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Abstract
Musculoskeletal function is pivotal to long-term health. However, various patient groups develop torsional deformities, 
leading to clinical, functional problems. Understanding the interplay between movement pattern, bone loading and growth 
is crucial for improving the functional mobility of these patients and preserving long-term health. Multi-scale simulations 
in combination with a mechanobiological bone growth model have been used to estimate bone loads and predict femoral 
growth trends based on cross-sectional data. The lack of longitudinal data in the previous studies hindered refinements of 
the mechanobiological model and validation of subject-specific growth predictions, thereby limiting clinical applications. 
This study aimed to validate the growth predictions using magnetic resonance images and motion capture data—collected 
longitudinally—from ten growing children. Additionally, a sensitivity analysis was conducted to refine model parameters. 
A linear regression model based on physical activity information, anthropometric data and predictions from the refined 
mechanobiological model explained 70% of femoral anteversion development. Notably, the direction of femoral development 
was accurately predicted in 18 out of 20 femurs, suggesting that growth predictions could help to revolutionize treatment 
strategies for torsional deformities.

Keywords Femoral bone growth · Finite element analysis · Mechanobiological model validation · Musculoskeletal 
modelling · Semi-automated growth predictions

1 Introduction

Bony deformities, particularly at the femur, are commonly 
observed in children with and without neurological disor-
ders. Femoral deformities are often torsional, characterized 
by a misalignment of the femoral neck with the knee axis in 
the transverse plane. This torsion is quantified by the ante-
version angle (AVA). In typically developing children, the 
AVA decreases during skeletal growth from approximately 
40° to 20° (Bobroff et al. 1999; Fabry et al. 1973). Therefore, 
normative values vary with age, and the distinction between 
healthy and pathological development is challenging. An 
increased, but also a decreased AVA can lead to gait abnor-
malities (e.g. increased internal hip rotation and in-toeing 
foot progression angle) and subsequently altered joint load-
ing, as well as further progressive problems such as pain 
and osteoarthritis (Andriacchi et al. 2004; Bruderer‐Hof-
stetter et al. 2015; Hudson 2016; Sharma 2001; Wheatley 
et al. 2023). While the state-of-the-art clinical intervention 
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to correct an existing pathological AVA is a de-rotation 
osteotomy (Buly et al. 2018; Dreher et al. 2012), proactive 
non-invasive intervention strategies might be possible if 
pathological AVA development could be identified before 
its occurrence. This would allow the development of inno-
vative intervention strategies such as gait retraining (Kainz 
et al. 2024b; Uhlrich et al. 2022) to normalize bone loading 
in a non-invasive way and ensure typical bone growth.

With the introduction of Wolff’s law in the nineteenth 
century, it has long been understood that bone growth is 
influenced by mechanical loads (Wolff 1892). The Utah 
paradigm of bone physiology refined Wolff’s law, recog-
nizing that biological factors determine skeletal health and 
growth, but mechanical loads influence these factors and are 
crucial for bone growth (Frost 2001). Shear and compressive 
stresses within biological tissues are key factors influenc-
ing the growth of tissues such as bone and cartilage (Carter 
and Beaupré 2000; Carter and Wong 1988; Pauwels 1980). 
While many simulation studies investigating bone growth 
patterns focused on predicting trabecular re-modelling at 
the micro-scale, few studies simulated bone growth on the 
macro-scale experienced during skeletal growth (Adachi 
et al. 2001; Buccino et al. 2022; Huiskes et al. 2000; Kainz 
et al. 2020; Yadav et al. 2021).

The shape of femur, in particular the AVA, affects the 
paths of muscles and therefore femoral loads (Kainz et al. 
2023; Wheatley et al. 2023). Furthermore, numerous studies 
have shown that the morphology of the lower limb bones 
can alter a person’s walking pattern (Alexander et al. 2019; 
Bruderer‐Hofstetter et al. 2015; Carriero et al. 2009; Hud-
son 2016; Mindler et al. 2021). The walking pattern has 
a big impact on bone loads (Carriero et al. 2014; Koller 
et al. 2023a), which, in turn, directs further bone develop-
ment (Carter et al. 1996; Carter and Beaupré 2000; Carter 
and Wong 1988; Wolff 1892). This illustrates the intricate 
interdependence between an individual’s musculoskeletal 

morphology, gait pattern, mechanical loading on biological 
structures and tissue growth (Fig. 1).

Multi-scale simulations in combination with a mechano-
biological bone growth model have been used to estimate 
bone loads and predict femoral growth trends based on cross-
sectional data (Carriero et al. 2011; Kainz et al. 2020; Koller 
et al. 2023b, 2024; Shefelbine and Carter 2004; Yadav et al. 
2016, 2017, 2021). Within this workflow, the loadings on the 
participant’s femur during walking are derived from muscu-
loskeletal (MSK) simulations based on subject-specific mod-
els and 3D gait analysis data. Subsequently, the muscle and 
joint contact forces from the musculoskeletal simulations 
are applied to a finite element (FE) model of the femur cre-
ated from magnetic resonance images (MRIs) to estimate the 
stresses within the growth plate. Based on these stresses, a 
growth rate and growth direction are calculated for each ele-
ment within the growth plate. Finally, growth of the femur 
is simulated in a second FE analysis, and the development 
of certain angles (e.g. change in AVA) can be quantified 
by comparing the final with the baseline geometry (Fig. 2). 
The previous studies using this workflow to calculate growth 
plate stresses and predict femoral growth revealed plausible 
growth patterns for healthy and pathological populations 
(Carriero et al. 2011; Kainz et al. 2020; Koller et al. 2024, 
2023b; Shefelbine and Carter 2004; Yadav et al. 2016, 2017, 
2021). However, this workflow includes many model param-
eters that are based on assumptions. The lack of longitudi-
nal data in the previous studies hindered refinements of the 
mechanobiological model and validation of subject-specific 
growth predictions, thereby limiting clinical applications.

