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Abstract: The Voronoi entropy is a mathematical tool for quantitative characterization of the
orderliness of points distributed on a surface. The tool is useful to study various surface self-assembly
processes. We provide the historical background, from Kepler and Descartes to our days, and discuss
topological properties of the Voronoi tessellation, upon which the entropy concept is based,
and its scaling properties, known as the Lewis and Aboav–Weaire laws. The Voronoi entropy
has been successfully applied to recently discovered self-assembled structures, such as patterned
microporous polymer surfaces obtained by the breath figure method and levitating ordered water
microdroplet clusters.
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1. Introduction

Many scientific and technological problems involve patterns with a surface distribution of spots.
A common example is microscaled porous honeycomb patterns on a polymer’s surface arising from
the so-called breath-figures self-assembly, which will be described in detail below [1–4] (Figure 1).
Intuitively, the images of the pores in Figure 1a,b look ordered, whereas the pattern presented in
Figure 1c seems to be disordered. But how this intuitive feeling can be quantified? Quantitative
parameters of self-organization can be obtained by building the Voronoi diagram (also called the
Voronoi tessellation, or Voronoi partition) and calculating the appropriate Voronoi entropy, which is
the topic of the present paper [5]. An example corresponding to the case in Figure 1c is presented in
Figure 1d.

Entropy 2018, 20, 956; doi:10.3390/e20120956 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-1356-2486
https://orcid.org/0000-0001-6595-3927
https://orcid.org/0000-0003-0980-3670
http://www.mdpi.com/1099-4300/20/12/956?type=check_update&version=1
http://dx.doi.org/10.3390/e20120956
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 956 2 of 13Entropy 2018, 20, x FOR PEER REVIEW  2 of 14 

 

  

(a) (b) 

  

(c) (d) 

Figure 1. Porous ordered polycarbonate honeycomb structures obtained with breath-figures  
self-assembly is shown. (a) Scale bar is 2 µm. (b) Scale bar is 1 µm. (c) Scale bar is 10 µm. (d) Voronoi 
diagram for the case (c), Svor = 1.0131, is depicted. 

It appears that the idea of what is now called the Voronoi tessellation has been proposed already 
by Johannes Kepler and Rene Descartes in the 17th century [6,7]. Kepler used it to study the densest 
sphere packing problem, whereas Descartes employed these tessellations to verify that the 
distribution of matter in the Universe forms vortices centered at fixed stars (Figure 2) [6,7].  
British physician John Snow, referred to as “the father of modern epidemiology,” re-discovered the 
tessellations during the 1854 London cholera outbreak [7,8]. Snow identified infected wells by 
superposing the map of cholera cases and the Voronoi diagram of the water sources sites [7,8],  
thus proving that Voronoi diagrams can even save lives. In parallel, the idea was revived by Dirichlet 
in the context of his works on quadratic forms [9]. 

Figure 1. Porous ordered polycarbonate honeycomb structures obtained with breath-figures
self-assembly is shown. (a) Scale bar is 2 µm. (b) Scale bar is 1 µm. (c) Scale bar is 10 µm. (d) Voronoi
diagram for the case (c), Svor = 1.0131, is depicted.

It appears that the idea of what is now called the Voronoi tessellation has been proposed already
by Johannes Kepler and Rene Descartes in the 17th century [6,7]. Kepler used it to study the densest
sphere packing problem, whereas Descartes employed these tessellations to verify that the distribution
of matter in the Universe forms vortices centered at fixed stars (Figure 2) [6,7]. British physician
John Snow, referred to as “the father of modern epidemiology,” re-discovered the tessellations during
the 1854 London cholera outbreak [7,8]. Snow identified infected wells by superposing the map of
cholera cases and the Voronoi diagram of the water sources sites [7,8], thus proving that Voronoi
diagrams can even save lives. In parallel, the idea was revived by Dirichlet in the context of his works
on quadratic forms [9].
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Figure 2. The tessellation diagram drawn by René Descartes is shown in [6,7]. Letters denote masses. 

Georgy Voronoi (1868–1908) was a student of Markov in Saint Petersburg University, who spent 
most of his career at the University of Warsaw where he had become a professor even before 
completing his PhD thesis [7]. Voronoi’s results were published in 1908, the year of his untimely 
death at the age of 40 [5]. 

