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Abstract: The mammalian immune system senses foreign antigens by mechanisms that involve
the interplay of various kinds of immune cells, culminating in inflammation resolution and tissue
clearance. The ability of the immune cells to communicate (via chemokines) and to shift shape for
migration, phagocytosis or antigen uptake is mainly supported by critical proteins such as aquaporins
(AQPs) that regulate water fluid homeostasis and volume changes. AQPs are protein channels that
facilitate water and small uncharged molecules’ (such as glycerol or hydrogen peroxide) diffusion
through membranes. A number of AQP isoforms were found upregulated in inflammatory conditions
and are considered essential for the migration and survival of immune cells. The present review
updates information on AQPs’ involvement in immunity and inflammatory processes, highlighting
their role as crucial players and promising targets for drug discovery.
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1. Introduction

Mammalians use both innate and adaptive mechanisms to detect and eliminate all
kinds of pathogens. Such a process is resolved by inducing inflammation as a mechanism
of tissue clearance. This review presents the state of the art concerning aquaporins’ (AQPs)
role in immune- and inflammatory-related biological processes such as cell–cell communi-
cation, migration and phagocytosis that are crucial for achieving cellular immune response.
Targeting AQPs in immune cells will boost the design of novel drugs and paves the way
for the development of new therapies.

A literature search was undertaken using various online sources including PubMed
and the Web of Science platform/database, and results were generated by the combination
of “Aquaporin” and one of the following keywords: “inflammation”, “inflammatory”,
“immune” and “immunity”. Using the available data, we focused on the role of AQPs in
inflammation, shedding light on their potential targeting to overcome inflammation and
related pathologies and encouraging the search in drug discovery.

2. Aquaporins

The cellular and molecular events associated with inflammation are complex, and
therefore, every protein that plays a part in such mechanisms should be considered. In
recent years, AQPs have been raised as relevant players in both immune cell physiology
and inflammatory response, opening new perspectives for innovative therapeutics.

AQPs are channel-forming proteins with representation in all kinds of organisms [1].
AQPs facilitate the transport of water and small non-charged molecules through the
plasma membrane, driven by osmotic and solute gradients [2–4]. Despite being part
of the same family, the 13 (AQP0–12) isoforms expressed in humans present specific
permeability features and tissue/subcellular localization, suggesting a link between the
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site of expression and function [3,5]. The orthodox aquaporins (AQP0, AQP1, AQP2,
AQP4, AQP5, AQP6 and AQP8) are highly selective to water, having a crucial role in
transepithelial water transport to maintain fluid homeostasis, while aquaglyceroporins
(AQP3, AQP7, AQP9 and AQP10) also transport small non-charged solutes such as glycerol
and urea, thus having high impact in energy balance with implications in metabolism [5,6].
S-aquaporins (AQP11 and AQP12) are two subcellular isoforms—AQP11 facilitates water
and glycerol transport across plasma and organelle membranes, guaranteeing intracellular
homeostasis in several organs, while AQP12 permeability still needs investigation [7–11].
Additionally, peroxiporins (AQP3, AQP5, AQP8, AQP9 and AQP11), due to their ability to
facilitate hydrogen peroxide permeation through membranes regulating hydrogen peroxide
fluxes [12–16], are tightly involved in redox balance and are emerging as important players
in immunity, with possible implications in oxidative stress and inflammation.

In recent results, mainly from knockout (KO) mice, AQPs have been associated with
a variety of important physiological roles including transepithelial fluid transport, brain
water homeostasis, osmoregulation, cell migration and proliferation [17,18] and have been
suggested as potential targets for drug development [5,6].

3. Aquaporins in Immune Cells’ Physiology and Inflammation

The cells that constitute the immune system—lymphocytes (thymus cells, bone mar-
row cells and natural killer cells), neutrophils and monocytes—have the ability to act fast
when they sense danger signals since they can undergo rapid morphological modifications.
This depends on their capacity to alter the cytoskeleton structure by modulating water and
specific small solutes’ permeability across the plasma membrane [19].