The aim of this study was to close this research gap by 
collecting a unique longitudinal dataset, comprising 3D gait 
analysis data and MRIs at two time points, to experimen-
tally investigate the subject-specific growth predictions. Fur-
thermore, a sensitivity analysis was conducted to refine the 
model parameters. Multi-scale simulations were performed 

Fig. 1  Schematic illustration of 
complex interplay between skel-
etal morphology, gait pattern, 
mechanical loading on bones 
and bone growth



881Femoral bone growth predictions based on personalized multi‑scale simulations: validation…

with two approaches to solve the muscle redundancy prob-
lem when estimating muscle forces, various parameter 
combinations to calculate the growth rate based on the 
stresses within the growth plate, and three different meth-
ods to model the growth direction. Our results demonstrate 
the feasibility of the refined mechanobiological model to 
predict femoral growth trends and show that it outperforms 
predictions based solely on anthropometric and physical 
activity data.

2  Methods

2.1  Data collection

Three-dimensional gait analysis data including marker 
trajectories, ground reaction forces and electromyography 
(EMG) of selected lower limb muscles as well as MRIs of 
the femurs of ten healthy children were collected on two 
occasions approximately 2 years apart (Table 1). Marker 
trajectories were collected with 200 Hz using a 12-camera 
motion capture system (Vicon Motion Systems, Oxford, 
UK). The used marker set was based on the Plug-in Gait 

marker set (Kadaba et al. 1990) with additional clusters of 
three markers on each thigh and shank segment and an addi-
tional marker at the 5th metatarsal head of each foot. Ground 
reaction forces were simultaneously recorded with 2000 Hz 
with multiple force plates (Kistler, Winterthur, Switzer-
land). At the same time, EMG was collected with 2000 Hz 
of seven lower limb muscles on each leg (tibialis anterior, 
gastrocnemius medialis, soleus, peroneus longus, vastus 
lateralis, biceps femoris and gluteus medius) with wireless 
surface electrodes (Cometa Srl, Milan, Italy). Participants 
were asked to walk with a self-selected walking speed, and 
several gait trials were recorded.

MRIs of each femur were collected using a 3T magnetic 
resonance scanner (MAGNETOM Vida, Siemens, Berlin/
Munich, Germany) with a T1 vibe sequence with voxel sizes 
between 0.8 × 0.8 × 0.7 mm and 1.1 × 1.1 × 1.1 mm.

Between both sessions, participants were asked to carry 
an activity monitoring device (Realalt 3DTriSport, London, 
UK) during a period of 7 consecutive days to estimate their 
daily step count. At the second data collection session (S2), 
participants were requested to fill out a questionnaire about 
their sport and spare time activities to gain further informa-
tion about their activity level. Ethics approval was obtained 

Fig. 2  Schematic illustration of the mechanobiological multi-scale workflow to predict femoral bone growth

Table 1  Participant 
characteristics at first and 
second data collection 
session and the changes 
between session given as 
mean ± standard deviation and 
the range in brackets

BMI = Body mass index, AVA = Anteversion angle and NSA = Neck–shaft angle

First session Second session △ Between sessions

Age (years) 9.9 ± 0.9 (8.4–11.3) 11.9 ± 0.8 (10.3–13) 2.0 ± 0.1 (1.8–2.1)
Height (cm) 143.3 ± 7.3 (130–154) 156.8 ± 8.7 (142–168) 13.5 ± 3.3 (9–20)
Weight (cm) 35.1 ± 7.4 (29–50.4) 43.3 ± 9.1 (34.2–62.3) 8.2±3.3 (4.9–13)
BMI 17 ± 2.7 (14–22.4) 17.6 ± 3.1 (14.8–23.2) 0.6 ± 0.9 (−0.8–2.1)
AVA (°) 34.7 ± 8.9 (16.4–49.3) 33.4 ± 9.5 (14.8–48) −1.3 ± 5.8 (−13.1–11.8)
NSA (°) 127 ± 4.2 (120.5–134.6) 130.3 ± 3.5 (125.8–138) 3.3 ± 3.4 (−5.1–8.9)
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from the corresponding local ethics committee (University 
of Vienna, reference number 00578).

2.2  MRI measurements and segmentation 
of femurs

The femoral AVA in the plane perpendicular to the shaft axis 
and the neck–shaft angle (NSA) were calculated based on six 
anatomical points of each femur defining the neck, shaft and 
knee axis selected in an oblique slice passing the femoral 
neck and in transverse slices (Sangeux et al. 2015) for both 
sessions. Due to uncertainties in this very common measure-
ment methods (Kaiser et al. 2016; Sangeux et al. 2015) and 
to increase our confidence in the obtained AVA, the meas-
urements were initially performed by one researcher with 4 
years of experience in bone segmentation and anatomical 
feature quantification. The selected points were reviewed 
following the two-person verification principle by the initial 
researcher and a second researcher with 1 year of experience 
in bone segmentation and anatomical feature quantifica-
tion. In case of disagreement, points were repositioned with 
consent of both researchers. The second measurement was 
used for further analysis, and the maximum difference of the 
change of AVA between the two measurements was used as a 
measurement uncertainty (Supplementary material, Fig. S1). 
A total of 100 imputations of the measured development of 
AVA were created by adding a random value within this 
measurement uncertainty range leading to an evenly spaced 
distribution. These imputations were used for subsequent 
analysis. Furthermore, the intercondylar distance, i.e. dis-
tance between the medial and lateral condyles of the femur, 
the location of the hip and knee joint centres, was quanti-
fied and selected from the MRIs of the first data collection 
session (S1). These measurements were subsequently used 
to personalize musculoskeletal models which were used to 
estimate the loading on the femurs.