A Voronoi tessellation or diagram of an infinite plane is a partitioning of the plane into regions 
based on the distance to a specified discrete set of points (called seeds, sites, nuclei,  
or generators) [10,11]. For each seed, there is a corresponding region consisting of all points closer to 
that seed than to any other. The Voronoi polyhedron of a point nucleus in space is the smallest 
polyhedron formed by the perpendicularly bisecting planes between a given nucleus and all the other 
nuclei. The Voronoi tessellation divides a region into space-filling, non-overlapping convex 
polyhedral, shown in Figure 3 [10,11].  

 
Figure 3. Example of the Voronoi tessellation on a set of points. Red points represent seeds  
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Figure 2. The tessellation diagram drawn by René Descartes is shown in [6,7]. Letters denote masses.

Georgy Voronoi (1868–1908) was a student of Markov in Saint Petersburg University, who spent most
of his career at the University of Warsaw where he had become a professor even before completing his
PhD thesis [7]. Voronoi’s results were published in 1908, the year of his untimely death at the age of 40 [5].

A Voronoi tessellation or diagram of an infinite plane is a partitioning of the plane into regions
based on the distance to a specified discrete set of points (called seeds, sites, nuclei, or generators) [10,11].
For each seed, there is a corresponding region consisting of all points closer to that seed than
to any other. The Voronoi polyhedron of a point nucleus in space is the smallest polyhedron
formed by the perpendicularly bisecting planes between a given nucleus and all the other nuclei.
The Voronoi tessellation divides a region into space-filling, non-overlapping convex polyhedral,
shown in Figure 3 [10,11].
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Figure 3. Example of the Voronoi tessellation on a set of points. Red points represent seeds or nuclei.

The Voronoi entropy calculated from the diagrams is used to quantify orderliness of sets of spots
on a 2D plane or cells around these points. Such random or self-organized cells appear during various
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processes in the materials science and surface science including grain growth and self-assembly of
colloidal and droplet patterns.

2. Topological and Scaling Properties of Voronoi Diagrams and Entropy

A Voronoi diagram has the following two salient properties: (i) the edges of the Voronoi diagram
include all the points in the plane that are equidistant to the nearest seed, and (ii) the vertices are
the points equidistant to three (or more) seeds. Topologically, Voronoi diagrams represent planar
graphs with a number of interesting properties [12]. The number of edges joined to a given vortex is
its coordination number z. A topologically stable Voronoi diagram, i.e., a diagram which maintains its
topological properties under small deformations, is characterized by the coordination number of all
its vortices z = 3 [12]. Note that the Voronoi diagram, as any other planar cellular pattern, obeys the
Euler equation (see Figure 3)

− n + f = χ = 2 (1)

where and v is the number of vertices, n is the number of edges, f is the number of cells (polygons
bounded by edges including the outer infinitely large region) and χ is the Euler number (or the Euler
characteristics) [12]. Consider that one of these cells is unbounded, and is called the infinite cell.

An immediate consequence of the Euler equation for the Voronoi diagrams is that in the limit of a
large system (when v, n, and f are all large integers), the average number of edges surrounding a cell is
six, or n/ f = 3. This is because for topologically stable diagrams n = 3

2 v (because three edges meet at
every vertex and an edge links two vertices), which yields f = n/3 (see Reference [12]).

The seeds sharing a common Voronoi segment are geometric neighbors [10,13]. When such
common physico-chemical processes as the heterogeneous condensation or grain growth are
considered, geometric neighbors become competing centers in a growth scenario.

To quantify the orderliness of the Voronoi tessellation or a similar 2D structure, the so-called
Voronoi entropy is defined as

Svor = −∑
n

Pn ln Pn (2)

where Pn is the fraction of polygons with n sides or edges (also called the coordination number of the
polygon) in a given Voronoi diagram [10–12]. The summation in Equation (2) is performed from n = 3
to the largest coordination number of any available polygon, e.g., to n = 6 if a polygon with the largest
number of edges is a hexagon.

The Voronoi entropy can be viewed as a measure of information content in the diagram.
The Voronoi entropy becomes zero for a perfectly ordered structure consisting of a single type of
polygons, so that Pn = 1 and ln Pn = 0. For a typical case of a fully random 2D distribution of points
(i.e., with a uniform probability distribution of seed points on a plane), the value of Svor = 1.71 has
been reported [14]. Therefore, it is expected that for a self-organizing structure, the value of Svor

decreases. Note that the Voronoi entropy is an intensive property, unlike the thermodynamic entropy,
which is an extensive property. Therefore, the value does not depend on the number of seeds, which
makes it appropriate to study processes where the number of seeds increases.

