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Abstract

The dichotomic nature of the adaptive immune response governs the outcome of clinical gene therapy. On the one hand,
neutralizing antibodies and cytotoxic T cells can have a dramatic impact on the efficacy and safety of human gene therapies.
On the other hand, regulatory T cells (Treg) can promote tolerance toward transgenes thereby enabling long-term benefits of
in vivo gene therapy after a single administration. Pre-existing antibodies and T cell immunity has been a major obstacle for
in vivo gene therapies with viral vectors. As CRISPR-Cas9 gene editing advances toward the clinics, the technology’s
inherent immunogenicity must be addressed in order to guide clinical treatment decisions. This review summarizes the recent
evidence on Cas9-specific immunity in humans—including early results from clinical trials—and discusses the risks for
in vivo gene therapies. Finally, we focus on solutions and highlight the potential role of Cas9-specific Treg cells to promote
immune tolerance. As a “beneficial alliance” beyond Cas9-immunity, antigen-specific Treg cells may serve as a living and
targeted immunosuppressant to increase safety and efficacy of gene therapy.

Tregs in gene therapy

The interaction between the immune system and gene
therapeutic agents in vivo largely determines long-term
benefit of the treatment intervention [1]. On the one hand,
neutralizing antibodies can block gene delivery, and cyto-
toxic T cells can reduce efficacy as well as pose a significant
safety risk. On the other hand, immune tolerance to trans-
genes and vector components are associated with long-
term transgene expression and clinical success in some
trials [2, 3].
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Among the mechanisms to induce and maintain immu-
nological tolerance to antigens, diverse cell types play a
central role, such as tolerogenic monocytes and dendritic
cells as well as regulatory T cells (Tregs). Tregs can mod-
ulate cytotoxic and other effector T cell (Teff) immune
responses, e.g., limiting of growth factors and thereby
inhibiting their expansion or promoting dysfunctional Teff
states (Brief summary in Fig. 1, reviewed extensively
elsewhere [4, 5]). For example, in muscle-directed AAV
therapy, Gernoux et al. showed that long-term transgene
expression is associated with the simultaneous infiltration of
Treg cells into the muscle and the exhaustion of Teff [6].
This is in line with previous results by Muller et al., who
reported a similar phenomenon after muscular injection of
AAV [3].

Treg cells are a multifunctional immunosuppressive cell
type implicated in the control of overshooting immune
responses and tissue regeneration. While thymus-derived
Tregs cells are selected for self-antigen recognition, other
T cells can be educated in the periphery to become antigen-
specific Treg cells [7]. This has been described for com-
mensal bacterial antigens and innocuous exogenous anti-
gens at mucosal surfaces [8, 9].

A growing body of evidence highlights the importance of
transgene- and vector-specific Treg cells for successful
long-term benefits of in vivo gene therapy in animal models
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Fig. 1 Suppressive actions of regulatory T cells. Regulatory T cells
(Treg) are activated following recognition of specific antigens pre-
sented by antigen-presenting cells. However, Treg cells also exert a
suppressive function irrespective of their antigen-specificity termed as
bystander suppression. The mechanism of actions underlying the
suppressive function of Tregs can be direct or indirect. Treg cells
present with very high basal expression of high affinity CD25,
enabling privileged consumption of the IL-2 growth factor and thereby
depriving and weakening surrounding conventional effector T cells
(Teft) cells. Further, Treg cells mediate specific suppression by
depleting peptide-MHC class II-molecule complexes matching their
TCR from the surface of antigen-presenting cells via trans-endocytosis
and subsequent degradation. As opposed to boosting Teff cells by co-
stimulatory signals, Treg cells carry molecules, which were classified
as co-inhibitory receptors: e.g., CTLA-4 has high affinity to CD80/
CD86 and thereby outcompetes co-stimulatory signals via CD28.
Further, Treg cells can disrupt pro-inflammatory mechanisms by