Each femur was segmented using 3D Slicer 5.2.2 
(Fedorov et al. 2012) and divided into six parts—the proxi-
mal and distal trabecular bone, the proximal and distal 
growth plate, the cortical bone of the shaft and the bone 
marrow—similar to the previous studies (Carriero et al. 
2011; Kainz et al. 2020; Koller et al. 2023b, 2024; Yadav 
et al. 2016). The GP-Tool (Koller et al. 2023b) was used 
to identify bony landmarks (Modenese and Renault 2021), 
transform the femur into the OpenSim coordinate system 
and create a hexahedral mesh with elements aligned with 
the growth plate in ten separate layers. Element size was 
set to 1.5 mm, and three layers were defined as transition 
zones between trabecular bone and the growth plate. Linear 
elastic materials were assigned to the different parts of the 
femur with Young’s modulus and Poisson’s ratio equal to the 
previous studies (Koller et al. 2024, 2023b).

2.3  Quantification of loading on bones

MSK simulations based on subject-specific MRI-informed 
models were performed with OpenSim (Delp et al. 2007). 
A modified Rajagopal model (Rajagopal et al. 2016) which 
included the more complex knee joint of the Lerner model 
(Lerner et al. 2015) was used as a base model (Kaneda et al. 
2023). This model includes three rotational degrees of free-
dom at the hip and two rotational degrees of freedom at 
the knee and ankle joints. The metatarsophalangeal joint 
was locked. The TorsionTool (Kainz et al. 2024b; Veerkamp 
et al. 2021) was used to modify the femoral geometry to 
match each child’s NSA and AVA. These modifications alter 
attachment and via points of muscles acting on or passing 
the femur and therefore also the lever arms of muscles across 
joints. To fit the models to the participants’ anthropometry, 
the pelvis and femur segments were scaled using the hip and 
knee joint measurements obtained from the MRIs. Other 
segments of the model were scaled using the location of 
surface markers (Kainz et al. 2017).

Inverse kinematics were used to calculate joint angles of 
corresponding gait trials for each participant. Markers on 
the knee and ankle were neglected during inverse kinemat-
ics, instead clusters of three markers were used to track the 
motion of the thigh and shank segments. All markers were 
weighted equally. Maximum marker errors and root-mean-
square errors were accepted if less than 4 cm and 2 cm, 
respectively, as suggested by OpenSim’s best practice rec-
ommendations (Hicks et al. 2015).

Since altering muscle attachment and via points on the 
femur can cause irregularities in muscle moment arms, the 
moment arms of all muscles acting on and spanning the 
femur were checked for smoothness during the motions 
derived from inverse kinematics. Discontinuities were 
observed for the anterior compartment of the musculus 
gluteus maximus (glmax1) in some participants and were 
corrected by stepwise reduction of the diameter of corre-
sponding WrapObjects and visual inspection to ensure valid 
muscle paths. Subsequently, the MuscleParamOptimizer 
(Modenese et al. 2016) was used to map the muscle charac-
teristics from the generic model to the personalized models. 
Furthermore, an actuator with an optimal force of 100 N was 
used to represent ligaments that passively generate the knee 
adduction moment.

Two approaches were used to solve the muscle redun-
dancy problem: (1) static optimization (SO) which mini-
mized the sum of squared muscle activations and (2) an 
EMG-informed approach which minimized effort and 
tracking errors between EMG signals and muscle excita-
tion patterns with OpenSim Moco (Dembia et al. 2020) 
with weights of 1 and 5, respectively. Subsequently, con-
tact forces acting on the hip and knee joints were estimated 
(Steele et al. 2012). Additional analyses were performed to 
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identify muscle attachments on the femur and obtain the 
effective directions of muscle forces (van Arkel et al. 2013). 
For each femur, the mean waveform of the resultant hip joint 
contact force (HJCF) from all trials was calculated, and the 
trial with the lowest root-mean-square difference to the mean 
waveform was selected as a representative step and chosen 
for further analysis.

2.4  Finite element simulations

The GP-Tool (Koller et al. 2023b) was used to create a sub-
ject-specific FE model based on the participant’s femoral 
geometry (overall femoral shape, location and orientation of 
growth plate) and loading condition. Similar to the previous 
studies (Kainz et al. 2020; Koller et al. 2023b; Yadav et al. 
2016), nine load instances were selected based on the HJCF 
peaks and the valley in-between during the stance phase. 
The muscle and joint forces at these nine load instances 
were used as loading conditions for FE simulations. The 
HJCF was applied as nodal forces distributed to the closest 
100 surface nodes (approximately 2.25  cm2) in the direc-
tion of the corresponding force orientation. Muscle forces 
were applied as nodal forces at the identified locations and 
directions. The nodes of the femoral epicondyles were con-
strained in all directions as boundary conditions. FEBio 
(Maas et al. 2017, 2012) was used to estimate stresses within 
the growth plate for these loading conditions.

