11(1):13. https://doi.org/10.1186/1472-6785-11-13
- Hughes DP, Araújo JPM, Loreto RG, Quevillon L, de Bekker C, Evans HC (2016) Chapter eleven - from so simple a beginning: the evolution of behavioral manipulation by fungi. In: Lovett B, St. Leger RJ (ed) Advances in genetics, vol 94. Academic Press, pp 437–469. https://doi.org/10.1016/bs.adgen.2016.01.004
- Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55(1):159–185. https://doi.org/10. 1007/s10526-009-9248-3
- Joiner WJ, Crocker A, White BH, Sehgal A (2006) Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441(7094):757– 760. https://doi.org/10.1038/nature04811
- Joseph R, Darrisaw C, Lloyd A, Hoel D, Keyhani NO (2024) Isolation of a novel *pythium* species, *P. thermoculicivorax*, and *Trichoderma* sp. from natural enzootic mosquito larval infections. J Fungi 10(3):199

- Joseph RA, Masoudi A, Valdiviezo MJ, Keyhani NO (2024b) Discovery of *Gibellula floridensis* from infected spiders and analysis of the surrounding fungal entomopathogen community. J Fungi 10:694. https://doi.org/10.3390/jof10100694
- Katsuma S, Koyano Y, Kang W, Kokusho R, Kamita SG, Shimada T (2012) The baculovirus uses a captured host phosphatase to induce enhanced locomotory activity in host caterpillars. PLoS Pathog 8(4):e1002644. https://doi.org/10.1371/journal.ppat. 1002644
- Krasnoff S, Watson D, Gibson D, Kwan E (1995) Behavioral effects of the entomopathogenic fungus, *Entomophthora muscae* on its host *Musca domestica*: postural changes in dying hosts and gated pattern of mortality. J Insect Physiol 41(10):895–903. https://doi. org/10.1016/0022-1910(95)00026-Q
- Lewis MW, Robalino IV, Keyhani NO (2009) Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus *Beauveria bassiana*. Microbiology 155(9):3110–3120. https://doi.org/10.1099/mic.0.029165-0
- Lin S (2023) Themaking of the *Drosophila* mushroom body. Front. Physiol. 14:1091248. https://doi.org/10.3389/fphys.2023.1091248
- Liu X, Tian Z, Cai L, Shen Z, Michaud JP, Zhu L, Yan S, Ros VID, Hoover K, Li Z, Zhang S, Liu X (2022) Baculoviruses hijack the visual perception of their caterpillar hosts to induce climbing behaviour thus promoting virus dispersal. Mol Ecol 31(9):2752– 2765. https://doi.org/10.1111/mec.16425
- Llopis-Giménez A, Parenti S, Han Y, Ros VID, Herrero S (2022) A proctolin-like peptide is regulated after baculovirus infection and mediates in caterpillar locomotion and digestion. Insect Sci 29(1):230–244. https://doi.org/10.1111/1744-7917.12913
- Lovett B, Macias A, Stajich JE, Cooley J, Eilenberg J, de Fine Licht HH, Kasson MT (2020) Behavioral betrayal: how select fungal parasites enlist living insects to do their bidding. PLoS Pathog 16(6):e1008598. https://doi.org/10.1371/journal.ppat.1008598
- Lovett B, St Leger RJ, de Fine Licht HH (2020) Going gentle into that pathogen-induced goodnight. J Invertebr Pathol 174:107398. https://doi.org/10.1016/j.jip.2020.107398
- Macias AM, Geiser DM, Stajich JE, Lukasik P, Veloso C, Bublitz DC, Berger MC, Boyce GR, Hodge K, Kasson MT (2020) Evolutionary relationships among Massospora spp. (Entomophthorales), obligate pathogens of cicadas. Mycologia 112(6):1060–1074. https://doi.org/10.1080/00275514.2020.1742033
- Malagocka J, Grell MN, Lange L, Eilenberg J, Jensen AB (2015) Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission. J Invertebr Pathol 128:47–56. https://doi.org/10.1016/j.jip.2015.05.001
- Mangold CA, Ishler MJ, Loreto RG, Hazen ML, Hughes DP (2019) Zombie ant death grip due to hypercontracted mandibular muscles. J Exp Biol 222(14):jeb200683. https://doi.org/10.1242/jeb. 200683
- Mannino MC, Huarte-Bonnet C, Davyt-Colo B, Pedrini N (2019) Is the insect cuticle the only entry gate for fungal infection? insights into alternative modes of action of entomopathogenic fungi. J Fungi 5(2):33. https://doi.org/10.3390/jof5020033
- Martín-Vega D, Garbout A, Ahmed F, Wicklein M, Goater CP, Colwell DD, Hall MJR (2018) 3D virtual histology at the host/parasite interface: visualisation of the master manipulator, Dicrocoelium dendriticum, in the brain of its ant host. Sci Rep 8(1):8587. https://doi.org/10.1038/s41598-018-26977-2
- Masoudi A, Jl K, Bhattarai UR, Wang D (2018) Elevational distribution and morphological attributes of the entomopathogenic fungi from forests of the Qinling Mountains in China. Appl Microbiol Biotechnol 102(3):1483–1499. https://doi.org/10.1007/s00253-017-8651-4

