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Sensorimotor coordination is thought to relyon cerebellar-based internalmodels
for state estimation, but the underlying neural mechanisms and specific contri-
bution of the cerebellar components is unknown. A central aspect of any
inferential process is the representation of uncertainty or conversely precision
characterizing the ensuing estimates. Here, we discuss the possible contribution
of inhibition to the encodingofprecisionofneural representations in thegranular
layer of the cerebellar cortex. Within this layer, Golgi cells influence excitatory
granule cells, and their action is critical in shaping information transmission
downstream to Purkinje cells. In this review, we equate the ensuing excitation–
inhibitionbalance in thegranular layerwith theoutcomeof aprecision-weighted
inferential process, and highlight the physiological characteristics of Golgi
cell inhibition that are consistent with such computations.
1. Introduction
Sensorimotor coordination or control can be regarded as the realization of expected
sensation via movement. It involves interactions between an agent and its environ-
ment; like when a mouse is actively gathering information with its whiskers. In
order to control these interactions, the brain must be able to approximate or predict
the consequences of forthcoming action. This relies on accurate estimates of behav-
iourally relevant states (such as whisker position) generated by an underlying
model of how states relate to one another. Estimates are intrinsically uncertain,
reflecting stochasticity in sensory channels and dynamics of states. Hence, when
considering the neural implementation of an estimation process, it is desirable
that neural circuits are capable of representing estimates conditionedon their associ-
ated uncertainty; in other words, the underlying models ought to be probabilistic.

The cerebellum has long been posited to instantiate probabilistic internal
models for estimation of rapidly varying external states [1], whether somatic,
such as limb kinematics [2], or environmental, for example, moving targets
[3]. In the cerebellum, these models are deemed to support sensorimotor control
[4–6], as well as more abstract mental representations [7], by complementing
ongoing neural computations in other brain regions with internally generated,
delay-free probabilistic estimates of stochastic external dynamics, built upon
past experience and integrating multiple sources of noisy information.

These ideas are long-standing, but it remains unresolved how various com-
ponents of the cerebellum could specifically contribute to state estimation. In
general, only activity and plasticity of Purkinje cells, the output of the cerebellar
cortex, have been associated with this computation; however, inferential pro-
cesses occur all the way through the hierarchy of an internal probabilistic
model. Here we consider the first step in cerebellar cortical state estimation,
by proposing a role for inhibition in the granular layer. This network, compris-
ing about half of the neurons in the mammalian nervous system, relays all
extracerebellar input that is directed via mossy fibres (MFs) to Purkinje cells
[8–10] (figure 1). The granular layer is made up of excitatory granule cells
and inhibitory Golgi cells, and interactions between these two neuronal
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Figure 1. Information flow through the cerebellum. Information from extracerebellar structures enters the cerebellum via MFs (violet arrows) and climbing fibres
(not shown). MFs contact both the cerebellar cortex and nuclei; in the former, they synapse in the granular layer, the first stage of information processing along this
pathway. Here reside densely packed excitatory granule cells (in red), and sparsely distributed inhibitory Golgi cells (in blue), which inhibit vast and overlapping
groups of granule cells. Interaction between these two neuronal populations determine how information is transmitted downstream to Purkinje cells (in orange)
through granule cell ascending axons and parallel fibres (red fibres). Purkinje cells generate the sole output of the cerebellar cortex, influencing neural activity in the
cerebellar nuclei (brown box). Nuclear neurons depart axons back to extracerebellar structures (brown arrows), also making collaterals that terminate as MFs in the
granular layer. The dotted box inscribes all MF terminals in the cerebellum.
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populations determine network responses to external (MF)
perturbations. Two aspects are key to understanding neural
dynamics within this network: firstly, granule cells are numer-
ous but individually receive only a small number of inputs
(four excitatory and four inhibitory connections each on aver-
age [11,12]); secondly, Golgi cells are sparse relative to granule
cells, but each neuron contacts hundreds to thousands of
granule cells through an extended axonal arborization. Thus,
Golgi cell inhibition is likely to have a big impact on individ-
ual granule cell activity and putative inferential processes in
the cerebellum.