and humans (reviewed extensively elsewhere [6, 10]. In
brief, multiple avenues have been explored for the specific
induction of Treg cells to promote tolerance toward
transgenes [10]: Delivery of viral vectors to the liver
induces Treg cells and can be exploited to drive tolerance
during co-delivery to other organs [11, 12]. Recently, this
concept has been successfully applied in a mouse model
of muscle gene therapy despite preexisting immunity
directed against the transgene [13]. Alternatively, co-
administration of AAV with tolerogenic rapamycin loaded
nanoparticles has been shown to locally suppress immune
responses in mouse studies, an effect which might have
been amplified by a Treg-mediated effect [14]. Oral
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eliminating effector cells. Direct cell contact with Treg cells can also
be fatal for the respective target cell by induction of the Fas-mediated
pathway of apoptosis through ligation by Fas-ligand. In addition, Treg
cells use perforin/granzyme dependent cytotoxicity to kill target cells
accompanied by adhesion via CD18. Treg cells can also induce sup-
pressive properties in adjacent cells by secreting soluble factors
thereby inducing an infectious tolerance. For instance, human Treg
cells secrete latent TGFp thereby promoting a suppressive milieu, as
well as shedding of soluble TNFa receptor II, which can neutralize
TNFa and prevents its pro-inflammatory signaling. Notably, Tregs can
also modulate their environment by secretion of IL-10. IL-2, inter-
leukin 2; CD25, IL-2 receptor o chain; MHC, major histocompatibility
complex; TCR, T cell receptor; CTLA-4, cytotoxic T-lymphocyte-
associated Protein 4; CD80/CD86, B7, B7-2 type I membrane protein;
CD28, co-stimulatory receptor for CD80/86; CD18, Integrin f-2;
TGFp, transforming growth factor; TNFa, tumor necrosis factor; IL-
10, interleukin 10.

antigen uptake via modified plants has also been explored
to induce antigen-specific Treg cells prior to vector
application [15, 16].

As an alternative to Treg induction in vivo, infusion of
ex vivo expanded polyclonal Treg cells has been shown to
prevent detrimental immunity to viral vectors in mouse
models [17]. Recently, another mouse study showed that
in vitro expanded factor VIII-antigen-specific Tregs were
superior to polyclonal Tregs in suppressing anti-factor VIII
specific antibody formation after FVIII-overexpression with
plasmids in mice [18]. To date, the role and potential of
preexisting antigen-specific Treg cells for gene therapy has
not been intensively studied in humans.
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CRISPR-Cas as a treatment modality to fix
broken genes

The RNA-guided bacterial antiviral defense system
CRISPR-Cas (clustered regularly interspaced short palin-
dromic repeats—CRISPR-associated protein) repurposed for
genome editing is becoming a powerful new tool to develop
potent therapies for inherited diseases [19]. In contrast to
conventional gene therapy that relies on overexpression of
transgenes, CRISPR-Cas gene editing and derivative tech-
nologies like base editors and prime editing allow precise
correction of pathogenic mutations [20-22]. CRISPR-Cas9
systems derived from different bacterial species vary in their
properties for gene targeting specificity and efficiency [23—
28]. The most popular variants were discovered in Strep-
tococcus pyogenes (SpCas9) and Staphylococcus aureus
(SaCas9), the latter being smaller and thus preferred for
AAV delivery [27, 29, 30]. Preclinical studies have
demonstrated long-term efficacy of CRISPR-Cas based
in vivo gene therapies in mice and even in larger animals
and non-human primate models in various indications from
hematologic diseases to metabolic and muscle disorders
[31-37]. Many of these approaches rely on traditional gene
therapy vectors, including AAV. Based on the successful
preclinical study by Maeder et al. [37], the first CRISPR-
Cas9 in vivo gene therapy, which began patient enrollment
in the first half of 2020, utilizes an AAV delivered by sub-
retinal injection into the eye to fix Leber congenital
amaurosis, a severe form of retinal dystrophy. Here, deliv-
ery of a SaCas9 nuclease pair is used to excise an aberrant
splice donor in intron 26 of the CEP290 gene, thereby
eliminating the cryptic exon that leads to a premature stop
codon and bi-allelic loss of function in the retina (Clin-
icalTrials.gov Identifier: NCT03872479). Recently, a sec-
ond landmark clinical trial has been initiated, in which lipid
nanoparticles containing SpCas9 mRNA and single guide
(sg)RNAs are delivered systemically to target the liver of
patients suffering from hereditary and advanced stage
transthyretin amyloidosis (ClinicalTrials.gov Identifier:
NCTO04601051). To reduce the liver’s production of trans-
thyretin and avoid further complications of excessive
transthyretin-deposits in other organs, the investigators aim
to disrupt the transthyretin gene in the patients’ livers as
demonstrated in preclinical work in mice and rats [36].

