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Abstract
Rapid advances in sequencing technology have led to an explosive
increase in the number of genetic variants identified in patients with
neurological disease and have also enabled the assembly of a robust
database of variants in healthy individuals. A surprising number of variants
in the   genes that encode  -methyl-D-aspartate (NMDA)GRIN N
glutamatergic receptor subunits have been found in patients with various
neuropsychiatric disorders, including autism spectrum disorders, epilepsy,
intellectual disability, attention-deficit/hyperactivity disorder, and
schizophrenia. This review compares and contrasts the available
information describing the clinical and functional consequences of genetic
variations in   and   Comparison of clinical phenotypesGRIN2A GRIN2B.
shows that   variants are commonly associated with an epilepticGRIN2A
phenotype but that   variants are commonly found in patients withGRIN2B
neurodevelopmental disorders. These observations emphasize the distinct
roles that the gene products serve in circuit function and suggest that
functional analysis of   and   variation may provide insightGRIN2A GRIN2B
into the molecular mechanisms, which will allow more accurate
subclassification of clinical phenotypes. Furthermore, characterization of
the pharmacological properties of variant receptors could provide the first
opportunity for translational therapeutic strategies for these  -relatedGRIN
neurological and psychiatric disorders.
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Introduction
Ionotropic glutamate receptors are ligand-gated ion chan-
nels that mediate excitatory synaptic transmission throughout 
the central nervous system. These receptors can be classified 
into at least three distinct families, and nomenclature is based 
on the initial discovery of selective activating agonists AMPA,  
kainate, and N-methyl-D-aspartate (NMDA) for their corre-
sponding receptors, which arise from GRIA, GRIK, and GRIN 
genes, respectively. The GRIN gene family encodes three 
classes of NMDA receptor (NMDAR) subunits: the glycine-
binding GluN1 (product of GRIN1), glutamate-binding GluN2  
(GRIN2A, GRIN2B, GRIN2C, and GRIN2D), and the enig-
matic glycine-binding GluN3 (GRIN3A and GRIN3B), the 
role of which remains poorly understood1,2. Most NMDARs 
are tetrameric assemblies of two GluN1 and two GluN2 subu-
nits. In terms of the evolutionary history of the NMDAR, it  
appears that four GluN2 paralogs (GluN2A–D) were produced 
by two rounds of gene duplication in a common vertebrate 
ancestor; the rounds diverged during early vertebrate evolu-
tion principally at their carboxyl-terminal domain (CTD)3. The 
first round of duplication gave rise to two GluN2 genes (the  
ancestors of GluN2A/B and GluN2C/D), and the second 
round gave rise to the four extant paralogs4. Having a com-
mon ancestry, GluN2A and GluN2B molecular structure and 
function should be similar, except for the divergent CTDs. 
However, there are strong differences between these two subu-
nits on almost every level, including in how clinically relevant  
missense variants impact the receptor and patient. In this 
review, we will focus on the molecular and functional basis as 
to why GluN2A and GluN2B show strikingly different effects 
when missense mutations arise (for example, de novo in key  
gating motifs and different neurological disorders).

Glutamate receptor structure and function
All NMDAR subunits contain four semi-autonomous domains: 
an amino-terminal domain (ATD), agonist-binding domain 
(ABD), transmembrane domain (TMD), and CTD (Figure 1). 
The bilobed ABD of GluN2 binds L-glutamate within a cleft 
between two rigid lobes, S1 and S2, which form a clamshell-like  
structure that undergoes pronounced conformation changes 
upon ligand binding. The S1 lobe of the ABD, which resides 
distal to the ion channel, forms an interface between the ABD 
of adjacent subunits, allowing them to act as dimers5. For 
NMDARs, one GluN1 and one GluN2 ABD form a dimer, two 
of which exist within each tetrameric receptor6. The S2 lobe that  
is proximal to the channel contains primarily the polypep-
tide chain that connects the two transmembrane helices (M1 
and M3) through flexible linkers and a two-turn helix (the 
pre-M1 helix) that lies parallel to the plane of the membrane. 
The S2 lobe undergoes considerable movement as the agonist 
binds to “close the clamshell” within the ABD of each subunit,  
which is the initial conformational change of several that 
ultimately lead to opening of the ion channel pore7. This 
combination of agonist binding and clamshell closure pro-
vides the energy to drive channel opening in all ionotropic  
glutamate receptors6,8–11.