Based on the reported interaction between AQPs, the cytoskeleton and signaling
cascades, AQPs’ involvement in the development of inflammatory mechanisms has recently
been suggested, supported by the detection of several isoforms in cells of both innate
and adaptive immunity and the demonstration of their dysregulation in various human
diseases [20,21]. So far, AQPs have been described in specific processes related to immune
cell function such as priming and inflammasome activation, transendothelial migration
and phagocytosis [22–26].

3.1. Aquaporins in Immune Cell Priming

AQPs are expressed in human immune cells in both the innate and the adaptive im-
mune system, and signals for cell activation/priming were shown to upregulate AQP iso-
forms during this process. In human blood leukocytes, AQP1 and AQP9 were detected and
were upregulated after intravenous or in vitro lipopolysaccharide (LPS) stimulation [27,28].
AQP9 is also augmented in activated polymorphonuclear leukocytes in patients with sys-
temic inflammatory response syndrome [29] and infective endocarditis [30]. Activated B
and T lymphocytes were reported to express AQP1, AQP3 and AQP5 and immature den-
dritic cells (DCs) express AQP3 and AQP5, and their expression was related to activation
and proliferation of these immune cells [21].

In DCs, AQP9 was shown to be the most expressed isoform and was significantly
upregulated by LPS stimulation. In AQP9-KO mice with induced colitis, AQP9 blockage
did not completely protect from colitis-related inflammation but reduced DC inflammatory
response [31]. Human primary blood-derived macrophages and neutrophils are character-
ized by high levels of AQP9, whose upregulation at both transcript and protein levels was
also detected after stimulation with LPS [32]. Similar to primary cells, AQP3 is upregulated
by LPS stimulation in monocytic THP-1 cells, which are commonly used as a model to
study the inflammatory process. In THP-1 cells, AQP3 inhibition or silencing partially
blocks LPS priming and decreases production of interleukin (IL)-6, pro-IL-1β, and tumor
necrosis factor alpha (TNF-α), suggesting a link between AQP3 function and Toll-like
receptor 4 (TLR4) engagement during macrophage priming [32]. Another study on THP-1
cells reported an increase in AQP1 expression after LPS administration, while AQP5 mRNA
expression was reduced [33]. In addition, patients with systemic inflammatory response
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syndrome (SIRS) show increased AQP9 expression in neutrophils compared to healthy
controls [29]. Figure 1 and Table 1 summarize the reported regulation of immune-related
AQPs during inflammation.

Figure 1. Aquaporins (AQPs) expression in immune cells involved in the inflammatory process. Illustration represents an
injured tissue, adjacent blood vessel and immune cells involved in inflammation. The localization of each AQP isoform in
the different immune cells is also represented.

Table 1. Regulation of immune-related AQPs during inflammation.

Gene Species Immune Cells Stimuli Regulation References

AQP1
Human Leucocytes LPS Upregulation [28]
Human Monocytic THP-1 cells LPS Upregulation [33]

AQP3
Human Leucocytes Sepsis Downregulation [28]
Human Monocytic THP-1 cells LPS Upregulation [32]

AQP5 Human Monocytic THP-1 cells LPS Downregulation [33]

AQP7 Mouse Macrophages ? [24]

AQP9

Human Leucocytes SIRS Upregulation [29]
Mouse Dendritic cells LPS Upregulation [31]

Human Macrophages Pseudomonas
aeruginosa Upregulation [25]

Human Leucocytes LPS Upregulation [27]
Human Monocytes LPS Upregulation [32]
Mouse Macrophages ? [24]

AQP, aquaporin; LPS, lipopolysaccharide; SIRS, Systemic Inflammatory Response Syndrome.
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3.2. Aquaporins in Inflammasome Activation