We explore this possibility by discussing the role of Golgi
cell inhibition in the context of state estimation in the cerebel-
lar cortex, and set out a link between high-level theoretical
descriptions of cerebellar computations and their neural sub-
strates. We start from the assumption that neuronal activity
encodes estimates or predictions of somatic and environ-
mental states that enable guidance, coordination and
refinement of action; then, we argue that Golgi cell inhibition
promotes accurate state estimation, by adaptively tuning
excitatory responses encoding those estimates. Crucially,
such tuning rests upon (neural mechanisms signalling) the
precision of the information driving the inferential process,
so that the excitation–inhibition balance in granule cell popu-
lations becomes the result of a precision-weighting process.
This view ultimately affords a new interpretation of observed
inhibitory mechanisms in the granular layer.

2. Precision in state estimation
Many aspects of brain functioning can be phrased in terms of
probabilistic inference and learning processes [13–15]. In this
framework, inference and learning are based on probabilistic
models entertained by the brain, representing somatic and
environmental variables or states, their dynamical inter-
actions and link to sensory input [16]. Central to this
argument is the notion of uncertainty, describing the spread
or variance of belief distributions assumed to be implicitly
encoded by neural activity. Whatever the exact form of this
encoding, one can argue that the variance of the implicit dis-
tributions depends in the first place on the quality of data
available to the network. In other words, uncertainty rep-
resented in neural activity should be a function of input
precision, a measure of the reliability of input that determines
how much this drives belief updating (box 1).

In biological neural networks, precision naturally trans-
lates into population gain [26], which scales or weights
presynaptic input and adjusts its capacity to elicit voltage
changes in the target population. The underlying idea is
that a neural circuit is a system with endogenous or auton-
omous dynamics, whose activity is not entirely determined
by external stimuli; its response to events can contextually
vary, conditioned on their precision. Here we assume that
inputs reporting more precise representations are associated
with higher population gain, that is, a stronger impact on
downstream network dynamics—whose output in turn is
implicitly linked to more precise distributions.

This brings us to two key points: first, the quality or pre-
cision of information is not reducible to its content, meaning
that neural mechanisms signalling what is represented can be
different from those signalling how it should be represented.
For instance, the identity and activity pattern of upstream
neurons can be related to the nature of a stimulus encoded,
whereas the postsynaptic gain to the amount of information



Box 1. Input precision changes neural response.

When investigating the functions of a neural network, we usually try to identify which features of the body or world are
encoded in the activity of its constituent neurons. Underlying this approach is the assumption that there is a mapping
between the activity of the network and the outer states. Because this mapping is indirect—mediated by vicarious
input about the system—it licenses an interpretation of neural circuits as internal models inferring causes of their input,
like a patch of V1 reflecting the possible presence of a luminous bar projected onto the visual field. Importantly, this map-
ping is necessarily probabilistic, because the dynamics and interactions between states and sensory signals are noisy.
By accounting for this stochasticity, neuronal activity comes to reflect probability distributions over states.

The cerebellum is thought to instantiate internal models for motor and cognitive calibration and adaptation. Neural
activity in this region has indeed been observed to accurately encode dynamics of somatic or environmental states,
such as whisker position in the mouse cerebellum [17]. These representations in turn contribute to sensorimotor coordi-
nation by refining motion [18] and sustaining or altering neural activity in other brain regions, such as the neocortex
[19–22] (panel a).