Based on a weighted linear combination of shear and 
hydrostatic stresses, a value representing the growth rate 
due to mechanical stimuli named osteogenic index (OI) (Ste-
vens et al. 1999) was calculated for each element within the 
proximal growth plate. Subsequently, a second FE analy-
sis was conducted to simulate growth of elements taking 
the element’s growth rate and the direction of growth into 
account using Abaqus’ (Dassault Systémes Simulia Corp., 
Rhode Island, USA) orthotropic thermal expansion (Kainz 
et al. 2020; Yadav et al. 2016). Three different approaches to 
model growth directions have been proposed in the literature 
(Carriero et al. 2011; Hunziker 1994; Yadav et al. 2016). A 
figure visualizing the three different growth direction meth-
ods is included in the supplementary material.

a. Femoral Neck Deflection Direction (FNDD): A uniform 
growth direction was calculated based on the average 
neck deflection direction during loading. It was calcu-
lated as the mean vector between a node at the neck 
base and the femoral head centre during the nine load 
instances. This growth direction was applied to all ele-
ments in the second FE analysis.

b. Principal Stress Direction (PSD): For each element, 
the growth direction was defined as the direction of the 
highest principal stress. Therefore, each element had a 
unique growth direction vector.

c. Normal to growth plate orientation (NORM): A uniform 
growth direction was calculated as the normal vector to 
the main orientation of the growth plate obtained using 
a principal component analysis. This growth direction 
was applied to all elements in the second FE analysis.

The AVA was identified by calculating the angle in trans-
verse plane between the neck axis (i.e. vector between nodes 
representing the femoral neck base and the femoral head 
centre) and the knee axis (i.e. vector between nodes repre-
senting the epicondyles). Doing so with the same nodes in 
the model before and after growth allows to quantify the pre-
dicted development of AVA by the mechanobiological multi-
scale workflow. A visual overview of both finite element 
analysis and the quantification of AVA is shown in Fig. 3.

2.5  Sensitivity analysis

As the result of the mechanobiological simulation work-
flow depends on various parameters, a sensitivity analy-
sis was performed to evaluate their influence. In total, 330 
multi-scale simulations were performed for each femur, and 
for each of those, the predicted development of AVA was 
evaluated.

Firstly, two loading conditions (SO and EMG-informed) 
were derived from MSK simulations for each femur and used 
to identify shear and hydrostatic stresses within the proximal 
femoral growth plate.

Secondly, with those stresses, the growth rate was cal-
culated for each element i within the growth plate using 
different parameter variations. In general, the growth rate 
includes a weighted linear combination of shear ( σ

S
 ) and 

hydrostatic ( σ
H

 ) stresses representing the OI (i.e. growth due 
to mechanical stimuli) (Eq. 1) and a value representing the 
biological growth growthbio (Eq. 2). The ratio of weighting 
factors a to b for shear and hydrostatic stresses was varied 
(0.02, 0.1, 1/7, 0.25, 0.5, 1, 2, 4, 7, 10 and 50). Additionally, 
we introduced parameter sets where negative growth rates 
were avoided or where the growth rate was normalized to a 
specified range to account for differences in the magnitude 
of the OI. For each of the eleven ratios, the following growth 
simulations were performed:

a. Including biological growth where the amount was twice 
the maximum mechanical growth as in the previous 
studies, i.e. Eq. 2 with growthbio = 2 ∗ max(OI)

b. Neglecting biological growth, i.e. Eq.  2 with 
growthbio = 0

c. Neglecting biological growth but avoiding negative 
growth, i.e. Eq. 3

d. Neglecting biological growth but normalizing growth 
rate, i.e. Eq. 4
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e. Including biological growth and normalizing growth 
rate, i.e. (a) and Eq. 4

This resulted in 55 unique parameter combinations which 
led to different growth rates depending on the shear and hydro-
static stresses at the growth plate. Combining each of these 55 
parameter variations with each of the loading conditions (SO 
and EMG-informed) resulted in 110 simulations.

(1)growthratemechanical(OIi) = a ∗ σ
Si
+ b ∗ σ

Hi

(2)growthrate
i
= (growthratemechanical + growthratebio)

Thirdly, three approaches how the growth direction 
can be modelled are proposed in literature. Therefore, we 
decided to run each of the so far 110 simulations with 
each growth direction method (FNDD, PSD and NORM), 
which resulted in abovementioned 330 simulations for 
each femur.

(3)
growthratenon_negative

i
= (growthrate

i
+min

(

growthrate
i

)

(4)

growthratenormalized
i
=

growthrate
i
+min

(

growthrate
i

)

max
(

growthrate
i

)

− min
(

growthrate
i

)

Fig. 3  Visual description of the methodology to model growth and 
quantify the change of anteversion angle (AVA). A The finite element 
analysis with muscle and hip joint contact forces applied to the femur. 
B The calculation of the growth rate for each element within the 
growth plate based on the mechanical shear and compressive stresses 
and several influencing factors discussed in Sect. 2.5. C A simplified 
representation of the growth rate applied through orthotropic ther-

mal expansion. The direction in which growth is modelled can vary 
depending on the chosen methodology (FNDD, PSD and NORM). 
In D, the displacement due to modelled growth is visualized. E The 
baseline and the grown model overlayed from a top view. The loca-
tion of femoral head centre is moved while other nodes stay at the 
same location. The change of AVA is calculated as the difference 
between the AVA before and after growth
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2.6  Data analysis

HJCF magnitude and orientation as well as the sum of 
all muscle forces acting on the femur during the stance 
phase were compared between the SO and EMG-informed 
approach using paired t-tests with Statistical Parametric 
Mapping (Pataky et al. 2013).