The inflammasome is an important player in the immune response—it can be found
in macrophages and neutrophil granulocytes and recognize a variety of pathogen anti-
gens. Inflammasome nucleotide-binding oligomerization family pyrin domain containing
3 (NLRP3) is upregulated in sepsis [34] and its activation modulates the release of pro-
inflammatory cytokines such as IL-1β and IL-18 [35]. IL-1β release depends on extracellular
pH and is caused by AQP-mediated water influx [36]. Therefore, AQP-mediated water
movement in macrophages appears to be the common element unifying the variety of
NLRP3 inflammasome activators [23]. In an acute lung injury mouse model, AQP1 defi-
ciency was associated with a reduction in IL-1β release and neutrophilic inflammation,
suggesting that AQP-mediated water transport in macrophages constitutes a danger signal
required for NLRP3 activation [23].

More recently, fast cell reswelling has been pointed out as an event preceding macrophage
activation and consequent IL-1β secretion [37–39]. In line with this, our previous study
demonstrated that aquaporin-dependent cell reswelling increased IL-1β release through
caspase-1 activation. Moreover, blockage of AQP3, which transports glycerol and hydrogen
peroxide and is the most expressed isoform in monocytic THP-1 cells, reduced IL-1β release
and pyroptosis by preventing inflammasome activation induced by reswelling, nigericin
and ATP [32]. Thus, AQP3 overexpression may account for the fast cell volume changes
occurring in inflammation. In addition, AQP3 peroxiporin activity contributing to rising
intracellular reactive oxygen species (ROS) with subsequent inflammasome activation
should also be considered. The proposed mechanism of inflammasome priming and
activation in macrophages where AQPs may play a pivotal role is represented in Figure 2.

3.3. Aquaporins in Cell Shape-Dependent Mechanisms

AQPs mediate cell shape changes in several physiological processes required for
cellular immunity such as migration, phagocytosis and antigen uptake by interacting with
the cytoskeleton and signaling cascades [40].

DCs express AQP5 and AQP7, and their ablation was associated with decreased
antigen uptake and reduced endocytosis ability [41,42]. Studies in DCs of AQP7 KO mice
showed that AQP7 is involved in chemokine-dependent migration and antigen uptake and
processing [42].

AQP3, AQP5 and AQP9 were suggested as the most relevant AQP isoforms in the
immune system as they regulate the migration of different immune cells [43]. AQP3 was
shown to have an essential role in T cell and macrophage function and migration in a
chemokine gradient [44]. AQP3-mediated transport of H2O2 in CD8+ T cells was also
suggested as an important regulator in endocytosis and the endosome-to-cytosol transfer
process during antigen uptake [45]. AQP5 and AQP9 regulate neutrophil cell migration
and impact sepsis survival [43].

In leukocytes, AQP9 was found localized on the cell edges, possibly to facilitate
motility, lamellipodium extension and stabilization and cell volume changes, enabling these
cells to move toward chemoattractants [46]. Pseudomonas aeruginosa-induced upregulation
of AQP9 in human macrophages is accompanied by changes in macrophage size and
morphology, affecting cell motility, migration and phagocytosis [25]. In virus-activated
memory CD8+ T cells, but not naive cells, IL-7 induces AQP9 expression, which is required
for long-term cell longevity and homeostasis [47]. In addition, in a murine model of skin
allergic contact dermatitis using AQP9 KO mice, AQP9-deficient neutrophils’ recruitment is
attenuated and migration ability is decreased. Furthermore, neutrophil deficiency in AQP9
KO mice induces decreased IL-17A production by draining lymph node cells, resulting in
low T cell activation [48].
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Figure 2. NLRP3-inflammasome priming and activation in macrophages. Two signals regulate the
activation of NLRP3 inflammasome. During signal 1 (cell priming), Toll-like receptor 4 (TLR4) activa-
tion triggers nuclear factor (NF)-кB, enhancing the expression and synthesis of pro-inflammatory
cytokines (interleukin (IL)-6, pro-IL-1β and pro-IL-18). Signal 2 (inflammasome activation) promotes
the assembly of the inflammasome components. Pro-caspase-1 is recruited and activated, thus being
able to process pro-IL-1β and pro-IL-18 to their mature and active forms, IL-1β and IL-18, respectively.
Caspase-1 also promotes plasma membrane pore formation and consequent release of cytokines and
cell death by pyroptosis.