- Masoudi A, Wang M, Zhang X, Wang C, Qiu Z, Wang W, Wang H, Liu J (2020) Meta-analysis and evaluation by insect-mediated baiting reveal different patterns of hypocrealean entomopathogenic fungi in the soils from two regions of China Front Microbiol 11:1133. https://doi.org/10.3389/fmicb.2020.01133
- Nagamine T (2022) Apoptotic arms races in insect-baculovirus coevolution. Physiol Entomol 47(1):1–10. https://doi.org/10. 1111/phen.12371
- Naundrup A, Bohman B, Kwadha CA, Jensen AB, Becher PG, De Fine Licht HH (2022) Pathogenic fungus uses volatiles to entice male flies into fatal matings with infected female cadavers. ISME J 16(10):2388–2397. https://doi.org/10.1038/s41396-022-01284-x
- O'Reilly DR (1997) Auxiliary genes of baculoviruses. In: Miller LK (ed) The Baculoviruses. Springer, US, Boston, MA, pp 267-300
- Onstad D, Fuxa J, Humber R, Oestergaard J, Shapiro-Ilan D, Gouli V, Anderson R, Andreadis T, Lacey L (2006) An abridged glossary of terms used in invertebrate pathology. Society for invertebrate pathology, 3rd edn. Society of Invertebrate Pathology. Available: https://www.sipweb.org/glossary
- O'Reilly DR, Brown MR, Miller LK (1992) Alteration of ecdysteroid metabolism due to baculovirus infection of the fall armyworm *Spodoptera frugiperda*: host ecdysteroids are conjugated with galactose. Insect Biochem Mol Biol 22(4):313–320. https://doi.org/10.1016/0965-1748(92)90069-Q
- Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4(3):357–374. https://doi.org/10.3390/insects4030357
- Ortiz-Urquiza A, Keyhani NO (2016) Molecular genetics of *beauveria* bassiana infection of insects. Adv Genet 94:165–249. https://doi.org/10.1016/bs.adgen.2015.11.003
- Pedrini N, Ortiz-Urquiza A, Zhang S, Keyhani NO (2013) Targeting of insect epicuticular lipids by the entomopathogenic fungus *Beauveria bassiana*: hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbio 4:24. https://doi.org/ 10.3389/fmicb.2013.00024
- Perveen N, Muhammad K, Muzaffar SB, Zaheer T, Munawar N, Gajic B, Sparagano OA, Kishore U, Willingham AL (2023) Host-pathogen interaction in arthropod vectors: lessons from viral infections. Front Immunol 14:1061899. https://doi.org/10.3389/fimmu.2023.1061899
- Petch T (1939) Notes on entomogenous fungi. Trans Brit Mycol Soc 23(2):127–148
- Rana A, Adams ME, Libersat F (2023) Parasitoid wasp venom re-programs host behavior through downmodulation of brain central complex activity and motor output. J Exp Biol 226(3):jeb245252. https://doi.org/10.1242/jeb.245252
- Rand DM, Nunez JCB, Williams S, Rong S, Burley JT, Neil KB, Spierer AN, McKerrow W, Johnson DS, Raynes Y, Fayton TJ, Skvir N, Ferranti DA, Zeff MG, Lyons A, Okami N, Morgan DM, Kinney K, Brown BRP, Giblin AE, Cardon ZG (2023) Parasite manipulation of host phenotypes inferred from transcriptional analyses in a trematode-amphipod system. Mol Ecol 32(18):5028–5041. https://doi.org/10.1111/mec.17093
- Ros VID, van Houte S, Hemerik L, van Oers MM (2015) Baculovirus-induced tree-top disease: how extended is the role of egt as a gene for the extended phenotype? Mol Ecol 24(1):249–258. https://doi.org/10.1111/mec.13019
- Rubin GM, Aso Y (2024) New genetic tools for mushroom body output neurons in *Drosophila*. Life 12:RP90523. https://doi.org/10.7554/eLife.90523.3
- Shang Y, Feng P, Wang C (2015) Fungi that infect insects: altering host behavior and beyond. PLoS Pathog 11(8):e1005037. https://doi.org/10.1371/journal.ppat.1005037