The degree of randomness in a cellular structure with straight edges can be characterized by Lewis’
law [15–21]. Lewis observed a linear relationship between the average area of a typical n-polygon,
An, and n for various random 2D cellular mosaics created by growing living cells at various stages of
the development

An = α(n− 2) (3)

where α is a proportionality constant. Equation (3) suggests that the pattern can be considered random
if there is a linear relationship between the number of edges and the mean area. For the precise value
and meaning of the constant α, see Reference [19]. The validity of Lewis’ law was tested on natural
patterns of different nature at different scale sizes, from micrometers to kilometers [22,23]. In particular,
the Lewis scaling law was observed for patterns arising from condensation of droplets, which is crucial
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for the formation of the breath-figures patterns and condensed droplet clusters [4,23–27]. Another
scaling law, which has also been suggested, is the Desch law stating a linear relation between the
perimeter of polygons and the number of their edges [22,28].

Besides the Lewis and Desch laws, there is another important scaling law, related to Voronoi
diagrams, which is called the Aboav law [29–31]. This law relates the average number of sides mn of a
Voronoi cell that neighbors an n-sided cell to the number n according to:

mn = a +
b
n

(4)

where a and b are constants. The Aboav law is often called in the literature the Aboav–Weaire law [31].
Hence, small grains tend to be surrounded by large ones and vice versa (more accurately speaking.

the few-edged cells have a remarkable tendency to be in contact with many-edged cells and vice
versa) [19,29,30]. The explanation of the Aboav law, exploiting the Euler formula (Equation (1))
was suggested, and the values of constants a and b appearing in Equation (4) were discussed in the
literature [19,30].

Weaire in Reference [30] stated that the Aboav formula appears to derive inexorably from the 2D
geometry and topology, and that it should not be seen as a departure from randomness [30].

Some other properties of random planar distributions of nuclei generating Voronoi diagrams are
known. When the points are randomly and uniformly distributed on the plane, the probability pn that
a point has a n-sided Voronoi cell is given, for large n, by

pn =
const
4π2

(
8π2)n

(2n)!

[
1 + O

(
1√
n

)]
(5)

which behaves as pn ≈ n−2n. The area distribution of Voronoi cells for random patterns was suggested
for the normalized cell size distribution function

f (x) = const× x
3d−1

2 exp
(
− (3d + 1)x

2

)
(6)

where d is the dimensionality of the space (d = 1, 2, 3) [32]. The statistical distribution of perimeters of
Voronoi cells inherent for random patterns was treated in Reference [33]. Recursive Voronoi diagrams
created on a set of points can generate fractal patterns [34]. From the geometrical point of view,
the Voronoi tessellation represents a dual graph of the Delaunay triangulation [35].

Multidimensional generalizations of the Voronoi diagrams are discussed in References [13,32].
The 3D Voronoi diagrams are used in crystallography. The Voronoi partition goes further than
traditional crystallo-chemical models based on the spherical atoms, since they can include the effect of
the crystal field on the atom shape. This introduces new methods of crystal structure description at the
local and global levels, such as sphericity and uniformity criteria, topological parameters for atomic
packings, and ionic arrays and methods for void subspace analysis. Voronoi partition turns out be
useful for the quantitative analysis of the structure of void space in polymer solutions [36] and solid
polymers [37].

3. Analysis of 2D Self-Assembled Surface Patterns with 2D Voronoi Diagrams

Given that Voronoi diagrams can characterize ordering in diverse surface patterns, from random
to regular, they are used to study self-assembled structures. Among the examples are kinetically
driven self-assembly of highly ordered nanoparticle monolayers, formed by evaporation of colloidal
solutions [38], 2D arrays of Au nanoparticles synthesized from a near-perfect hexagonal layer of diblock
copolymer micelles by solvent vapor treatment [39], and epitaxial self-assembled nanostructures [40],
Voronoi diagrams indicate the location of defected sites in self-assembled patterns, thus enabling
immediate revealing of dislocations and defected areas [41].
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Interestingly, Voronoi diagrams may arise in a natural way from self-assembly processes.
Zambo et al. reported self-assembly of like-charged nanoparticles into Voronoi diagrams [42].
A macroscopic pattern was generated by the spatiotemporally controlled aggregation of like-charged
carboxyl-terminated gold nanoparticles in a hydrogel, where clustering has been induced by
the screening effect of the sodium ions that diffuse in a hydrogel [42]. Diffusion fronts of the
sodium ions induced nanoparticle aggregations, which generated Voronoi structures, where the
Voronoi cells consisted of aggregated nanoparticles and their edges represented aggregation-free and
nanoparticle-free zones [43].