Early evidence for Cas9 immunogenicity in mice

Despite numerous successes in preclinical studies, SpCas9
nuclease proteins have been found to elicit both antibody
and T cell responses in immunocompetent mice when
delivered via adenovirus to livers [38] or when over-
expressed as a transgene in muscle using AAV vectors or
electroporation [38—40]. SpCas9-overexpressing tumors

transplanted into immunocompetent mice are rejected by a
Cas9-directed T cell response [41]. Importantly, a recent
paper by Li et al. demonstrated that immunization of mice
with SaCas9 protein one week prior to AAV-liver gene
therapy prevented long-term survival of gene edited hepa-
tocytes in vivo [42] (Fig. 2). It remains to be elucidated
whether classical immunosuppressants, used clinically and
in large animal models, could mitigate such T cell memory
responses after AAV administration [2, 33].

Human adults display preexisting adaptive
Cas9-immunity

The most popular Cas9 nucleases are derived from facul-
tative pathogenic bacteria suggesting that most humans are
repetitively exposed to these strains due to infections or
colonization [27]. Multiple teams—including our group—
reasoned that such exposure could lead to adaptive immune
memory toward Cas9, which led to the recent character-
ization of preexisting immunity to SpCas9 and SaCas9 in
adult humans [43-45]. Results regarding SpCas9-specific
antibodies are still debated due to high variability between
the findings of Charlesworth et al. (58%), Ferdosi et al.
(28.8%), and Simhadri et al. (5%) [43, 45, 46]. With respect
to preexisting T cell immunity toward SpCas9 and SaCas9,
the consensus is that the majority of healthy adults exhibit
IFN-y secreting T cells that are readily detected in the
peripheral blood using different assays, such as flow cyto-
metric analysis of activation markers and cytokines or IFN-
vy ELISPOT (Summarized in Table 1) [43, 44, 46]. As
expected for bacterial antigens, most SpCas9-reactive
T cells belong to the CD4" T cell compartment, never-
theless, initial studies also detected SpCas9-induced CD8*
T cell activation. Similarly, SaCas9 protein elicited T cell
responses in the majority of tested individuals [43, 44]. In
six donors, we detected a comparable T cell response after
exposure to Acidaminococcus species-derived Casl2a
(previously known as AsCpfl) [44]. Importantly, enriched
SpCas9-reactive Teff cells were found to lyse SpCas9-
overexpressing autologous B cells in vitro [44]. Therefore,
human Cas9-reactive T cells have the capacity to recognize
and eliminate Cas9-expressing cells in vivo. Traditionally,
elimination of transgene-expressing cells is attributed to
CD8™" T cells [2, 47], but a subpopulation of CD4™ T cells
are also able to execute cytotoxic functions [48, 49].

Most in vivo gene therapy targets are parenchymal cells
within solid tissues with an important biological function
(hepatocytes, retinal cells, muscle fibers), which express
MHC class I under normal circumstances. A direct inter-
action between CD4" T cells and gene-modified cells is
unlikely, although MHC class II expression has been
reported on a subset of parenchymal cells under
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Fig. 2 Immunological risk for
anti-Cas9 T cell-mediated
rejection of gene edited cells/
tissues. CRISPR-Cas9 in vivo
gene therapy requires Cas9
expression. Intracellular protein
degradation processes lead to
peptide presentation of Cas9
fragments on the cellular surface
of gene-edited cells that may be
recognized by SpCas9-reactive
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inflammatory conditions [50-52]. Further, CD4" T cells
with T cell receptors (TCRs) restricted to MHC class I have
also been reported [48]. Whether, CD4™ T cells contribute
directly to damage to tissues modified with gene therapies is
unclear. In-depth characterization of immunity toward Cas9
is therefore important to direct clinical treatment decisions
for the safe application of CRISPR-Cas9 mediated gene
targeting in vivo.