Most information on NMDAR location and function exists for 
diheteromeric receptors that are a tetrameric assembly of two 
GluN1 subunits and two identical GluN2 subunits1,2. NMDARs 
are maximally activated when glycine binds to the ABD of 
GluN1 and L-glutamate binds to the ABD of GluN21. Three 
transmembrane helices (M1, M3, and M4) form the pore and are 
directly coupled to the ABD in all glutamate receptor subunits, 
and the pore is lined by a re-entrant loop (referred to as M2)12,13  

Figure 1. Domains of N-methyl-D-aspartate (NMDA) receptors. The crystal structure for GluN1/GluN2B receptors is shown in the left panel13 
depicting the amino-terminal domain (ATD), the agonist-binding domain (ABD), and the transmembrane domain (TMD). Not shown is the 
intracellular carboxyl-terminal domain (CTD). The right panel displays a schematic of a GRIN subunit, and the subdomains and the clamshell 
features of the ATD and ABD are indicated.
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that controls ion permeation and block14. Not surprisingly, 
single amino acid variants in these transmembrane heli-
ces, in the linkers that couple transmembrane helices to the 
ABD, and in the pore-lining re-entrant M2 loop can affect 
gating, ion permeation, and block15–21. Part of the activation 
gate—the structure that occludes the flux of ions in the closed  
state—involves the M3 segment, including a highly conserved 
motif (SYTANLAAF)10. The process of opening and clos-
ing is highly dependent on these nine residues, residues in the 
pre-M1 region and a region preceding the fourth TMD1,6,22–24.

The NMDAR is permeable to Ca2+ in addition to Na+ and 
K+14,22,25–27, and the intraneuronal Ca2+ entry subsequent to 
NMDAR activation can engage intracellular signaling systems 
that lead to changes in gene expression28, changes in post-trans-
lational modifications29, and ultimately changes in synaptic  
strength30. Once the pore opens, extracellular Mg2+ can join 
the traffic of ions moving through the channel to reach a deep 
binding site in the pore, the occupancy of which establishes 
channel block in a voltage-dependent manner (reviewed in 
14). This endows the receptor with the ability to detect neu-
ronal activity (in the form of depolarization) and simultane-
ous synaptic activity (in the form of release of glutamate). This  
coincidence detector is a central feature enabling NMDARs to 
participate in some, but not all, forms of synaptic plasticity31. 
Some NMDARs can undergo desensitization during persist-
ent activation32, and the time course of desensitization for 
NMDARs is much slower than that for AMPA receptors1. Both 
speed and extent of desensitization are subunit-dependent33,34,  
providing further separation of temporal signaling properties  
that depend on the frequency of synaptic input35.

There are profound differences in the properties of NMDARs 
that contain GluN2A compared with GluN2B. For example, the 
open probability with GluN2A is higher than with GluN2B35,36.  
In addition, glutamate and glycine are both less potent at 
GluN2A compared with GluN2B37 and thus GluN2A-containing 
NMDARs show a faster deactivation time course following 
removal of glutamate than GluN2B-containing NMDARs38. The  
deactivation time course following glutamate removal sets the 
duration of the synaptic current39 and thus GluN2A NMDARs 
will produce a faster synaptic current in comparison with 
GluN2B. GluN2A-containing receptors also desensitize more 
rapidly than GluN2B-containing receptors, which show a much 
slower desensitization time course35. These two receptors show 
different sensitivity to extracellular negative allosteric modu-
lators such as Zn2+40,41, and the Zn2+ binding site in the ATD 
shows much higher potency for GluN2A than GluN2B42.  
These functional properties, as well as the intracellular CTD 
that controls receptor targeting to different regions of the plasma  
membrane, will enable a variety of distinct functions for  
GluN2A- and GluN2B-containing NMDARs in neurons. There 
is strong evidence for perisynaptic NMDARs which could 
play a range of different roles43,44. Some evidence suggests that 
GluN2A preferentially distributes to the postsynaptic density, 
compared with GluN2B, which also distributes throughout the 
dendrite at extrasynaptic sites45. This distinct localization has 
also been suggested to influence the participation of these two  

receptor subunits in different forms of synaptic plasticity46–48. 
Moreover, there are distinct roles of NMDARs of differ-
ent subunit composition in neuroprotective signaling and cell 
death signaling that reflect both their localization and ability to  
pass current and Ca2+49–52. However, the subcellular distri-
butions of GluN2A and GluN2B are not absolute, and both  
subunits can be found both synaptically and extrasynaptically.

Developmental expression profile of GluN2A and GluN2B
The temporal expression profile of different NMDAR subu-
nits is precisely controlled to coincide with critical periods 
in the development of different brain structures53–58. Indeed, 
GRIN2 gene expression in the brain changes throughout the 
postnatal developmental stages59. The GluN2B subunit is  
highly expressed in the prenatal stages and its expression 
drops at the postnatal stages, becoming focally expressed in 
the forebrain. However, GluN2A is expressed at apparently 
low levels in the prenatal stages and increases upon birth53,60. In 
rodents, GRIN2A mRNA appears detectable by in situ hybridi-
zation studies around postnatal day 6. There is a progressive  
developmental change from predominantly GluN1/GluN2B 
receptors to GluN1/GluN2A receptors in many brain 
regions58,61–63, including thalamic and cortical neurons during 
the early postnatal development64. The decrease in GluN2B- 
containing NMDARs at synapses is corroborated with the detec-
tion of shorter excitatory postsynaptic currents and a decrease 
in sensitivity to a specific GluN1/GluN2B receptor antagonist, 
ifenprodil65,66. The prenatal expression of GRIN2B in NMDAR 
subunit has been taken as evidence for an important role in 
brain development, circuit formation, and possibly cell migra-
tion and differentiation67. In early postnatal development and  
late embryogenesis, GluN2B expression dominates dur-
ing rapid cortical synaptogenesis68. Kutsuwada et al. observed 
neonate lethality of global GRIN2B knockout mice69, whereas  
Tang et al. reported that overexpression of GRIN2B in the  
forebrain of mice enhanced spatial memory performance and  
long-term hippocampal potentiation70.