To account for inaccuracies in AVA measurements, 100 
imputations of the measured development of AVA were 
created by adding a random value within the measure-
ment uncertainty range identified as the maximum differ-
ence between measurements, i.e. ±3.58°. This resulted in 
an evenly spaced distribution. A stepwise multiple linear 
regression using a backward elimination procedure for 
statistically non-significant predictors (p > 0.05) was per-
formed using AVA and NSA from S1, age (at S1 and change 
between S1 and S2), weight (at S1 and change between S1 
and S2), height (at S1 and change between S1 and S2), steps 
per day and hours of sport per week as predictors and the 
measured development of AVA as independent variable. 
All predictors were normalized to their z-scores. The lin-
ear regression model was calculated for all 100 imputations 
(same predictors, randomly imputed independent variable), 
and the mean of all adjusted R2 values was used for further 
evaluations. The regression model without the multi-scale 
predictions of AVA development was used as a baseline 
measure (i.e. baseline model).

Furthermore, for each of the 330 growth simulations, the 
same stepwise multiple linear regression was performed 
with the multi-scale prediction of the development of AVA 
as an additional predictor to identify the models’ power to 
explain the development of AVA (i.e. explaining model). 
Again, these regression models were calculated for all 100 
imputations. Subsequently, linear regression models which 
did not include the multi-scale prediction as a predictor or 
where this predictor was associated with a negative slope 
were excluded for further analysis. The linear regression 
models were ranked depending on their adjusted R2 across 
imputations, and the best performing models were analysed 
in more detail regarding their similarities and differences 
within the various parameters of the workflow.

Additionally, the same procedure was performed to iden-
tify the models’ power to predict the development of AVA 
(i.e. predicting model), solely by the data from S1, steps per 
day, hours of sport per week and the multi-scale prediction 
of the mechanobiological model as this would be data that 
could be used for clinical decision-making.

2.7  Qualitative analysis of best explaining linear 
regression model and selected femurs

For the single best explaining model, the growth rates for 
each element in the growth plate were projected on the 

transverse plane according to the elements’ locations and 
interpolated to a squared grid. A blue to red colour scheme 
was used to visualize growth rates representing minimum 
to maximum values, respectively. This resulted in heatmaps 
of equal size for all growth plates revealing distribution of 
the growth rate and allowing to qualitatively identify differ-
ences between femurs experiencing different growth trends 
(i.e. decrease or increase of AVA). Additionally, the centre 
of growth was calculated, similarly, as one would calculate 
the centre of mass of a disc where the growth rate represents 
the weight at a location.

3  Results

The ten children included in this study, aged 9.9 ± 0.9 years 
at the first data collection session, grew 13.5 ± 3.3 cm and 
gained 8.2 ± 3.3 kg of body mass during the 2 years. Par-
ticipants’ AVA was 34.7 ± 8.9° at the initial assessment and 
changed between −13.1° and +11.8° between data collection 
sessions (Table 1). The average daily step count was 9592 
(range: 5671–15,212), and participants reported to perform 
sports between 5 and 29 h per week (mean 13.6 ± 7.8 h).

3.1  Muscle and joint contact forces estimated 
with different approaches

The EMG-informed MSK simulations, where muscle activa-
tions of the model had to follow the shape of EMG-recorded 
muscle activations additionally to effort minimization, led 
to significant different (p < 0.05) muscle forces compared 
to the SO approach, which minimizes the sum of all muscle 
activations (Fig. 4). The forces produced by musculus tensor 
fasciae latae, the hamstring muscles and the knee extensor 
muscles were significantly increased during the complete 
stance phase in the EMG-informed simulations compared to 
SO simulations. The soleus produced significantly less force 
while the gastrocnemius forces were significantly increased 
in EMG-informed simulations compared to SO simulations. 
Unfortunately, the EMG data of one participant were not of 
sufficient quality, and therefore, all results involving EMG 
rely on data of 18 femurs. These participant’s data were 
removed for performing statistical tests between SO and 
EMG-informed approaches.

The magnitude of hip, knee and patellofemoral joint 
contact forces were significantly higher in EMG-informed 
simulations compared to the simulations performed with 
SO (Fig. 5). At the hip, mainly the vertical component was 
increased, whereas at the knee joint, all components are 
significantly higher. The orientation of the HJCF was only 
significantly different between both modelling approaches 
in small parts of the stance phase (Fig. 5).



886 W. Koller et al.

3.2  Sensitivity analysis with mechanobiological 
growth predictions

The baseline linear regression model, which did not include 
multi-scale predictions for AVA development, was highly 
significant (p < 0.01) and showed a moderate mean coef-
ficient of determination (R2 = 0.46) across the imputations. 
The AVA and the age at the first session, as well as change 
of weight between sessions were significant predictors with 
a negative slope. Average steps per day and the change of 
height between sessions were significant predictors with a 
positive slope.