Martin et al. studied pattern formation during 2D nanoparticle self-assembly controlled by direct
modification of solvent dewetting dynamics [43]. The authors compared three different techniques for
the study of ordering in the resulting patterns: the Voronoi diagrams, two-dimensional fast Fourier
transform analysis of the images [44], and the Minkowski functional method [45,46]. The Minkowski
functionals of point patterns are calculated by centering a disk on each point and analyzing the
topology of this secondary patterns of overlapping disks as a function of the radius [45].

By combining the overlapping disks, a pattern of differently shaped objects is formed. The total
area of this collection of objects is then just the total area of the disks excluding any overlapping area.
This is the first Minkowski measure (functional). The second Minkowski measure, the total perimeter of
the pattern, is the perimeter of all of the shapes, which is reduced from the perimeter of the individual
disks because of overlaps. The Euler number χ, supplied by Equation (1) is the final Minkowski
measure, defined as the total number of distinct shapes or components in the window (created by
the overlapping disks) minus the number of holes [45]. Mathematically, the three functionals do
completely classify a pattern [45]. It was suggested that the Minkowski functional method is the
most comprehensive for the recognition of inherent ordering for point patterns [45]. A comparison
of the effectiveness of the Fourier transform, Minkowski functionals, and Voronoi diagrams for
characterization of ordering in point patterns still remains an open problem.

Another method enabling characterization of patterning in 2D self-assembled patterns with the
correlation functions was reported in Reference [47], in which porous honeycomb structures arising
from breath figure self-assembly [1–4,14,25–27], depicted schematically in Figure 4, were studied.

These patterns are formed by the so-called breath figure self-assembly process. The breath
figures refer to the fog that forms when water vapor contacts a cold, typically solid surface, such
as glass. The common example is the fog which appears on a window, when one breathes on it.
The formation of breath figures was first studied more than hundred years ago by J. Aiken and by Lord
Rayleigh [48–51]. Breath figures can form highly regular hexagonal arrangements of fog microdroplets.
This is apparently due to their non-coalescence and due to various interactions (such as the Marangoni
convection) and variations in the temperature and humidity next to condensing microdroplets [4].

In the 1990s, it was discovered that breath figures can play a significant role in materials science
due to formation of regular honeycomb arrangements of micropores on the surface of polymers,
formed by rapid evaporation of polymer solutions in humid atmosphere. Rapid evaporation of the
solvent cools the solution–humid air interface, resulting in intensive condensation of water droplets
at the interface. The droplets then sink into the solution, eventually forming a honeycomb pattern
(Figure 4). These breath figure patterns are used to synthesize superhydrophobic surfaces [4].

Scanning electron microscopy (SEM) images of breath-figures patterns were treated as follows:
in order to understand the short-range and long-range ordering in the obtained 2D structures,
the statistical properties of the auto-correlation functions were analyzed [47]. The correlational
analysis of the SEM images indicated short-range (ca. 5 µm) and large-scale (ca. 50 µm) ordering
of the honeycomb structures [47]. There is limited research addressing the Voronoi-partition-based
analysis of hierarchical 2D patterns [43,52,53]. A generalized version of the Voronoi-Delaunay method
was used to study relatively large intermolecular voids [54]. The suggested version made the Voronoi
diagrams applicable for molecular systems, i.e., ensembles of partly overlapping spheres [50].
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Regrettably, the majority of studies reporting application of Voronoi diagrams to the study of
synthetic self-assembled patterns did not concentrate on the validity of the Lewis [15–19] and Aboav
laws [19–30]. However, the validity of these laws was studied for biological tissues, including cells
constituting human muscles [55]. The Aboav law was reported for mitosis in vegetable tissues [31].
It was also shown that the Lewis empirical, linear relationship between the average area of a cell
and the number of its sides in two-dimensional mosaics corresponds to maximal arbitrariness in the
cellular distribution observed in in epithelial mosaics [20].

4. Droplet Clusters and Their Analysis with Voronoi Diagrams.

Another area of capillary phenomena in which Voronoi diagrams are used is the self-assembled
levitating clusters of water microdroplets. Such clusters emerge over locally heated spots of a liquid
surface [56–61]. Growing and condensing droplets with a typical diameter of 5–100 µm levitate at an
equilibrium height [56–61]. Their weight is equilibrated by the drag force of the ascending air-vapor
jet rising over the heated spot (Figure 5).
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Droplets form a monolayer and arrange into a hexagonally ordered structure called a cluster.
Due to the attraction to the center of the heated area combined with aerodynamic repulsion between
the droplets, the clusters form structures that are quite diverse and different from densest packing of
hard spheres [57].