4. Involvement of Aquaporins in Inflammatory Diseases

Various animal models have been used to clarify the pathophysiology of inflammation-
related diseases and understand the interplay between AQPs and the mechanisms under-
lying the inflammatory process. Figure 3 summarizes the involvement of various AQPs in
inflammatory diseases, with special focus on the different organs affected.

4.1. Acute Lung Injury

Acute lung injury (ALI) is characterized by neutrophilic alveolitis, injury of the alveolar
epithelium and endothelium, hyaline membrane formation and microvascular thrombi [49].
Different animal models of experimental ALI have been used to investigate mechanisms of
lung injury and AQPs’ involvement in the process, and they can be achieved by submitting
the animals to LPS, ventilation, hyperoxia or hydrochloric acid (HCl). Using rat ALI
models, AQP1 was shown to be upregulated by LPS compared to control rats, and the same
study reported that treatment with Salvia miltiorrhiza regulates the expression of AQP1,
improving body fluid homeostasis and alleviating lung edema [50]. When inducing lung
injury and edema by mechanical ventilation with high tidal volume, the expression of
pulmonary AQP1 decreases [51]. Another study shows that AQP5 is strongly expressed
in alveolar epithelial cells and is notably impaired after 3–14 days of hyperoxia treatment,
suggesting that AQP5 is important for water movement in alveolar epithelial cells and its
abnormal expression may lead to pulmonary edema [52].
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Figure 3. Involvement of AQPs in inflammatory diseases. Illustration of the various AQP isoforms
involved in inflammation-associated diseases and respective affected organs.

The induction of lung inflammation in a murine model by LPS, HCl and ventilation
yielded increased lung vascular permeability and inflammatory cell infiltration in the
broncho-alveolar lavage fluid, and ventilation also induced altered lung mechanics. These
data showed that involvement of AQPs in the acute inflammatory process is dependent on
the localization and the type of lung injury. Among the AQP isoforms evaluated (AQP1,
AQP4, AQP5 and AQP9), AQP4 lung expression decreased in the HCl- and ventilation-
induced models that primarily targeted the alveolar epithelium, while AQP5 expression
was impaired in the LPS-induced model targeting the capillary endothelium and alveolar
epithelium [53]. Another study using an ALI mouse model focusing on the expression of
AQP1, AQP3, AQP4 and AQP5 suggested AQP1 and AQP5 to play important roles in the
abnormal fluid transport in ALI and their association with the development of pulmonary
edema. AQP3 and AQP4 were not correlated with pulmonary edema during ALI [54].

4.2. Osteoarthitis

Osteoarthritis is a degenerative disease with an irreversible course, caused mainly
by chondrocyte apoptosis and cartilage matrix degradation, which are pivotal players in
regulating the function of articular cartilage by synthesizing the structural components of
the extracellular matrix and matrix-degrading proteases. AQPs have been described in
cartilage cells involved in fluid transport and in the regulation of cartilage physiology [55].
In Sprague Dawley rats whose osteoarthritis was surgically induced, resulting in severe
cartilage damage, AQP1 expression was positively correlated with caspase-3 expression and
activity, suggesting that AQP1 triggers caspase-3 activation, contributing to chondrocyte
apoptosis and, consequently, to the development of osteoarthritis [56,57].
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4.3. Neuroinflammation