It is not surprising that the many recent reports on human variants 
in GRIN genes show different clinical phenotypes (discussed 
below) given that the modular structure of the receptor can 
compartmentalize the different actions of variants in different 
domains, thereby impacting different functional modalities. In 
addition, the distinct roles of GluN2A and GluN2B in synaptic 
signaling and circuit function enabled by their different devel-
opmental expression profile58,61–63, the compartmentalization62,  
and the functional attributes mean that variants in these two 
genes could have very different effects and different age- 
dependent phenotypes. For example, more pronounced 
effects might be observed for GRIN2B variants in terms of  
neurodevelopment, and effects of the mutations might present 
early in postnatal stages and manifest as neurodevelopmen-
tal disorders, developmental delays (DDs), and intellectual 
disability (ID)71. However, the effect of GRIN2A will start to 
show in the later postnatal stage as the expression of GRIN2A 
starts to increase and thus the influence of GluN2A-containing  
NMDARs becomes important. Most of the GluN2A variants 
were identified in patients with epileptic seizures and epileptic 
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encephalopathies72. In most cases when variants reduce Mg2+ 
inhibition and otherwise show enhanced NMDAR function, 
the patients show epileptic encephalopathy (EE), which may  
reflect not just DD from persistent and intractable seizures 
but perhaps excitotoxic neuronal cell death73. Interestingly, 
variants in GluN1 will impact all NMDARs and thus would 
be expected to have even further distinct effects compared  
with GRIN2A and GRIN2B74. However, in this review, we 
restrict our summary of recent studies to rare de novo vari-
ants discovered in the GRIN2A and GRIN2B genes. We 
highlight an emerging understanding of the functional and  
clinical consequences of these variants in the context of 
receptor expression, localization, and the unique roles 
that GluN2A and GluN2B subunits play. We speculate 
that viewing the phenotypic differences for patients with 
GRIN2A and GRIN2B through the lenses of these different  
properties will provide greater insight into disease mechanism 
and this information will create the possibility of instituting  
mechanism-based novel therapeutic treatments.

The increase in genetic information identifies a large 
number of disease-associated variants
The number of rare variants associated with neurological dis-
ease is expanding rapidly. Since the identification of the first 
disease-causing variants in NMDARs in 201075,76, over 500 
variants in all GRIN genes coding for NMDARs—found in 
all four semi-autonomous domains, (the ATD, the ABD, the  
TMD, and the CTD)—have been reported in ClinVar or from 
patient cohorts in the literature. These include 249 variants 
in the GRIN2A and 204 variants in the GRIN2B (ClinVar). 
The increasing use of next-generation whole exome sequenc-
ing in clinical practice promises to identify even more rare  
de novo variants in GRIN genes linked to neurological disor-
ders as diagnostic whole exome sequencing efforts expand and 
become common practice outside academic medical centers71,77,78.  
The rapid identification of numerous rare genetic variants should 
be followed by functional analysis of these variants, which, 
though more time-intensive, is an essential step in establish-
ing their role in neurological disease. In addition, functional  
evaluation provides mechanistic insight toward disease etiol-
ogy and potential treatment options. Fortunately, the NMDARs 
encoded by these genes can be easily expressed in heterolo-
gous systems and their function, though complex, is reasonably 
well understood1,2,6. Multiple groups are expanding efforts 
to fill the gap between genetic identification of rare variants 
and elucidation of their functional consequences6,23,73,74,79–98.  
With continued effort, all disease-associated variants even-
tually should be identified and functional characterization 
of these variants will inform the subdivision of variants into 
a limited set of groups with more homogenous clinical and  
functional phenotypes. This will allow direct comparison of  
variants with similar effects between different subunits and help 
elucidate the roles that these subunits play during development. 
It will also transform diagnoses and treatment options since vari-
ant function eventually will be readily available for clinicians in 
real time. However, at the moment, there remains a significant 
lag in efforts to obtain this functional information compared with  
the amount of new sequencing being performed.