- Shang J, Hong S, Wang C (2024) Fights on the surface prior to fungal invasion of insects. PLoS Pathog 20(2):e1011994. https://doi.org/10.1371/journal.ppat.1011994
- Smith BH, Lei H (2023) Decision-making: a new role for insect mush-room bodies. Curr Biol 33(19):R1004–R1006. https://doi.org/10.1016/j.cub.2023.08.047
- Steinkraus DC, Hajek AE, Liebherr JK (2017) Zombie soldier beetles: epizootics in the goldenrod soldier beetle, Chauliognathus pensylvanicus (Coleoptera: Cantharidae) caused by Eryniopsis lampyridarum (Entomophthoromycotina: Entomophthoraceae). J Invertebr Pathol 148:51–59. https://doi.org/10.1016/j.jip.2017. 05.002
- Thaxter R (1888) The entomophthoreae of the United States, vol 4. In: Memoirs of the Boston society of natural history, pp 190
- Tian Z, Zhu L, Michaud JP, Zha M, Cheng J, Shen Z, Liu X, Liu X (2023) Metabolic reprogramming of Helicoverpa armigera larvae by HearNPV facilitates viral replication and host immune suppression. Mol Ecol 32(5):1169–1182. https://doi.org/10.1111/mec.16817
- Tong S, Li M, Keyhani NO, Liu Y, Yuan M, Lin D, Jin D, Li X, Pei Y, Fan Y (2020) Characterization of a fungal competition factor: production of a conidial cell-wall associated antifungal peptide. PLoS Pathog 16(4):e1008518. https://doi.org/10.1371/journal. ppat.1008518
- Trinh T, Ouellette R, de Bekker C (2021) Getting lost: the fungal hijacking of ant foraging behaviour in space and time. Anim Behav 181:165–184. https://doi.org/10.1016/j.anbehav.2021. 09.003
- Truman JW (2019) The evolution of insect metamorphosis. Curr Biol 29(23):R1252–R1268. https://doi.org/10.1016/j.cub.2019.10.009
- Van Houte S, Van Oers MM, Han Y, Vlak JM, Ros VI (2014) Baculovirus infection triggers a positive phototactic response in caterpillars to induce 'tree-top' disease. Biol Let 10(12):20140680. https://doi.org/10.1098/rsbl.2014.0680
- Vega FE, Kaya HK (2012) Insect pathology. Preface: insect pathology, 2nd edn. Insect pathology. San Diego, CA: Academic Press, p xiii
- Wanchoo A, Lewis MW, Keyhani NO (2009) Lectin mapping reveals stage-specific display of surface carbohydrates in *in vitro* and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiol-Sgm 155:3121–3133
- Wang M, Hu Z (2019) Cross-talking between baculoviruses and host insects towards a successful infection. Philos Trans R Soc B 374(1767):20180324. https://doi.org/10.1098/rstb.2018.0324
- Wang N, Ji A, Masoudi A, Li S, Hu Y, Zhang Y, Yu Z, Wang H, Wang H, Liu J (2023) Protein regulation mechanism of cold tolerance in Haemaphysalis longicornis. Insect Sci 30(3):725–740. https:// doi.org/10.1111/1744-7917.13133
- Wang L, Keyhani NO, Xia Y, Xie J (2024) The potential and limitations of entomopathogenic fungi as biocontrol agents for insect pest management. Entomol Gen 44:797–811. https://doi.org/10.1127/entomologia/2024/2498
- Westwood ML, O'Donnell AJ, de Bekker C, Lively CM, Zuk M, Reece SE (2019) The evolutionary ecology of circadian rhythms in infection. Nat Ecol Evol 3(4):552–560. https://doi.org/10.1038/s41559-019-0831-4
- Will I, Das B, Trinh T, Brachmann A, Ohm RA, de Bekker C (2020) Genetic underpinnings of host manipulation by Ophiocordyceps as revealed by comparative transcriptomics. G3 GeneslGenomeslGenetics 10(7):2275–2296. https://doi.org/10. 1534/g3.120.401290
- Will I, Attardo GM, de Bekker C (2023) Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 13(1):14363. https://doi.org/10.1038/ s41598-023-40065-0