In order for network dynamics in the cerebellum to reflect inferential processes, it is necessary that uncertainty in state
estimation influences neural activity. There exist different models of how probability distributions can be encoded by
neural populations (see [23] for an example in the cerebellum), some of which highlight the possibility that neural activity
scales with the precision of the encoded distribution [24], while becoming sparser as an effect of divisive normalization
[25] (panel b). Notably, activity levels in recipient populations result from a combination of input and population gain/
responsiveness, which here we associate with input precision. In other words, we argue that (un)certainty in neural represen-
tations is determined by the quality of information in the input driving those representations (panel c). Notice that input
precision-weighting relies on the capacity of the network to assess this precision. Here we address this possibility and propose
that Golgi cells in the cerebellar granular layer mediate the link between neural dynamics and state estimation, by making
network excitability sensitive to and reflective of uncertainty in inferential processes.
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transmitted. Second, the precision of an input, realized as
population gain and ultimately translated into patterns of
excitation–inhibition balance, is related to the concurrent
behavioural context. This can be exemplified through atten-
tional gain modulation in visual and auditory cortex
[26–28], where contextualization (weighting) of sensory
stimuli by their precision can be accomplished via temporal
coincidence of pre and postsynaptic activity, increasing prob-
ability of conversion of pre to postsynaptic spikes. In this
case, gain-by-synchrony depends on both bottom-up (e.g.
intrinsic saliency of the stimulus) and top-down (attentional)
effects [29–31], which are a function of behaviour. It follows
that the extent to which a stimulus can be relevant for
ongoing inference—under a certain behaviour—translates



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210276

4
into precision-weighting of that stimulus via gain
modulation.

The cerebellar cortex receives input via MFs from virtually
every part of the brain. This input is rich, encompassing
multiple sensory and motor modalities [32–36] as well as cog-
nitive domains [37]. Moreover, its nature can be both predictive
(e.g. anticipatory reward-related signals) and postdictive (e.g.
sensory feedback) [38–40], encompassing the entire period of
movement execution (e.g. [39]). Consequently, at any given
time a huge amount of information can potentially be trans-
mitted to the granular layer via MFs. However, only a
fraction of this information is likely to be relevant at any
given moment in time; this fact intimates the necessity for the
cerebellar cortex to select or prioritize some and not other
sources of input, so that only information that is relevant in a
particular behavioural context can affect state estimation. For
example, while engaged in a visuomotor task, postsynaptic
responses to MFs conveying confounding auditory signals
might be dampened. With respect to the cerebellar cortex,
precision encoded in various extracerebellar regions must be
translated and implemented in a common way within the
granule cell population, in a manner which is instrumental
for state estimation, that is, causing downstream layers to
appropriately respond to encoded precision. Accordingly,
inhibition in the input layer of the cerebellum appears
capable of operating these fundamental operations.
3. Golgi cells underlie precise granular layer
computations

The inhibitory network in the cerebellar granular layer is sim-
pler than in cerebral cortical regions, lacking cellular diversity
and extremely complicated intra- and inter-areal top-down
feedback modulation (cf. [41,42]); nonetheless, it is suited to
effectively balance excitation in granule cells. Golgi cells act
through both a hyperpolarizing current that lowers granule
cell resting potential—efficiently thresholding or gating MF
input—and through an increase in membrane conductance
or shunting inhibition—associated with faster membrane
dynamics and ultimately a biased sensitivity towards synchro-
nous presynaptic activity [43,44]. As a result, Golgi cells can
set the excitability or responsiveness of granule cells, approxi-
mated by the operative point (position and slope) of their F-I
(frequency-current) curve, controlling propagation of MF
activity within the cerebellar circuit. From a neural inference
perspective, this propagation should be conditional upon the
precision of information transmitted, implying that Golgi
cell inhibition is sensitive to signals that are most relevant
for present belief updating. It is therefore necessary to identify
which mechanisms may inform granule cell excitability via
inhibition in this context-dependent manner. One distinction
mentioned above is between bottom-up and top-down
sources of conditioning; beyond this, various biophysical
mechanisms might determine how Golgi cells operate. In
this section, we highlight those mechanisms that may allow
Golgi cell inhibition to perform precision-weighting of the
input. First, we see how inhibition sets neural gain to match
average levels of activity. Then, we consider time-varying inhi-
bition and its modulation by temporal and spatial properties
of the input; in doing so, we characterize the temporal unfold-
ing of MF activity and its spatial organization as a proxy for its
intrinsic (bottom-up) precision. Finally, we address
mechanisms, such as modulation of Golgi cells by neuro-
modulators or nucleocortical projections, that do not directly
depend or arise from current MF input, yet control how
these are transmitted by changing the endogenous state of
the granular layer; we refer to these as top-down mechanisms
signalling expected precision of the input.