Assessing the entire preexisting SpCas9-specific T
cell repertoire

Monitoring of Cas9-directed immunity prior to in vivo gene
therapy should aim to identify patients with a high fre-
quency of preexisting pro-inflammatory T cell memory.
Initial studies used full recombinant proteins to stimulate
Cas9-specific T cells [43, 44], thus, the results are likely to
favor CD4™ T cell responses, as classical antigen processing
of whole proteins involves endocytosis and antigen-loading
onto MHC class II molecules [53, 54]. However, cross-
presentation by professional antigen-presenting cells results
in SpCas9 antigen uptake, processing, and presentation on
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MHC class I [55]. Therefore, in the study by Charlesworth
et al. and in our study, Cas9-activated CD8* T cells were
detectable. As an alternative to whole proteins, antigen-
specific T cells can be efficiently stimulated with synthe-
sized peptide libraries (pools) comprising oligopeptides
spanning a given antigen of interest [56]. Recently, Ferdosi
et al. reported 83% of 12 human donors displayed an
IFN-y™ T cell response after stimulation with a pool of 38 in
silico predicted peptides for optimal MHC class I binding to
the most prevalent haplotype in humans: HLA-A2:01. To
allow for unbiased detection of the total Cas9-specific T cell
repertoire, SpCas9-spanning peptide pools were generated
by JPT Peptide Technologies. These peptide pools were
recently used to detect T cell responses in cryopreserved
leukapheresis products from patients in the first published
results of CRISPR-Cas9 multiplex-gene edited and trans-
genic TCR-redirected T cells for cancer therapy [57]. Fur-
ther, this peptide library lays the foundation for
unsupervised epitope mapping to delineate a putative dis-
tinct epitope recognition of SpCas9 induced Teff and Treg
cell responses [56]. A potential disadvantage of peptide
libraries, however, are the limited peptide sizes, which
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could underestimate the number of T cells with specificity
to longer, unconventional peptides, e.g., those which have
been described as a target of CD8™1 Treg [58].

Determining prior T cell sensitization through the acti-
vation marker CD137 indicates a very high to ubiquitous
prevalence of SpCas9-reactive T cells [43, 44]. According
to our results, a significant fraction of the SpCas9 activated
CD4" T cells display a phenotype associated with Treg
cells [44]. As commensal bacteria are known to promote
Treg cells at immunological surfaces, colonization with
Cas9-expressing bacterial strains could have induced Cas9-
specific Treg cells in humans.

Cas9-reactive Treg cells in humans

Due to immunoregulatory functions of Treg cells, promot-
ing endogenous cargo-specific Treg cells as well as transfer
of cargo-specific Treg cells could serve as potent treatment
alternative to improve the long-term outcome of in vivo
gene therapy, without the need for extended conventional
immunosuppressive treatments [10]. Enriched human
SpCas9-reactive Treg cells can reduce proliferation as well
as cytokine production of Cas9-reactive Teff cells during
in vitro assays with a high Treg to Teff ratio [44]. Therefore,
immune monitoring of both Cas9-directed effector and Treg
responses in CRISPR-Cas clinical trials could provide
information on whether a gene-therapy directed immune

In silico predicted peptide pools & HLA-A2 + pentamers, ELISPOT and flow
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presumably by a CD8" T cell response. This correlated with
liver damage, indicated by histological examination and
elevated liver enzymes in the serum. Interestingly, Li et al.
detected an increase in the absolute frequency of Treg cells
only after SaCas9 protein immunization, and therefore the
increase in Treg numbers is unlikely to be related to AAV
or other antigens. It was not investigated whether these
Tregs are specific to SaCas9, which could, to a certain
extent, explain their failure to prevent rejection of gene
edited cells. Further characterization of this model is
required to determine the extent to which a mixed pre-
existing immunity, consisting of both effector T cells and
Tregs with specificity to Cas9, is present. In general, more
models are required with preexisting immunity to Cas9.
This might be of particular importance when investigating
improved/tolerogenic vectors or co-treatments, because the
ratio between antigen-specific Teff/Treg has been shown to
predict the outcome of immune rejection (high: inflamma-
tion, low: tolerance).