Comparison of patient phenotype for GRIN2A and 
GRIN2B missense and nonsense variants
Among the variants identified in the GRIN gene family, those 
in GRIN2A (46%) and GRIN2B (38%) account for the vast 
majority, followed by GRIN1 variants (14%; ClinVar)72. It 
is important to note that all of these genes can co-assemble 
to form functional receptors, meaning that the GRIN variants 
should be thought of as a larger set of variants since variants 
in all three genes can produce similar gain-of-function  
(GoF) or loss-of-function (LoF) effects on NMDARs. Moreo-
ver, every NMDAR contains GluN1 and thus these variants in 
particular will impact both GluN2B- and GluN2A-containing 
NMDARs. However, there will be differences in the overall effects 
for GRIN2A versus GRIN2B genes depending on their regional 
and developmental expression profile, in addition to the dif-
ferent roles that they can play in circuit function. Thus, it will 
be useful to stratify variants by gene and by GoF and LoF even 
though they impact an overlapping set of NMDAR complexes 
expressed in the brain. Given that the most common GRIN vari-
ants are in GRIN2A and GRIN2B, a comprehensive evaluation 
of these two subunits provides an opportunity to understand the 
structural, functional, and genetic bases for disorders that these 
patients have. Functional consequences of many GRIN2A and  
GRIN2B variants have been assessed in heterologous expres-
sion systems and so we will focus on the effects of rare  
variants in these two genes.

An assessment of the genetic variation in the healthy popu-
lation together with an evaluation of GRIN2A and GRIN2B  
variants in patients with neurological disease provides infor-
mation about the regional tolerance of different domains of 
the GluN2 subunit. This approach reveals insight into protein  
function and information about the regions of the receptor that 
cannot tolerate even modest changes in amino acid side chain  
properties81. Such regions appear to have undergone purify-
ing selection and this determination can aid in future in silico 
predictions of the impact of missense variants. Evaluation of 
GRIN2A and GRIN2B revealed that the ABD, TMDs, and the 
linker regions between these domains were particularly intoler-
ant to genetic variation and suggests that these domains are under  
greater selection pressure82,83. These two regions appear to har-
bor the most disease-associated variants within the GRIN2A 
and GRIN2B genes72,82–84. Evaluation of phenotypic severity for 
a cohort of patients harboring GRIN2A variants showed strati-
fication in severity across variants with different functional 
effects and localizations85. There are some subtle differences 
in regions that are insensitive to variation that reflects  
different functions of GluN2A and GluN2B subunits. There 
are examples where different patients (that is, different genetic  
backgrounds) harbor the same de novo GRIN missense vari-
ant in their genome; in these cases, the patients display similar 
but non-identical clinical phenotypes21,23,84–88. As the data-
bases of genetic variation within the standing population 
expand, there will be an ever-increasing precision with which 
we can define intolerant regions, and we expect that more spe-
cific examples of intolerant regions that differ between the  
two subunits will emerge. In this review, we also compiled 
a list of GRIN2A and GRIN2B variants with phenotypes  
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published in the literature and not found in the gnomAD database  
(http://gnomad.broadinstitute.org; Table 1).

GRIN2A predominantly is associated with epilepsy and 
intellectual disability
More than 240 missense and nonsense variants have been 
reported for GRIN2A. De novo variants in GRIN2A can be 
found in phenotypically normal neonates with a structurally 
normal brain at birth85,89. Multiple patients appear to have had 
uncomplicated pregnancies and normal deliveries with excel-
lent appearance, pulse, grimace, activity, respiration (APGAR) 
scores and no immediate complications. However, patients  
can begin to show neurological abnormalities at a young age 
(during the first year of life)89, presumably as a result of increas-
ing expression of GRIN2A with development60. This most often 
manifests as abnormal electroencephalography (EEG) and myo-
clonic jerks progressing to a seizure disorder. Several studies 

have suggested that benign focal epilepsy with centrotemporal 
spikes (BECTS) seems to be caused by both missense and non-
sense de novo mutations within the GRIN2A gene: Three reports 
from 2013 showed that GRIN2A gene variants are more likely to  
occur in epilepsy subtypes that are believed to be a more severe 
variant of BECTS such as atypical benign partial epilepsy of 
childhood, Landau–Kleffner syndrome, and continuous spike 
waves during slow wave sleep99–101. An intriguing aspect of these 
epilepsy patients who harbor GRIN2A variants is that the vari-
ants can produce both GoF and LoF, as inferred by nonsense 
variants that produce protein truncation. Patients with a deletion 
that removes the GRIN2A gene also show hyperexcitability76.  
The mechanisms that ultimately promote hyperexcitabil-
ity in patients lacking GRIN2A are not yet known, by likely 
due to haploinsufficiency although it appears that they in 
some way enhance circuit excitability102. Interestingly, 
there is no firm evidence to suggest that GRIN2A variants 

Table 1. Phenotypes reported across GRIN2A and GRIN2B subdomains.