In 140 linear regression models, the predicted development 
of AVA from the mechanobiological multi-scale workflow 
was excluded as a significant predictor during the stepwise 
backward elimination procedure; therefore, these models 
were equal to the baseline model. One linear regression model 
included the multi-scale prediction with a negative slope, 
meaning that the predicted and measured change of AVA was 
inversely correlated, and was, therefore, excluded from fur-
ther analysis. This model’s adjusted R2 across imputations was 
0.65, therefore, not within the 10 best explaining models. One 

hundred and eighty-nine analyses remained for further exami-
nation. The 10 best performing models, i.e. models with the 
highest adjusted R2 across imputations (R2 > 0.685), used mus-
cle forces and HJCF estimated with SO as loading condition to 
calculate stresses within the growth plate. In all of those mod-
els, negative values as growth rate were allowed. Furthermore, 
seven of the 10 best performing models did not account for 
biological growth, and in six, the growth rate was normalized 
to a specific range. Regarding the ratio of weighting factors a 
to b for shear and hydrostatic stresses, respectively, no clear 
trend was observed. In eight of the 10 best performing models, 
the NORM growth direction method, in which the direction 
of growth is modelled normal to the orientation of the growth 
plate, was used (Fig. 6). A figure visualizing the distribution 
of the predicted AVA development from all 330 parameter sets 
is included the supplementary material.

3.3  Analysis of best explaining and predicting 
model

The model with best explanation power was a refinement 
of the baseline model with the multi-scale prediction and 

Fig. 4  Muscle forces estimated by musculoskeletal simulations with 
two approaches to solve the muscle redundancy problem, i.e. static 
optimization (blue waveforms) and EMG-informed (red waveforms) 

approach. Significant differences (p<0.05) between both approaches 
identified with Statistical Parametric Mapping are visualized by 
orange-coloured bars beneath each subplot
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the NSA at the initial assessment as additional signifi-
cant predictors with positive and negative slopes, respec-
tively. The loading obtained from MSK simulations with 
SO were used as input to estimate the stresses within 
the growth plate. Biological growth was not included, 
values were not normalized to a specified range and the 
growth rate values were allowed to be negative. The ratio 
of weighting factors a to b was 0.1. The multiple linear 
regression model was highly significant (p < 0.001) and 
showed a high coefficient of determination across imputa-
tions (R2 =  0.7). In 18 femurs, the development of AVA 
was explained successfully in terms of direction. In the 
remaining two femurs, the measured development was 
low with values of −2.1° and +1.7° (Fig. 7 left).

The best performing predicting model (i.e. based solely 
on data from the initial data collection and multi-scale 
predictions) was highly significant (p  <  0.001) with 
almost as high coefficient of determination (R2 = 0.66) 
across imputations as the best explaining model (Fig. 7 
right). It included only the age and the AVA from the 
initial assessment as significant predictors with negative 
slopes, as well as the hours of sport per week and the 
multi-scale predictions as significant predictors with a 
positive slope. The parameters of the multi-scale work-
flow were similar to those of the best explaining model 
expect for the ratio of weighting factors a to b, which 
was 0.02.

3.4  Qualitative analysis of best explaining model

Heatmaps visualizing the growth rates of all femurs showed 
no clear trend and indication whether an increase or decrease 
was predicted by the multi-scale simulations (Fig. 8). A sig-
nificant correlation (p < 0.05) was found between centre 
of growth in the medial/lateral direction and the predicted 
development of AVA with a low coefficient of determination 
(R2 = 0.25). No significant correlation was found between 
the prediction and the centre of growth rate in anterior/pos-
terior direction.

4  Discussion

We experimentally investigate a mechanobiological model 
to predict the development of femoral AVA with the use 
of MRIs captured at two occasions approximately 2 years 
apart. The sensitivity analysis identified best parameter 
combinations for the mechanobiological model. Linear 
regression models were able to explain (R2 = 0.7) and pre-
dict (R2 = 0.66) the development of the AVA based on the 
mechanobiological simulations with high coefficient of 
determinations.

The inclusion of the mechanobiological multi-scale 
predictions increased the explanatory power of the linear 
regression model compared to the baseline model. About 

Fig. 5  Joint contact forces and hip joint contact force (HJCF) orienta-
tion estimated by musculoskeletal simulations with two approaches to 
solve the muscle redundancy problem, i.e. static optimization (blue 
waveforms) and EMG-informed (red waveforms) approach. Signifi-

cant differences (p < 0.05) between both approaches identified with 
Statistical Parametric Mapping are visualized by orange-coloured 
bars beneath each subplot
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Fig. 6  Adjusted R2 of the linear regression models and parameters used for mechanobiological multi-scale simulations. The light green patch 
highlights the area above the threshold for the 10 best explaining models
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70% of the development of AVA were explained by the best 
model including physical activity and anthropometric data 
of the first session and the changes between sessions as well 
as the multi-scale predictions. A model including only data 
of the first session and the multi-scale predictions had only 
4% lower explanatory power than the best explaining model. 
Considering that bone growth is guided by mechanical load-
ing (Carter et al. 1996; Carter and Beaupré, 2000; Wolff 
1892), but keeping in mind that there are other factors such 
as nutrition or genetics which influence biological tissue 
responses (Stevens et al. 1999), the observed coefficient of 
determinations can be considered as high.

The shape and magnitude of muscle forces obtained with 
personalized musculoskeletal models and SO as approach 
to solve the muscle redundancy problem, were in agree-
ment with the previous studies (Lin et al. 2012; Trinler 
et al. 2019). The two approaches (SO and EMG-informed) 
to solve the muscle redundancy problem in musculoskeletal 
simulations estimated significantly different muscle and joint 
contact forces. The use of EMG data to inform simulations 
increased mainly muscle forces of the tensor fasciae latae, 
hamstring and knee extensor muscles. This has also been 

observed in other studies and is possibly due to a higher co-
contraction in some participants (Hoang et al. 2019). As a 
consequence of higher muscle forces spanning the hip and 
knee joints in the EMG-informed simulations, the magnitude 
of hip, knee and patellofemoral joint contact forces were sig-
nificantly higher in EMG-informed simulations compared to 
those obtained with the SO approach. Furthermore, the ori-
entation of the HJCF in the sagittal plane differed between 
both modelling approaches. As a consequence, different 
nodes of the femoral head are loaded which, in turn, modi-
fies the stress distribution.