No immunogenicity events reported in
immunocompromised patients receiving
ex vivo cultured and SpCas9 edited cell
products

The immunogenicity risk of CRISPR-Cas9 gene editing in
humans largely depends on how and where the system is
delivered. While in vivo Cas9 therapeutics add unique
challenges to vector immunogenicity and host factors (dis-
cussed below), Cas9 delivery to in vitro cultured cells
allows for more control over residual remnants within the
final product. Ex vivo gene editing of cellular products with
transient delivery methods (plasmid DNA, mRNA, protein)
is expected to be safe in most cases as Cas9 is rapidly
degraded and diluted in highly proliferating cells [60]. Early
reports from clinical trials have already demonstrated per-
sistence of SpCas9-edited T cell products and hematopoietic
stem cells in human patients [57, 61, 62]. Stadtmauer et al.
demonstrated that after electroporation of CRISPR-Cas
complexes only minimal residual amounts of SpCas9 pro-
tein were detectable in the multiplex-edited T cell products
prior to infusion [57]. Two of the three leukapheresis pro-
ducts that served as the source material displayed Cas9-
specific T cell immunity [57]. Xu et al. and Lu et al. used
DNA plasmids for CRISPR-Cas delivery to their respective
cell products and did not report significant treatment-related
adverse effects after infusion [61, 62]. Unfortunately, Cas9-
directed immune responses were not measured in patients
and cell products were not evaluated for remnants of Cas9
protein [61, 62]. As plasmids lead to high and longer
expression than mRNA and protein platforms, this would
have been particularly interesting in comparison to
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Stadtmauer et al. [63, 64]. None of the three studies com-
pared SpCas9-specific immune responses before and after
cell product application. All patients suffered from
advanced malignant diseases and received either lympho-
depletion or chemotherapy prior to cell infusion.

These results are encouraging regarding safety, although
still very few patients were infused with CRISPR-Cas edited
therapeutics and none of the trials were able to demonstrate
clinical efficacy at this point. Additionally, all patients had
compromised immune systems due to underlying disease and
the treatment regimen prior to cell administration. Ongoing
and future studies with ex vivo modified cell products should
investigate humoral and cellular immune responses, because
these phenomena could contribute to suboptimal treatment
outcome by partial elimination of infused cell products.

Immunogenicity issues of in vivo CRISPR-Cas
therapeutics

In general, effective in vivo gene therapies must overcome
three major immunological challenges: (1) delivery to the
target cells without being neutralized by antibodies, (2)
avoid detection and elimination by T cell memory responses
toward the vector or cargo after delivery and (3) prevent the
subsequent induction of immune responses towards the
trans- or corrected healthy gene. Thus, CRISPR-Cas9 based
strategies and preexisting Cas9-directed T cell immunity
may add to the inherent immunogenicity problems of the
viral vectors, which are discussed extensively elsewhere [2].

Most CRISPR-Cas therapeutics either aim to express
Cas9 in target cells via nucleic acids or package the protein
within a viral capsid or nanoparticle [65-68]. Therefore,
anti-Cas9 pre-existing neutralizing antibodies should only
alter success when Cas9 is exposed extracellularly and
outside a vector hull, such as after direct injection into a
tissue [69].

Cellular immunity to CRISPR-Cas is split into two
components: (i) Innate immune control via danger or
pathogen associated molecular patterns induces cytokines
and chemoattractant substances for immune cells. This
promotes and attracts the key mediators of (ii) the adaptive
immune response including B cells and T cells. For
example, nucleic acid sequences in the AAV vector genome
trigger TLR9 and induce type I interferon [70]. In turn,
interferons increase MHC expression on immune cells and
even on the targeted epithelial cells [50, 70], thus initiating
priming of the adaptive immune system and increasing the
risk of Cas9 detection by preexisting memory T cells.
Similarly, unmodified RNA ends of single guide RNAs
induce interferons through RIG-1 signaling which impedes
cell viability and reduces efficacy [71]. Removal of 5'-tri-
phosphate ends or chemical modification of the sgRNA
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with 2/-O-methyl 3’phosphorothioate bonds reduces innate
signaling and enhances genome editing in human cells
[71, 72].