Phenotypes (top) or Variant Type (bottom)
# reported in GRIN2A / # reported in GRIN2B

ATD ABD
ABD-TMD 

Linkers TMD CTD Other

Epi 25 / 3 41 / 13 5 / 4 19 / 12 9 / 0 26 / 1

ID 28 / 13 32 / 35 4 / 9 19 / 23 8 / 9 22 / 15

ASD 4 / 6 5 / 13 4 / 3 2 / 6 1 / 5

Language delay/Verbal dyspraxia/Aphasia syndrome 14 / 0 22 / 0 5 / 1 10 / 0 1 / 1 7 / 0

LKS 1 / 0 3 / 0 1 / 0 1 / 0 1 / 0

ADHD/Rett-like syndrome/Behaviorial anomalies 2 / 1 3 / 0 1 / 1 1 / 1 1 / 2

IS 1 / 0 1 / 0 0 / 2

CVI 1 / 3

Hypotonia/Dystonia 3 / 0 0 / 1 0 / 1 9 / 1 2 / 1

LGS 0 / 1

MD 3 / 1 3 / 1 4 / 2 1 / 0

West syndrome 0 / 1 0 / 2

Dysmorphic features 1 / 0 1 / 0 0 / 1 2 / 1 3 / 0

SCZ/Bipolar disorder 1 / 2 1 / 2 2 / 0

Macrocephaly or Abnormality of nervous system 1 / 1 3 / 1

Missense variant 12 / 7 31 / 29 4 / 8 20 / 23 7 / 8

Nonsense variant 8 / 4 3 / 2 0 / 1 0 / 2 3 / 2

Splice junction variant 9 / 0 7 / 3 1 / 0 0 / 1

Frame-shift variant 5 / 4 9 / 1 4 / 0 2 / 3

Indel variant 1 / 0 1 / 1

Other 31 / 17

The table compares genetic variants in GRIN2A and GRIN2B genes with phenotypes as reported in the literature and absent in 
the gnomAD database (http://gnomad.broadinstitute.org). ABD, agonist-binding domain; ADHD, attention-deficit/hyperactivity 
disorder; ASD, autism spectrum disorder; ATD, amino-terminal domain; CTD, carboxyl-terminal domain; CVI, cerebral visual 
impairment; Epi, epilepsy/seizures; ID, intellectual disability (including developmental delay); IS, infantile spasms; LGS,  
Lennox–Gastaut syndrome; LKS, Landau–Kleffner syndrome; MD, movement disorder; SCZ, schizophrenia; and TMD, 
transmembrane domains (M1-M4). Other, refers to chromosome deletions, insertions, duplications that affect GRIN2A or  
GRIN2B genes. References 21, 73, 75, 76, 80, 82–86, 89–92, 94, 96, 98–101, 103–153.
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contribute to the two most common epilepsy syndromes: idi-
opathic generalized epilepsy and temporal lobe epilepsy154.  
GRIN2A variants are linked to autism spectrum disorder (ASD)  
but to a lesser degree than seen with GRIN2B variants (Table 1).

GRIN variants have been identified both by screening of a select 
set of genes assembled as a panel or by whole exome sequenc-
ing, which provides good coverage over much of the exome, 
although certain GC-rich regions of DNA (for example, the 
5’ region of GRIN2D) are often under-represented. Never-
theless, these approaches have discovered a large number of  
de novo variants in neurological patients. A functional analysis 
has been published in the peer-reviewed literature for a number of  
GRIN2A variants73,75,79,83,86,90–93. In addition, there is a com-
prehensive functional summary on the websites as a resource  
(http://functionalvariants.emory.edu). Below, a subset of these  
published variants is discussed to illustrate some important  
commonalities and distinctions.

The functional consequences of several variants reported 
in the gnomAD database, some of which showed func-
tional changes, were evaluated. One clinical case report is 
for a missense variant (GluN2A-V452M) from a patient 
with early infantile EE/Ohtahara syndrome155. Another  
example of a variant proposed to cause a disease phenotype is a 
heterozygous GRIN2A variant that produces GluN2A-N447K 
in a male with Rolandic epilepsy. EEG monitoring showed 
remarkable interictal high voltage spikes and spike-and-slow 
waves in the bilateral central-temporal regions, predomi-
nantly on the right hemisphere. The GluN2A-N447K variant is 
located in the S1 segment of the extracellular ABD of GluN2A.  
Residue N447 is highly conserved across higher vertebrates yet 
the Asn447Lys variant is present multiple times in gnomAD. 
Whole cell patch clamp recording of GluN2A-N447K reveals 
a GoF effect and an increase in NMDAR current density by 
about 1.2-fold, an enhancement of glutamate potency by two  
fold, and reduced sensitivity to Mg2+ inhibition93. Experimen-
tal substitution of Asn447 to alanine (uncharged) or glutamic 
acid (negatively charged) did not change NMDAR function, sug-
gesting that the positive charge associated with lysine may have 
altered NMDAR function. The patient became seizure-free 
when treated with a combination of valproate and lamotrigine93.