A substantial component of inhibition is tonic, hinging
on constantly activated extrasynaptic receptors that are respon-
sive to ambient levels of neurotransmitter concentration [45].
This persistent form of inhibition, arising in part from non-
vesicular sources of γ-aminobutyric acid (GABA) [46,47], is
favoured by the synaptic organization of the granular layer.
Most if not all synaptic connections to granule cells are
indeed located in special structures called glomeruli, which
form isolated microenvironments where neurotransmitter
(both GABA and glutamate) can accumulate and easily diffuse
[12,48–50]. In these compartments, ambient concentrations of
GABA are sufficient to persistently activate high-affinity α6δ-
subunit containing GABAA receptors [51]. In vivo, tonic inhi-
bition minimizes granule cell responsiveness to uncorrelated,
temporally scattered inputs [52], while maintaining an exqui-
site sensitivity to salient (e.g. sensory-evoked) stimuli [53].
Therefore, tonic inhibition appropriately fixes granule cell
excitability tomatch the average levels ofMFactivity, establish-
ing a slowly changing threshold on neural gain discriminating
noise from signals. In mathematical terms, this may be equiv-
alent to a prior over expected precision of the input required
for its propagation. At a behavioural level, loss ofmotor coordi-
nation resulting from the disruption of tonic inhibition, for
example, owing to alcohol consumption [54],might then reflect
global alterations in representational uncertainty.

On top of a persistent inhibitory conductance, feedfor-
ward and feedback synaptic loops enable Golgi cells to
dynamically modulate granule cells by following rapid vari-
ations in network activity [55]—although the exact
contribution of these loops is still unknown. Phasic inhibition
underlies balanced dynamics of excitation and inhibition in
granule cells. Notably, phasic inhibition from Golgi cells
can promptly track changes in MF spiking behaviour while,
at the same time, accumulate over Golgi cell spike trains to
match input firing rates [50,56–58]. The ensuing coordination
of excitation and inhibition, on a timescale ranging from few
to hundreds of milliseconds, can determine which input pat-
terns elicit responses based on the evoked instantaneous
balance. Accordingly, when inhibition is temporally matched
to excitation, granule cell firing is reduced but becomes
more similar across cells [59]: in vivo, this could favour, for
example, selective transmission of the synchronous and
invariant component of MF stimuli to Purkinje cells, by
virtue of its stronger impact on postsynaptic neurons.
Moreover, inhibition can preserve temporal information in
granule cell output by rapidly trailing excitation and forcing
a sharp integration window of couple of milliseconds for
excitatory post-synaptic currents [57]. Overall, balanced
dynamics could increase the capacity of granule cells to
reliably transmit temporally structured information—here
associated with high precision representations. This is in
agreement with the general observation that the granular
layer faithfully encodes extracerebellar activity [60–64]; and
resonates with the idea of a precision-weighting mechanism
relying on inhibition and sensitive to bottom-up dynamics,
such as synchrony in MF input enhancing temporal coordi-
nation across subsets of Golgi cells [65].
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Along with temporal features of Golgi cell inhibition, the
spatial arrangement of Golgi cell processes may also play a
role in the contextualization of incoming information [58].
Notably, there is a mismatch between the narrow granular
layer region from which Golgi cells receive excitatory inputs
(determined by the dendritic tree), and the region extending
hundreds of micrometers over which they exert inhibitory
influence (determined by the axonal plexus). In the present
discussion, lateral inhibition could be linked to represen-
tational precision via its effects over correlations among
different streams of MF input. Excitation–inhibition balance
at any location in the granular layer could then reflect—
via horizontal mixing of Golgi cell signals—the precision of
the local information, relative to its surround. In practice,
this could lead to an increase of fast correlations among clus-
ters of granule cells that are excited by common MFs, and a
simultaneous decrease of slower correlations across compet-
ing patches of granular layer—replicating observations in
structures that share a similar geometry, like the olfactory
bulb [66].