https://doi.org/10.1016/j.cub.2006.04.032

- Yuan Q, Joiner WJ, Sehgal A (2006) A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol 16(11):1051–1062.
- Zhang S, An S, Hoover K, Li Z, Li X, Liu X, Shen Z, Fang H, Ros VID, Zhang Q, Liu X (2018) Host miRNAs are involved in hormonal regulation of HaSNPV-triggered climbing behaviour in Helicoverpa armigera. Mol Ecol 27(2):459–475. https://doi.org/10.1111/mec.14457
- Zhang L, Wei Y, Tao Y, Zhao S, Wei X, Yin X, Liu S, Niu Q (2020) Molecular mechanism of the smart attack of pathogenic bacteria on nematodes. Microb Biotechnol 13(3):683–705. https://doi.org/ 10.1111/1751-7915.13508
- Zhang W, Xie M, Eleftherianos I, Mohamed A, Cao Y, Song B, Zang L-S, Jia C, Bian J, Keyhani NO, Xia Y (2023) An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity. J Adv Res 48:1–16. https://doi.org/10.1016/j.jare.2022.08.013
- Zhang W, Chen X, Eleftherianos I, Mohamed A, Bastin A, Keyhani NO (2024) Crosstalk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev:fuae003. https://doi.org/10.1093/femsre/fuae003

- Zheng R, Xie M, Keyhani NO, Xia Y (2023) An insect chemosensory protein facilitates locust avoidance to fungal pathogens via recognition of fungal volatiles. Int J Biol Macromol 253(Pt 6):127389. https://doi.org/10.1016/j.ijbiomac.2023.127389
- Zhu S, Feng X, Keyhani NO, Liu Y, Jin D, Tong S, Pei Y, Fan Y (2021) Manipulation of host ecdysteroid hormone levels facilitates infection by the fungal insect pathogen. Metarhizium Rileyi Environ Microbiol 23(9):5087–5101. https://doi.org/10.1111/1462-2920.15454
- Zup SL, Park JH, Dominguez JM (2022) Editorial: intersection of hormones and neuropeptides in the brain. Front Behav Neurosci 16:886591. https://doi.org/10.3389/fnbeh.2022.886591

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