AQP4 is the most representative AQP isoform in the brain and has been exten-
sively studied in this tissue since it is involved in the pathophysiology of a variety of
encephalopathies [58]. In a model where endotoxemia was induced in C57Bl/6 mice by
intraperitoneal injection of LPS, resulting in severe central nervous system injury, AQP4
protein increased along with augmented cytokine release. Interestingly, dexamethasone
attenuates AQP4 expression and IL-6 release, restoring the LPS inflammatory effect [59].
Furthermore, microRNA-130a was suggested as a therapeutic target/molecule since it
inhibits AQP4 transcription in astrocytic end-feet, which, in turn, reduces astroedema
and neuroinflammation [60]. AQP4 is also an astrocytic proteomic marker, since it was
found upregulated in sepsis-induced delirium [61] and Parkinson’s disease [62]. AQP4
KO mice astrocyte-microglial co-cultures showed increased basal and inducible canonical
NF-κB activity, enhanced gliosis (astrocytosis and microgliosis) and increased IL-1β and
TNF-α release, suggesting that AQP4 deficiency promotes microglial cells’ activation in the
co-culture system and mediates the communication between astrocytes and microglia [62].
Furthermore, studies in a rat model of cerebral edema showed that the activation of TLR4
and corticotropin-releasing hormone (CRH)/CRH receptor 1 (CRHR1) signaling upregu-
lated AQP4 and water permeability in the brain during short hypoxia. In the same model,
LPS treatment by itself increased AQP4 and pro-inflammatory cytokines, but brain edema
was only accomplished by conjugating LPS treatment with hypoxia. Humans submitted
to hypobaric hypoxia also showed enhanced TNF-α, IL-1β, IL-6 and CRH plasma levels.
These data suggest that systemic inflammation facilitates the onset of hypoxic cerebral
edema, where AQP4 plays an important role [63].

4.4. Asthma

Asthma is characterized by chronic inflammation of the airways. Oxidative stress
plays a decisive role in the pathogenesis of asthma since reactive oxygen species such as
H2O2 may initiate airway inflammation. AQP3, by facilitating H2O2 membrane perme-
ation, potentiates ovalbumin-induced murine asthma by increasing chemokine production
(CCL24 and CCL22) from alveolar macrophages and T cell trafficking. Additionally, AQP3-
KO mice exhibit reduced airway inflammation compared to wild-type mice [64].

4.5. Bowel Diseases

AQPs play an important role in transcellular water movement, being crucial for water
absorption in the colon. AQP3 and AQP8 were detected in the colon of Sprague Dawley rats,
and their expression was decreased in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced
colitis, a model that mimics human Crohn’s disease histopathology. The downregulation
of AQP3 and AQP8 was accompanied by an increase in intestinal inflammation and injury,
suggesting that both AQP3 and AQP8 may be involved in the pathogenesis of inflammatory
bowel disease [65]. AQP8 downregulation was also described in human Crohn’s disease
and ulcerative colitis biopsies, suggesting that AQP8’s role as a H2O2 channel is involved
in metabolism, and its downregulation may represent a defense mechanism against severe
oxidative stress.

Colitis has been extensively associated with alterations in electrolyte, water transport
and fluid fluxes, which contribute to the increased susceptibility to mucosal injury. A
murine model of colitis induced by dextran sulphate presented decreased AQP4 and AQP8
gene and protein levels that correlated with significant alteration in colonic fluid secretion.
Accordingly, patients with active ulcerative colitis, Crohn’s colitis or infectious colitis
showed similar reduced AQPs expression, indicating that colonic injury is associated with
downregulation of AQPs expression [66]. Interestingly, glycerol membrane transport was
demonstrated as being crucial for enterocyte physiology. The AQP3-KO rat model of colitis
induced by dextran sulphate or acetic acid developed more severe colonic hemorrhage,
marked epithelial cell loss and death than observed in wild-type rats, and these symptoms
were significantly reversed by oral glycerol uptake, increasing survival and reducing the
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severity of colitis, and suggesting that AQP3 is implicated in enterocyte proliferation due
to its glycerol facilitator function [67]. In addition, a genome-wide comparison of gene
expression in genetically susceptible animals that develop spontaneous colitis showed that
despite most upregulated genes in experimental colitis are immune-related, AQP4 and the
mitochondrial ribosomal protein L33 were also strongly upregulated. These results were
confirmed in dextran sodium sulfate-treated mice with colitis [68].