A child with epileptic encephalopathy (EE) and severe cogni-
tive impairment possessed a GoF missense GRIN2A variant that 
produced GluN2A-L812M. This position in the linker between 
the ABD and TMD regions is intolerant to change, as all amino 
acid substitutions (seven to date) at this position produced a 
GoF variant that showed increased agonist potency, increased 
open probability, and reduced sensitivity to endogenous negative 
modulators such as extracellular Mg2+ and protons73. The vari-
ant NMDARs’ activities were enhanced by virtually every meas-
ure and would be expected to lead to profound overactivation, 
which could drive excitotoxic mechanisms. Memantine is able to  
inhibit the GluN2A-L812M-containing NMDARs, and treat-
ment with memantine led to a persistent reduction of the  
child’s seizure burden89.

A heterologous de novo variant was found in a 3-year-old 
female with early-onset EE, abnormal EEG, and severe DD75. 
The variant substituted an evolutionarily conserved asparagine 
for a lysine (GluN2A-N615K) in the membrane re-entrant loop, 
which lines the channel pore and creates a constriction that con-
trols ion selectivity of the channel6,156,157. This variant alters the  
voltage-dependent channel block by Mg2+ and decreases in Ca2+  
permeability. Co-expression of GluN2-N615K with GluN1 
and wild-type GluN2A in the same receptor complex, called  
triheteromeric receptors (comprised of GluN1:GluN2A:GluN1:
GluN2A-N615K subunits), produces an intermediate effect, 
indicating that the negative impact caused by the variant on 
channel properties cannot be fully negated by the presence of  
one normal subunit copy of GluN2A in the receptor complex21,92.

GRIN2B is predominantly associated with developmental 
delay, intellectual disability, and autism spectrum disorder
Over 200 variants in GRIN2B are found in patients from cohorts 
with any one of several neurodevelopmental disorders71 such 
as ID (including DD)14,75,80,82–84,91,94–96,98,103–108,111,112,114,120,122,123, 

128,130,135,139–147,149–153, ASD75,80,82,84,91,98,104,105,108,111,135,140,144,148,151–153, 
EE and seizure disorders21,80,82,84,98,103,120,130,135,138,139,141,145, 
schizophrenia71,111,114,137,148, and, to a lesser extent, atten-
tion-deficit/hyperactivity disorder80,84,106, cerebral visual  
impairment146,158, and Alzheimer’s disease159 have been 
reported in the literature. For these various phenotypes, vir-
tually all of the patients display mild to profound DD or ID 
or both. In addition to exhibiting these neurological pheno-
types, some patients exhibit abnormalities in muscle tone that 
includes spasticity or hypotonia151,158. GRIN2B has been linked 
as a potential gene in which variations could increase the risk  
of autism104,105,160. A number of other characteristics, including  
microcephaly, movement disorders, Rett-like syndrome, language  
disorders have been observed in some patients75,96,115,142,158.

The GRIN2B variants identified thus far occur throughout the 
entire NMDAR subunit protein. That is, missense and non-
sense variants have been identified in the ATD, ABD, TMD, and 
CTD domains. Homozygous Grin2b-deletion mice die at early  
postnatal stages because of impaired suckling response and 
show impaired hippocampal long-term depression, whereas  
heterozygous mice show reduced expression of GluN2B but  
survive69. Thus, GRIN2B is an essential gene for normal 
development. GRIN2B de novo variants with neurological  
diseases have been reviewed71,77,161, and functional data exist 
for many GRIN2B variants in published scientific journals (see  
below) or online databases (http://functionalvariants.emory.edu).

Large cohort studies for ID or ASD have identified that LoF 
variants in GRIN2B segregate with a broad spectrum of these 
neurological phenotypes75,105. One such LoF variant is the  
missense variant GluN2B-E413G106, which produces DD 
and ID. Studies conducted on neural progenitor cells (NPCs) 
generated from induced pluripotent stem cells found that  
neurons with heterozygous GluN2B-E413G, which is in the 
glutamate-binding pocket, caused a 50-fold decrease in gluta-
mate signaling and reduced the maturation states of the  
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neurons. Verification of failure to phosphorylate serine 133 in 
cAMP response element-binding protein (CREB) by NMDAR  
stimulation further confirms that the E413G variant in 
GluN2B impaired NMDAR signaling in the NPCs94. This 
study shows that GluN2B-containing NMDARs are critical 
for signal transduction in neural stem cells and deficits in this  
process impair cellular differentiation. The E413G vari-
ant is in close proximity to the glutamate-binding site but 
is not in physical contact with the agonist glutamate. Mod-
elling of the protein structure suggests that GluN2B-E413  
can alter agonist dissociation by increasing the ability of water 
to compete with agonist binding, thereby accelerating gluta-
mate unbinding and likely rendering the synaptic NMDAR  
response time course briefer than that for wild-type NMDARs82,95.