The sensitivity analysis revealed that multi-scale predic-
tions based on the mechanical loading estimated with SO 
show higher coefficients of determination than those that 
used muscle and joint contact forces obtained with an EMG-
informed approach. This is in contrast with our expecta-
tions because studies have shown that EMG-informed 
simulations increase the agreement between simulated and 
in vivo measured joint loadings due to the consideration of 
subject-specific motor control (Bennett et al. 2022; Hoang 
et al. 2019; Manal and Buchanan 2013). However, in our 
study, we analysed healthy children with typical walking 

Fig. 7  Scatter plot based on the measured anteversion angle (AVA) 
and predicted development of AVA for best explaining (left) and best 
predicting (right) model. The stars indicate the measured change of 
AVA assessed under the two-person verification principle, and the 

horizontal lines passing the coloured markups indicate measurement 
uncertainties. The tables below include the significant z-normalized 
predictors and their slopes of the corresponding model. S1  =  first 
data collection session
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patterns. Walking in humans is a very efficient task, and 
therefore, low co-contraction can be assumed (Anderson 
and Pandy 2001; Waters et al. 1988). Comparing muscle 
activation patterns obtained with SO with experimentally 
measured EMG signals showed good agreement in our par-
ticipants. Therefore, the results obtained using SO serve as a 
valid estimation for the investigated cohort. It might be that 
EMG-informed simulations better estimate the loadings in 
pathological populations, e.g. in participants with neurologi-
cal disorders like cerebral palsy (Wesseling et al. 2020).

Growth simulated in the NORM direction led to the most 
accurate predictions. In most models with high explanatory 
power, the growth was simulated in NORM followed by 
the FNDD direction. As the growth direction of the FNDD 
method is highly influenced by mechanical properties of the 

FE model, we would encourage peers to use the NORM 
method for future studies because it demonstrates superior 
performance with reduced uncertainty compared to the 
other growth direction methods. Furthermore, it seems that 
the orientation of the growth plate has a big impact on the 
growth direction of the proximal femur. Nevertheless, it 
needs to be investigated if the NORM method also performs 
best in pathological cases in future studies.

The mechanobiological model includes many parameter 
combinations, which were analysed with our sensitivity 
analysis simulations. The best explanatory and predict-
ing models had a ratio of weighting factors a to b of 0.1 
and 0.02, respectively, indicating that the factor b for the 
hydrostatic stress should be higher than a to ensure best 
predictions. While this is in contrast with the ratios used in 

Fig. 8  Growth rates of the best explaining model within the proximal 
femoral growth plate visualized using a blue to red colour scheme 
representing low and high values, respectively. The red circle is indi-
cating the centre of growth rate. The order of the diagrams is based 

on the predicted development of AVA by the multi-scale simulation 
(left to right and line by line). A figure with a unique colour scheme 
across all heatmaps is included in the supplementary material
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the previous cross-sectional studies using the multi-scale 
mechanobiological workflow (Carriero et al. 2011; Kainz 
et al. 2020; Koller et al. 2024, 2023b; Shefelbine and Carter 
2004; Yadav et al. 2016, 2017, 2021), the visualization of 
the growth rates as heatmaps showed similar patterns com-
pared to the previous investigations, i.e. ring-shaped with 
high values on the outside and low values at the centre, and 
therefore might not impact the conclusions of the previous 
studies. The inclusion of a generic value accounting for the 
biological growth, the normalization of growth rates to a 
specified range as well as the restriction to positive growth 
rate values did not increase the accuracy of the predictions.

The visualized growth rates of the best explaining model 
did not reveal a clear distinction in terms of shape or dis-
tribution between individuals experiencing an increase or a 
decrease of AVA (Fig. 8). The centre of growth rate in these 
heatmaps could indicate to which direction the femoral head 
will tilt in the growth simulations. However, a significant but 
only low correlation was found between the weighted centre 
of growth rate in medial/lateral direction and the predicted 
development of AVA. In detail, a more medially pronounced 
growth rate distribution correlated with an increase in AVA.

During skeletal growth, the AVA typically decreases from 
40° to approximately 20° (Bobroff et al. 1999; Fabry et al. 
1973). We analysed longitudinal data of healthy children 
and found an increase of AVA between sessions in some 
femurs, which is considered as unphysiological growth from 
a clinical point of view. The detailed analysis of femurs that 
experience pathological increase of AVA in terms of growth 
plate morphology and loading conditions did not reveal key 
factors that might explain the reason for this pathological 
development. This strengthens the need for the performed 
multi-scale simulations as it includes the subject-specific 
overall femoral geometry, the shape and orientation of the 
growth plate and the mechanical loading on the growth plate 
during walking to simulate the cells biological response to 
these stresses. Only accounting for all these aspects collec-
tively led to the observed high coefficients of determination.