Diarrhea consists in transepithelial hypersecretion of fluid in the gastrointestinal
tract and poor water absorption in the colon. The regulation of transepithelial fluid
transport is based on ion and water transport, the latter being facilitated by AQPs. Altered
expression of AQPs in the colon is correlated with the severity of diarrhea in animals
and humans [69]. A model of 5-fluorouracil (5-FU)-induced diarrhea in mice showed
increased pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17A and IL-22) correlating
with decreased AQP4 and AQP8 mRNA throughout the entire colon compared to control
mice [70].

AQP2 and AQP3 are important isoforms in the regulation of water fluxes in apical and
lateral mucosal epithelial cells in colon and are upregulated in diarrhea. Diarrhetic mice
treated with tannin extract, which presents anti-diarrheal properties, have decreased AQP2
and AQP3 expression along with decreased water loss in colon, ameliorating colon health.
Additionally, studies in HT-29 cells showed that tannin-induced AQP2 and AQP3 down-
regulation is a consequence of suppressing the protein kinase A (PKA)/cyclic adenosine
monophosphate response element binding protein (pCREB) signaling pathway [71].

4.6. Psoriasis

Psoriasis is a chronic inflammatory skin disease characterized by raised plaques,
epidermal hyperplasia and infiltration of leukocytes into the skin [72]. AQP3 KO mice
with IL-23-induced psoriasis showed that AQP3, a water/glycerol/hydrogen peroxide
(H2O2) channel protein, is required for nuclear factor-κB (NF-κB) activation and signaling
in keratinocytes and in the pathogenesis of psoriasis. The same authors also demonstrated
that cellular import of H2O2 produced by membrane NADPH oxidase 2 (Nox2) in response
to TNFα is facilitated by AQP3 and required for NF-κB activation by regulation of protein
phosphatase 2A [73].

4.7. Metabolic Diseases

Water and glycerol movements are crucial for metabolic homeostasis, and their altered
expression has been extensively related to metabolic disorders [6].

Metabolic diseases, such as obesity, have a negative impact in pancreas physiology. In
a recent work, we studied obesity-induced inflammation in the pancreas using AQP7- and
AQP12-silenced rat β-cells stimulated by TNFα and LPS. AQP7, the main aquaglyceroporin
in endocrine pancreas and involved in insulin exocytosis, was impaired by TNFα along
with a drastic reduction in insulin secretion. AQP7 was upregulated by LPS, whereas
AQP12 was upregulated by both TNFα and LPS. Cells overexpressing AQP12 revealed
lower levels of pro-inflammatory cytokines release, emphasizing AQP12 implication in
inflammation [74].

Cholestasis is a condition where bile cannot flow from the liver to the duodenum.
AQP8 is an AQP isoform that facilitates canalicular osmotic water movement during
hepatocyte bile formation. Its involvement in the pathogenesis of cholestasis was eval-
uated using an LPS-induced cholestasis rat model. In such conditions, AQP8 protein
was decreased. In addition, LPS seems to induce TNFα-mediated post-transcriptional
downregulation of AQP8, affecting its function and suggesting a potential mechanism of
the pathogenesis of cholestasis [75].

Chronic liver injury is associated with inflammation in several diseases such as viral
infections, metabolic disorders, and nonalcoholic steatohepatitis. AQP3, an H2O2 channel,
is expressed in macrophages and involved in their activation triggering the hepatic inflam-
matory process. Administration of anti-AQP3 monoclonal antibody to a mice model of
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CCl4-induced liver injury and fibrosis prevented liver injury by blocking AQP3-mediated
H2O2 transport and consequent inhibition of macrophage activation [76].

Cardiac dysfunction commonly occurs in patients with septic shock. AQP1 is essential
for water homeostasis and vascular health and studies in AQP1-KO mice showed that
these animals suffer from cardiac hypertrophy [77]. Sepsis-associated impaired cardiac
function was induced in an LPS-stimulated mice model. In this study LPS administration
led to increased levels of AQP1 and pro-inflammatory genes as well as cardiac dysfunction
in old mice suggesting a contribution for hearts dysfunction in aged subjects with septic
endotoxinemia [78].