The GRIN2B variant encoding GluN2B-C461F, which was  
identified in a patient with Lennox–Gastaut syndrome and  
autistic features, is a LoF NMDAR variant. Cys461 is located 
in S1 of the ABD, close to the orthosteric glutamate-binding 
site. When co-transfected with GluN1-4b, an early develop-
mental isoform of GRIN1, GluN1:GluN2B-C461F receptors 
reduced glutamate potency by 71-fold compared with 
wild-type controls80. This is in keeping with decreased  
glutamatergic neurotransmission in animal models of ASD 
(for example, BTBR mice), in which the phenotype can 
be improved by a selective AMPAKINE (AMPA receptor– 
positive allosteric modulator). Lennox–Gastaut syndrome is 
a severe type of childhood epilepsy. Also, during early devel-
opment, high expression of variant GluN2B subunits could  
compromise neurotransmitter-based signaling (for example, 
GABA release via presynaptic NMDARs), circuit operation 
between distinct cell types (interneurons/principal neurons), 
and the balance of excitation and inhibition80. This is in 
line with the association of mutations in GABRB3 with  
Lennox–Gastaut syndrome and autism162–164. In addition,  
synaptic pruning and synapse refinement are GluN2-dependent 
events that occur generally at a time of a switch in subunit 
expression from GluN2B to GluN2A64 and thus could be influ-
enced by altered GluN2B function. This could be one contrib-
uting factor that is an underlying substrate for developmental  
effects of GRIN2B variants165.

The GluN2B-P553L variant was identified in a patient with 
severe ID107. This variant was found to minimally affect gluta-
mate potency, but the rate of desensitization of GluN1–GluN2B-
P553L was markedly increased and currents were small in 
HEK cells80,83. Pro553 is located at the proximal end of the first 
TMD, within the pre-M1 linker that connects S1 to M1. Spa-
tially, P553 is adjacent to the highly conserved nine-residue  
signal-transduction element (SYTANLAAF) in M3 of the 
same subunit, which is involved in coupling ligand binding to  
channel opening, and controls channel open probability6. Thus, 
the variant Pro553Leu may form different interactions with 
Asn649 or Leu650 (or both) in the SYTANLAAF motif, which  
could interfere with gating.

GluN2B-N615I and GluN2B-V618G variants are both associ-
ated with West syndrome, which is a triad of infantile spasms, 

hypsarrhythmia, and ID103. GluN2B-N615 and -V618 are 
located in the M2 re-entrant loop, which forms part of the ion 
channel. N615 is located just above the narrowest constric-
tion in the pore, which is also influenced by analogous residues 
in the GluN1 subunit (for example, GluN1-N616). Val618 in  
GluN2B is located deep in the channel pore, within the  
M2-M3 linker and with the CH

3 
side chain that has been sug-

gested to be rotated away from the channel pore. This side-chain 
will interact with residues in M2 and M3 membrane helices 
of GluN180,98. For GluN2B-N615I and GluN2B-V618G,  
voltage-dependent Mg2+ inhibition was lost, resulting in a GoF  
phenotype that will allow increased NMDAR current under 
normal resting conditions, which may underlie increased  
neuronal excitability in West syndrome. The onset of symptoms 
in the patient coincided with the high expression profile of  
GluN2B in late infancy (<1 year old)62,103.

Variants at the same residue position in GluN2A and 
GluN2B resulted in different disease phenotypes
A variant in both GRIN2A and GRIN2B that occurs at the same 
homologous position of these GluN2 subunits in NMDAR 
has been identified. Functionally, both GluN2A-N615K and 
GluN2B-N615I and GluN2B-N615K variants that substi-
tute an evolutionarily conserved asparagine in the membrane 
re-entrant loop resulted in a loss of Mg2+ block21,75,80,84.  
However, the resulting neurological phenotypes were found to 
be different. A 3-year-old female with a GluN2A-N615K vari-
ant exhibits early-onset EE, an abnormal EEG, and a severe 
DD75, whereas for a GluN2B-N615I variant, the patient had 
West syndrome, hypsarrhythmia, and ID due to neurode-
velopment disorders80,84 and GluN2B-N615K patient had  
ID and DD84. This further validates our hypothesis that rare 
variants in intolerant domains in GRIN2A are more likely to 
cause an epileptic phenotype but that variants in GRIN2B are  
more aligned with abnormal developmental phenotypes.

Other cases for which the genetic variants were found on dif-
ferent GluN2 subunits at a homologous amino acid are  
GluN2A-P552R and GluN2B-P553L. GluN2A-P552R was 
identified in a patient with delayed psycho-motor development, 
ID, inability to speak, and epilepsy since 9 months of age83,107. 
The GluN2A-P552R variant shows increased sensitivity to 
glutamate and glycine but with a slower activation and deacti-
vation time course. The GluN2B-P553L variant presents in a 
patient with severe ID and DD80,83,98,107. This variant was found 
to reduce glutamate potency by 1.7-fold but increase the rate of  
glutamate current desensitization80,83. Thus, whereas one vari-
ant should increase charge transfer for each synaptic current,  
the other should diminish it.