The used multi-scale mechanobiological model includes 
several simplifications and did not aim to mimic real femo-
ral development, which includes surface bone re-modelling 
additionally to growth at the growth plates. In the used 
model, growth was only simulated at the proximal growth 
plate while all other elements were kept constant. Therefore, 
all geometrical changes result from a tilt and shift of the 
femoral head proximal to the growth plate, e.g. an increase 
of AVA would be represented by an anterior tilt of the femo-
ral head. While this modelling choice did not include any 
surface bone re-modelling and adaptations, the model was 
sophisticated enough to fulfil its purpose to identify femo-
ral AVA growth trends. Furthermore, the previous studies 
showed that this model can distinguish between healthy and 
pathological femoral developments (Carriero et al. 2011; 

Kainz et al. 2021; Koller et al. 2024, 2023b). Due to the 
limitation of modelling growth only at the proximal growth 
plate, we decided to compare only the clinical important fea-
ture, i.e. AVA, between the measured and predicted values 
instead of comparing the entire shape of the bone. In future, 
we plan to develop more realistic growth models that pre-
dict the full development of the femoral geometry. Methods 
such as Generalized Procrustes Analyses (Bastir et al. 2024) 
can then be used to compare the predicted with the actual 
femoral geometry.

Negative growth and ignoring biological growth is cer-
tainly not physiological plausible. Negative growth rates are 
theoretically possible because hydrostatic compressive stress 
is negative. Hence, if the negative term b ∗ σ

Hi
 is absolutely 

speaking larger than the term a ∗ σ
Si
 , the resulting growth 

rate for this element is negative. The model is based on 
experimental observation which showed that growth plate 
cartilage ‘likes’ compressive stress and, therefore, does not 
lead to ossifications, whereas the cartilage does not ‘like’ 
shear stress and, therefore, leads to ossification (Stevens 
et al. 1999). Therefore, negative growth rates indicate that 
growth is not promoted due to mechanical stimuli at these 
elements. However, if biological growth would be consid-
ered, the total growth would still be positive. Similar to 
the previous studies, biological growth was modelled as a 
simple constant value. Surprisingly, ignoring the biological 
growth rate and allowing negative growth rates led to the 
best results, indicating that modelling the biological aspect 
with a simple constant value does not work very well and 
leads to worse predictions. Hence, future work is needed to 
come up with better and potentially subject-specific ways to 
include the biological growth amount.

This study included several limitations. Firstly, only data 
of TD children were included in this study. Collecting lon-
gitudinal data of participants with bony pathologies (e.g. 
cerebral palsy, skeletal dysplasia, rickets, etc.) is challeng-
ing because these patients typically undergo diverse clinical 
interventions, including de-rotation osteotomies, within such 
a long period of time. Nevertheless, a wide range of AVA 
changes were observed within the investigated cohort, which 
included typical but also pathological AVA developments. 
Secondly, the investigated cohort was relatively old consid-
ering that changes of AVA are higher in early childhood. 
Nevertheless, several participants experienced a growth 
spurt accompanied with substantial development of AVA 
within the time period between data collection sessions. 
However, the identified best parameters might differ for other 
age groups. Thirdly, similar to the previous studies (Kainz 
et al. 2020; Koller et al. 2024, 2023b; Yadav et al. 2016, 
2017, 2021), generic linear elastic material properties were 
used for all parts of the femur in the FE model. Fourthly, the 
model did not include all anatomical details, e.g. the Ring 
of Lacroix around the growth plate was not included. The 
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previous studies, however, showed that the Ring of Lacroix 
has only a minor impact on the stress distribution (Hucke 
et al. 2023; Piszczatowski 2012). Hence, we kept the model 
similar to previous investigations, which already revealed 
plausible simulation results (Kainz et al. 2020; Koller et al. 
2024, 2023b; Yadav et al. 2016, 2017, 2021). Fifthly, we 
used boundary conditions similar to the previous studies 
(Kainz et al. 2020; Koller et al. 2024, 2023b; Yadav et al. 
2016, 2017, 2021). However, a recent study investigated 
different boundary conditions in FE analysis of the femur 
and proposed a new method to represent the biomechanical 
loading situation more accurately (Bavil et al. 2024). Unfor-
tunately, this new boundary condition restricts movement 
of selected nodes close to the proximal growth plate and, 
therefore, induces artificial stresses within the growth plate. 
Therefore, it was not suitable for this study’s modelling pur-
poses. Importantly, the GP-Tool, which we developed and 
used in this study to create the FE models, is open source, 
and different boundary conditions can be implemented easily 
and used in future studies.

In conclusion, the findings of this study showed that 
multi-scale simulations combined with a mechanobiologi-
cal model enables an accurate prediction of femoral AVA 
growth trends in children. No key factors were identified that 
could differentiate between healthy and pathological growth 
patterns, thereby reinforcing the necessity for the multi-scale 
workflow, which considers multiple factors collectively. The 
application of mechanobiological model-based predictions 
may facilitate a paradigm shift in the clinical management 
of femoral torsional deformities. In contrast with current 
reactive, invasive procedures such as de-rotation osteotomy, 
the prospective identification of abnormal loads (which lead 
to bony deformities) at an early stage could facilitate the 
implementation of proactive, non-invasive interventions. 
In the event of pathological bone predictions, the loadings 
on the bones could be modified through non-invasive inter-
ventions, such as gait retraining (Kainz et al. 2024b; Uhl-
rich et al. 2022), to ensure that the bone loads and growth 
are within normal range (Kainz et al. 2024a). However, to 
achieve accurate subject-specific predictions in future, it is 
essential to investigate how certain model parameters influ-
ence simulation results. This study is the first step towards 
this goal but further studies including larger sample sizes 
and pathological cohorts are required to overcome several 
hurdles before this approach can be adopted in clinical prac-
tice. It is essential to identify the range of loading conditions 
that promote normal bone growth and to determine how par-
ticipants can achieve these conditions.
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