4.8. Kidney Injury

Acute renal failure is frequently associated to sepsis and is characterized by im-
paired urinary concentration, increased natriuresis and decreased glomerular filtration
rate. LPS-induced endotoxemic animal models confirmed AQP2 downregulation after
short exposure [79–81] and upregulation after a long exposure time [82] in kidney. Treat-
ment with propofol of an LPS-stimulated rat model prevented downregulation of AQP2
while protecting renal function in sepsis [83]. Treating animals with alpha-Lipoic acid
preserved AQP2 expression while decreasing levels of pro-inflammatory cytokines and
protected against LPS-induced tubular dysfunction by suppression of apoptosis and in-
flammation [84]. AQP1-KO mice also suggested a role for AQP1 in kidney homeostasis
since these animals are predisposed to enhanced endotoxemic renal injury with lower
glomerular filtration and urine osmolality [84].

The involvement of AQP isoforms in the settings of inflammation-related pathologies
is summarized in Table 2.

Table 2. AQPs’ involvement in inflammatory diseases.

Gene Animal Model Tissue Stimuli Effect on AQPs Disease/Condition Reference

AQP1

Rat Lung LPS ↑ Lung injury [50]
Rat Lung Ventilation ↓ Lung injury [51]

Mouse Lung LPS ↓ Lung injury [54]
Mouse Heart LPS ↓ Heart dysfunction [78]
Mouse Kidney LPS ↓ Acute kidney injury [85]

Rat Bone Ligament/meniscus
resection ↑ Osteoarthritis [56,57,86]

AQP2

Mouse Intestine MgSO4 ↑ Diarrhea [71]

Rat Kidney Escherichia coli
endotoxin ↓ Acute kidney injury [81]

Rat Kidney LPS ↓/↑/↑ Acute kidney injury [80,83,84]

AQP3

Mouse Lung Ovalbumin ↑ Asthma [64]
Rat Intestine TNBS ↓ Colitis [65]

Mouse Colon DSS ↓ Colitis [67]
Mouse Intestine MgSO4 ↑ Diarrhea [71]
Mouse Skin IL-23 ↑ Psoriasis [73]

AQP4

Mouse Lung HCl; Ventilation ↓ Lung injury [53]
Rat Brain hypoxia ↑ Brain edema [63]

Mouse Brain LPS ↑ Sepsis [59]

Mouse Brain MPTP/probenecid PD
model ↓ Parkinson’s disease [62]

Mouse Colon DSS ↓ Colitis [66]
Mouse Caecum DSS ↑ Colitis [68]
Mouse Intestine 5-FU ↓ Diarrhea [70]

AQP5
Rat Lung Hyperoxia ↓ Lung injury [52]

Mouse Lung LPS ↓ Lung injury [53]
Mouse Lung LPS ↓ Lung injury [54]
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Table 2. Cont.

Gene Animal Model Tissue Stimuli Effect on AQPs Disease/Condition Reference

AQP7
Mouse Colon DSS ↓ Colitis [66]

Rat Endocrine
pancreas LPS/ TNFα ↓/↑ Endocrine pancreas

dysfunction [74]

AQP8

Rat Colon TNBS ↓ Colitis [65]

Mouse Colon TNBS, DSS,
CD4CD4RB transfer ↓ Colitis [87]

Mouse Colon DSS ↓ Colitis [66]
Mouse Intestine 5-FU ↓ Diarrhea [70]

Rat Liver LPS ↓ Cholestasis [75]

AQP9 Mouse Lung LPS; Ventilation ↑ Lung injury [53]

AQP12 Rat Endocrine
pancreas LPS; TNFα ↑ Endocrine pancreas

dysfunction [74]

AQP, aquaporin; LPS, lipopolysaccharide; TNBS, 2,4,6-trinitrobenzene sulfonic acid; DSS, dextran sulfate sodium; IL-23, interleukin-23;
MPTP, 1-metil-4-fenil-1,2,3,6-tetraidropiridina; PD, Parkinson’s disease; 5-FU, fluorouracil; CD4, cluster of differentiation 4; CD4RB, receptor
linked protein tyrosine phosphatase encoding B determinant; TNFα, tumor necrosis factor-alpha; ↓, dowregulation; ↑, upregulation.