Evolution of a typical growing water cluster is shown in Figure 6. To construct the Voronoi
diagram and to calculate the Voronoi entropy, we used the modules of the MATLAB program
developed at the Department of Physics and Astronomy at the University of California (Department of
Physics and Astronomy University of California). Since the radii of droplets (ca 5–100 µm) were much
smaller than the capillary length [4] they kept strictly spherical shape and consequently their centers
were considered as the seed points or nuclei (see Figure 3).
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Figure 5. Self-organization of a droplet cluster is demonstrated. (a) The image of the cluster and
(b) the Voronoi tessellation of the cluster. The scale bar is 200 µm. Yellow (1,9), gray (4–8), and blue
(3,2) polygons have five, six, and seven neighbors (edges), respectively [56].

The Voronoi entropy decreases with increasing time and the number of droplets [56,57]. Newly
arriving droplets disturb the hexagonal structure, and the size of the droplets affects the Voronoi
entropy. As a result, the Voronoi entropy grows immediately after a new droplet joins the cluster [56].
Following that, the entropy decreases due to the ordering of the cluster arrangement. Most tests also
showed a correlation between the entropy and the fraction of hexagonal clusters. This is because the
hexagonal arrangement provides the densest 2D packing [57]. Levitating monodisperse microdroplet
clusters with 1–28 droplets formed over a locally heated water layer have been reported recently [57].

Figure 7 shows a relatively large droplet cluster and its Voronoi diagram. The structure of the
cluster is ordered at the center, while there are defects at the periphery. The value of the Voronoi
entropy is Svor = 0.335. Figure 8 depicts the self-assembly stages of a small droplet cluster [56].

Calculation of the dynamic Voronoi entropy enabled not only quantification of ordering on
droplet clusters, but also characterization of its temporal evolution [56,57]. 3D Voronoi analysis
enabled quantification the clustering of inertial particles in homogeneous isotropic turbulence using
data sets, extracted from experiments performed with microbubbles [62]. Voronoi analysis also allowed
distinguishing the clustering behavior of heavy, neutrally buoyant, and light particles in turbulent
flows [62].
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5. The Relation between Voronoi Entropy and Thermodynamic Entropy

The complicated relation between the Voronoi entropy and thermodynamic entropy was
extensively addressed in Reference [10]. The relationship between the precisely defined Voronoi
free volume information entropy and the thermodynamic entropy was established for the 3D hard-disk
and hard-sphere systems [10]. The Voronoi free volume of any hard particle was defined as the
difference between its Voronoi volume and the minimal cell volume occurring at a regular close
packing. It was demonstrated that the maximal entropy formalism, when applied to the free volume
entropy, predicts an exponential distribution which approaches disorder in the dense random-packing
limit [10]. The obvious difference between the 2D Voronoi entropy and thermodynamic entropy should
be mentioned: (1) the 2D Voronoi entropy is an intensive property of the pattern (in other words the
Voronoi entropy of the given pattern does not grow with the growth of the pattern); whereas the
thermodynamic entropy is an extensive thermodynamic value, and it is increased with the growth of
the system; (2) the thermodynamic entropy is the relativistic invariant of the system [63,64], whereas the
Voronoi entropy is not. More investigations in the field are desirable.

6. Conclusions

Several methods can be used to quantify the orderliness of 2D patterns: The Minkowski
functionals [45], Fourier analysis [44], and correlation functions [47]. An alternative method is the
calculation of the entropy of the Voronoi diagram, which is the 2D analogy of 3D Wigner–Seitz
partition [65,66]. The diagram itself traces back to Johannes Kepler and Rene Descartes [6,7].
The method was revived by Dirichlet [9] and Voronoi [5] and became popular for quantitative
characterization of 2D and 3D patterns. This approach has been successfully applied to the
characterization of surface self-assembly of biological and natural mosaics, occurring on the broad
diversity of spatial scales (from molecular to macroscopic ones). The Voronoi analysis is also
effective for the analysis of surface porous structures and droplet clusters [56–61], enabling in situ
characterization of ordering. We conclude that the use of Voronoi diagrams is a powerful tool
enabling analysis and quantification of ordering in a diversity of synthetic and biological systems.
The comparison of the effectiveness of Voronoi diagrams for the analysis of 2D ordering vs. Minkowski
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functionals and Fourier analysis remains an open problem. The relation between the Voronoi entropy
and thermodynamic entropy remains unclear and calls for future investigations.
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