In most situations, the GluN2A or GluN2B variants exist as 
a single allele (that is, are heterozygous) in the patients and 
therefore patients also have one copy of the wild-type allele. 
Therefore, it would be important to understand the effects 
of rare variants in both diheteromeric and triheteromeric  
NMDARs. As the NMDARs exist as a heterotetramer with 
two obligatory GluN1 subunits, the possibility exists that a 
diheteromer (for example, GluN1/GluN2A/GluN1/GluN2A) or  
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triheteromer (for example, GluN1/GluN2A/GluN1/GluN2B)  
harbors a single disease variant GluN2 subunit.

To understand the GRIN2 variant effects in the presence of  
wild-type allele, NMDAR subunits were engineered to co-
express as GluN1/GluN2A/GluN1/GluN2A-P552R and  
GluN1/GluN2A-P552R/GluN1/GluN2A-P552R, analyzed for 
response time course to glutamate and glycine, and compared 
with wild-type control GluN1/GluN2A. Single channel record-
ing from single copy variant–containing receptors did not alter 
mean channel open time or chord conductance as compared 
with the wild-type channel. For the NMDARs with two cop-
ies of GluN2A-P552R, there is a significant increase in mean 
open time and reduced channel conductance when compared  
with the wild-type or single copy mutant. These data  
suggest that the GluN2A-P552R variants can alter stability and  
conformation of the open pore or its access portals only when both 
GluN2A subunits contain the P552R variant83.

Precision medicine
As more precise diagnoses for individuals are achieved, the 
basis of disease etiology will be better defined. We anticipate 
that novel drug development and a more mechanism-based use 
of currently approved drugs can improve clinical outcomes. 
For pharmacological treatment, the knowledge of risk fac-
tors, disease subtype, or underlying genetic variation should 
allow a choice of therapies proven effective in individuals with 
similar characteristics. For rare variants that are thought to  
contribute to or cause a disease, unique treatments that alter 
the function of the target or its downstream effects could pro-
vide novel therapies. This collection of ideas together can be 
described as precision medicine, an idea that is enabled by 
recent advances in technology on multiple fronts. There are sev-
eral opportunities for potential precision medicine among the 
GRIN variants. For example, it seems reasonable that therapies 
already approved by the US Food and Drug Administration that  
inhibit NMDAR receptors might have utility against symp-
toms produced by GoF GRIN variants provided that some 
of the ongoing neurological symptoms reflect expres-
sion of aberrant protein rather than errant processes during  
development or cell loss driven by excitotoxicity. Likewise, 
although there are no currently available NMDAR poten-
tiators approved for clinical use, supplementation with the  
co-agonists glycine, D-serine, or perhaps D-cycloserine 
might provide a way to augment NMDAR function, although 

there remains no systematic evaluation of this possibility in  
animal models or patients96.

Personalized medicine through pharmacological intervention 
on patients harboring de novo GRIN2A and GRIN2B variants 
has been attempted. However, caution must be exercised as 
the potential drugs available (for example, memantine) are 
non-selective blockers of NMDARs, meaning that one may 
induce a block at some sites that are not contributing to the  
pathology. Memantine binding was also affected by the presence 
of bound Mg2+ in the channel, which reduced memantine potency 
more for GluN2A and GluN2B than GluN2C or GluN2D166. 
Kinetic and molecular docking results indicated overlapping 
sites for Mg2+ and memantine, with Mg2+ binding at the level of 
the asparagine residues, whereas memantine binds just above 
the channel pore167. Among the NMDAR subtypes, memantine 
has been suggested to be more potent at GluN2C- and GluN2D-
containing NMDARs, the latter of which are expressed in 
GABAergic interneurons53,168. Nevertheless, over-active receptors  
may be attenuated, and some degree of voltage-dependent 
block potentially restored, to compensate for a reduced Mg2+ 
block by a rare variant. However, again caution is empha-
sized as several distinct disease variants in the channel pore 
can also alter the effect of candidate therapies, and already 
there are examples among the GRIN genes in which the variant  
renders a potential drug candidate less effective. For example, 
memantine was more potent at GluN1/GluN2B-N615I and less 
potent at GluN1/GluN2B-V618G, compared with wild-type 
receptors, which holds important implications for therapeu-
tics. Interestingly, dextromethorphan showed increased potency  
for some variant receptors compared with wild-type receptors90.

Of the various mutations studied in detail, two result in LoF 
(C461F and P553L) and two in GoF (N615I and V618G). 
On this basis, memantine cannot be considered an all- 
encompassing treatment for NMDAR mutations and will 
be therapeutically beneficial for only selected GoF channel  
variants unless compensatory NMDAR is large. Still, there are  
some examples in which NMDAR block by memantine 
showed some utility86,89,97. The inhibition of NMDAR-medi-
ated currents by memantine at negative membrane potentials was  
comparable between wild-type and N615I- or V618G-expressing 
neurons. This supports a role for this medication as a poten-
tial therapy to mimic a loss Mg2+ block at the potentials  
in neurons.
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