5. Aquaporins as Druggable Targets in Inflammation

The pathophysiological implication of AQPs in immunity and inflammation indi-
cate that these membrane proteins are promising drug targets and that their regulation
in immune cells represents a potential therapeutic approach for the modulation of the
inflammatory process.

Although several AQP modulators have been reported and patented for use for
diagnostic and therapeutic purposes [88,89], their lack of selectivity and toxic side effects
have hampered application in clinical trials. As for AQP3 and AQP7 channel activity, the
gold(III) bipyridyl compound Auphen [90] was shown to inhibit glycerol permeability in
adipocyte [91] and monocytic cell lines, reverting cell priming, an essential mechanism for
the development of the inflammatory process [32]. Recently, the commercially available
compounds DFP00173 and Z433927330 were identified as new potent and selective AQP3
and AQP7 inhibitors [92] and were suggested to be useful in the investigation of AQPs in
cytokine signaling. In addition, the compound HTS13286 was reported to block the passage
of glycerol and urea through AQP9, thus impairing secretion of inflammatory cytokines [93].
Alternatively, AQPs’ expression can be modulated at the transcriptional level, as reported
for cytokines (IL-7), leading to increased cell longevity and homeostasis [47].

Knowing that a variety of AQP isoforms are involved in immunity and inflammation,
the design and discovery of new molecules with the ability to modulate the expression and
function of specific AQPs is of utmost interest and would undoubtedly promise new thera-
peutic approaches. However, the protein structural conformation with channel pore access
restrictions makes the molecule difficult to target and has challenged the development of
AQP drug discovery [5]. The recent recognition of miRNA-targeted AQP modulation [94]
also displayed an impact in inflammation-associated diseases, such as AQP1-targeted miR-
126-5p ameliorating the dysfunction of alveolar fluid clearance [95] and AQP1-targeted
miR-144-3p reducing lung epithelial cell apoptosis in a mouse model of acute lung in-
jury [96]. Recently, the production of antibodies targeting the AQP channel [76,97] has
tailored new perspectives for the development of specific AQP-based therapeutics. Com-
pounds for treating autoimmune inflammatory diseases such as neuromyelitis optica
(NMO) boosted the successful development of monoclonal antibodies as blockers of IgG-
AQP4 for the prevention and treatment of NMO lesions [97]. In a recent study, an antibody
anti-AQP3 raised to block AQP3-facilitated H2O2 and glycerol transport in liver-resident
macrophages prevented liver injury in an experimental mouse model [76]. Therefore,
AQP-based development of novel therapeutics to reduce inflammation in a variety of
disorders remains a promising strategy.
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6. Final Remarks

Inflammation is a complex mechanism that plays a central role in the maintenance of
mammalian physiology. Compelling evidence strongly suggests that a few AQP isoforms
are key regulators of inflammation, participating in cytokine and growth factors’ signaling
pathways, possibly by mediating H2O2 permeability in addition to their role as water
or glycerol channels. AQPs’ contribution to several essential cellular processes that are
the basis of inflammation resolution, such as cell priming and inflammasome activation,
migration, antigen uptake and phagocytosis, as well as their involvement in several mod-
els of inflammatory disease makes these membrane proteins promising targets for drug
discovery. A deeper insight into the contribution of immune-related AQPs to cellular and
molecular mechanisms underlying inflammation may foster innovative therapeutics to
treat inflammation. Validation of aquaporin-targeted therapies relies on the development of
potent and selective AQP modulators, such as small molecules or biologics, and, hopefully,
translation of the experimental data into clinical practice.
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