In contrast to conventional gene therapy, CRISPR-Cas
gene editing allows long-lasting clinical effects with limited
expression time. Regarding immunogenicity, ‘hit-and-run”
approaches are particularly promising as T cell immunity is
only effective as long as antigen fragments are displayed on
the target cell’s surface. Optimized methods such as transient
component delivery with self-inactivating vectors [73-75] or
nanoparticles [36, 76] could thereby significantly reduce the
risk of hazardous immune responses whilst retaining clinical
efficacy.

Managing immunity to CRISPR-Cas therapeutics

Certain organs including the eye and the central nervous
system are considered immune privileged, with very low
rates of immunogenicity related events in general, although
a subset of patients do experience immunogenicity related
events [77-81]. Cas9 proteins can be engineered to remove
epitopes recognized by circulating cytotoxic CD8' T cells
[46]. Alternatively, Cas systems isolated from bacteria to
which humans have not been exposed may circumvent the
problem of preexisting immunity [82].

To delay and prevent immune responses clinically,
multiple immunosuppressive drug treatments have been
explored in viral gene therapy vectors [1]. Naive immune
responses can be attenuated by steroid drug treatment after
ocular gene therapy [2, 83]. In other indications including
hemophilia, oral immunosuppression fails to prevent cel-
lular immune responses against AAV capsid proteins in a
subset of patients, thereby limiting long-term transgene
expression. Therefore, more intensive conditioning/immu-
nosuppressive treatments are under investigation including
T cell-depleting regimens [2, 84, 85]. Alternatively, pre-
venting the processing or presentation of transgenes or
vector antigens during initial viral gene delivery could be
envisioned [86].

In the event that a single in vivo gene therapy dose
induces an insufficient or transient clinical benefit, a second
administration may be required to optimize treatment out-
come. It is therefore important to consider the immunolo-
gical consequences of repeated dosing. Moreno et al.
proposed that immune orthogonality between Cas9 homo-
logs and AAV serotypes could be exploited for sequential
application of Cas-based therapeutics [87]. In a compre-
hensive report, they demonstrate that the immune responses
to AAV and Cas homologs differed significantly despite
moderate similarity between the protein sequences at certain
epitopes (SpCas9 — AsCpfl =38% protein sequence
identity, SpCas9 — SaCas9 =26% protein sequence iden-
tity) [44]. This allowed for serial rounds of redosing in mice

if very divergent AAV serotypes were used [87]. Whether
this concept translates to humans with a preexisting poly-
clonal immune response needs to be elucidated. Impor-
tantly, the peptide sequence of the two HLA-A2-restricted
immunodominant epitopes identified by Ferdosi et al. [46]
(HLA-A*02:01; SpCas9_240-248 and SpCas9_615-62) are
present in Cas homologs from other bacteria and even
unrelated bacterial proteins, although it is unclear if these
fragments are presented in vivo [42].

Exploring Cas9-specific Treg cells to
facilitate safe and efficient gene editing
in vivo

High antigen expression in the liver has been shown to
exhaust Teff and induce Treg cells directed against vectors
and transgenes [11, 88]. Co-delivery of transgenes to the liver
has been shown to promote tolerance in many other organs by
transgene specific Tregs [2, 13, 89]. They can specifically
remove MHC complexes from antigen-presenting cells [90],
but also exert antigen-driven bystander suppression through
mechanisms summarized earlier (Fig. 1). Similar to the liver
co-delivery approach, boosting the number and migration of
Cas9-reactive Treg cells may also serve as a platform to
induce tolerance regardless of the targeted tissue.
Knowledge of the antigenic structures that mount the
distinct Treg cell immune responses to Cas9 could allow for
the creation of novel immunotherapies to promote immune
tolerance for in vivo approaches with long-term Cas9
expression. We have previously shown that anti-Cas9 Teff
and Treg cells may recognize distinct fragments of Cas9 as
indicated by minimal clonal overlap between their TCR
repertoire [44]. Similarly, this has been shown for both
aeroantigens in allergy and neoantigens in cancer tissue
[9, 91]. These unique possibilities should be exploited by:

(i) Adoptive transfer of Cas9-specific Treg generated by
polyclonal expansion strategies used clinically
[92, 93] or, for improved purity, adapted protocols
with prior antigen-specific enrichment before expan-
sion. Alternatively, gene editing and transfer of Cas9-
specific TCRs into (induced) Tregs could be envi-
sioned [94-96]. It has been shown previously that
polyclonal ex vivo expanded Treg cells can prevent
adaptive T cell responses to gene therapy [17]. A large
body of evidence suggests that antigen-specific Treg
cells are more potent than polyclonal products in
transplantation and autoimmunity, as well as in gene
therapy [18, 94, 97, 98]. Antigen-specific Cas9-
reactive Treg cells could be expanded in cell culture
and co-administered with CRISPR-Cas therapeutics
[97, 98].
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(i) Creating an engineered Cas variant with mutated
epitopes to avoid recognition by pre-existing Teff but
preserves epitopes that stimulate Treg cells may
circumvent the need for global immunosuppression
in patients with pronounced pre-existing T cell
immune reactivity to SpCas9. Accordingly, Ferdosi
et al. created “immunosilenced” SpCas9 variants
through targeted mutation of the two immunodomi-
nant epitopes recognized by pre-existing CD8" T cells
in HLA-A2" donors while preserving function and
specificity ([46] and similar approach in patent WO
2017/081288 Al). However, mutating more than two
epitopes within the Cas9 protein might be required to
avoid all preexisting Teff immunity, and it is
unknown if such a multiply mutated Cas9 protein
would retain full activity and specificity.

A final consideration for the safety of Treg induction/
transfer is that high frequencies of Cas9-specific Treg cells
may blunt immune responses toward facultative pathogens
like S. pyogenes. Thus, a particular safety risk after Cas9-
specific Treg cell induction/infusion could be an enhanced
risk of invasive infection. Nevertheless, most adults have
protective antibodies directed against tegument proteins of the
pathogens and T cell immunity against other antigens. Reg-
ular anti-microbial immunity should be retained, as Treg cells
do not block or inhibit secretion of antibodies by plasma cells.

Final summary and outlook

Gene therapy is currently entering “a modern era”, with
rising numbers of clinical trials taking place and the
expectation that commercially available products will arrive
within this decade [80, 99]. The discovery of CRISPR-Cas9
has significantly amplified the general excitement about
gene therapies [19, 100]. As CRISPR-Cas based ther-
apeutics race to the clinics, it is important to remember the
history of gene therapy and its prior shortcomings regarding
immunogenicity issues [1]. The death of 18-year old Jesse
Gelsinger due to an over immune response to a high dose of
adenoviral gene therapy vector halted the entire field of
gene therapy for at least a decade [101]. Historically, viral
gene therapies have struggled with toxicities especially after
systemic application of high vector doses, some related to
immunogenicity [102, 103]. Recently, two deaths were
reported within an AAV trial for X-linked myotubular
myopathy which mirrored the symptoms of liver failure
observed in Jesse Gelsinger (although full data are not yet
available as a peer-reviewed manuscript) [104]. Therefore,
the identification of preexisting immunity to Cas homologs
is timely and important to guide the design of better and
safer clinical trials.

SPRINGER NATURE

Preexisting immunity to Cas9 is a safety concern for
in vivo application of the technology, that is unaccounted for
in common model organisms, creating an urgent need for
better models to evaluate CRISPR-Cas9 in vivo therapeutics.
As Cas9-specific Teff and Treg cells can be enriched from
peripheral blood in humans [105], this allows for the eva-
luation of their effects on the success of gene therapies using
advanced in vitro models. Clinically, stringent immune
monitoring could provide information on the role of endo-
genous Cas9-reactive Treg cell repertoires during first in vivo
gene therapy trials. Potentially, immunotherapies to boost the
frequencies of Cas9-specific Treg cells prior and during gene
therapy may represent an attractive platform to promote tol-
erance. Therefore, CRISPR-Cas therapeutics could become a
model in which to study the potential “beneficial alliance”
between gene therapy and antigen-specific Treg cells [10].
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