This contextual modulation of granule cell excitability
relies on spatial constraints of information driving Golgi and
granule cell populations, which in turn depend on different
anatomical properties of the network. MFs show substantial
anisotropic divergence in the granular layer [34,67], which
enables integration of various sources of information at the
level of single granule cells, but prevents the emergence of
ordered, neocortical-like receptive fields. As a consequence,
fast correlations among Golgi cells (and inhibited clusters of
granule cells) sharing MF input might be more evident
within distributed, scattered groups of cells [68].

Another important anatomical property is the presence of
millimetre-long granule-Golgi cell connections mediated by
parallel fibres [69]. Parallel fibres have been linked to
extended oscillations in the granular layer during rest [70],
possibly setting a global pace for network computations
and dynamics. Notably, these connections appear to be quali-
tatively different from local contacts made by ascending
granule cell axons onto Golgi cells, which resemble more
the faster and stronger MF-Golgi cell synapses [55,71]. It fol-
lows that upon localized activation of MF terminals, parallel
fibres might preferentially contribute to slow correlation of
granule cells across the transverse axis [72], while ascending
axons precisely entrain spiking of surrounding Golgi
cells. Furthermore, the existence of electrical connections
among Golgi cells further increases their sensitivity to
temporal coincidence of local excitation, enhancing syn-
chrony or alternatively asynchrony in and between granule
cell clusters [65,73,74]. Therefore, different degrees of corre-
lations might coexist in the granular layer, following
properties of MF input and connectivity structure within
the network, which might result in balanced dynamics of
excitation and inhibition reflecting the statistics (precision)
of information encoded.

Finally, precision-weighting for state estimation does not
depend solely on properties intrinsic to the inputs, but also
on selective mechanisms modulating states of the network.
Analogously, Golgi cells are both driven by the same MF
inputs that elicit activity in granule cells, and are influenced
by neural components located within or external to the cer-
ebellum. In vivo, the granular layer is characterized by
endogenous activity owing to spontaneous firing of MFs
and Golgi cells [62,70,75]; this autonomous state affects the
evoked response elicited by a stimulus, and is itself under
the control of various mechanisms. In particular, within the
cerebellar cortex, climbing fibres, Lugaro cells and Purkinje
cells all directly or indirectly modulate Golgi cell activity.
[76–78]. From cerebellar nuclei instead, excitatory neurons
give rise to MF collaterals innervating glomeruli [79], and
inhibitory neurons selectively contact Golgi cells through
long-range axons [80]. Moreover, Golgi cells are also sensitive
to a variety of neuromodulators including serotonin [81] and
noradrenaline [82], which exert opposing actions upon gran-
ular layer excitability. Clearly, these sources of input exert
very different effects on information processing, and their
specific role is still unresolved; nevertheless, this intricate cir-
cuit highlights the importance of properly tuning inhibition
in the granular layer in order to contextualize incoming infor-
mation. This is central for putative state estimation in the
cerebellar cortex, as it depends not only on current local
observations, but also on past inference, systemwise states
and coordination with other brain structures.

In conclusion, there appear to be a variety of mechanisms
that could inform the granular layer about precision of MF
input, irrespective of the extremely diversified nature of
those inputs. These mechanisms condition granule cell exci-
tation through Golgi cell inhibition, which constitutes the
unique local feedback of the network. In this sense, Golgi
cells emerge as a crucial hub for precise state estimation in
the cerebellar cortex (figure 2).

4. Discussion
We have considered how putative state estimation in the cer-
ebellar cortex relies on appropriately tuning of neural
dynamics within the granular layer. In this picture, Golgi
cell inhibition underlies selective responsiveness or gain of
subsets of granule cell population to extracerebellar activity,
controlling to what extent the latter drives state estimation.
This is a form of input precision-weighting, and depends
on information about precision being accessible to the net-
work. Accordingly, several mechanisms related to Golgi cell
functioning could provide this information, and therefore
adapt granule cell population gain to input precision. In par-
ticular, we interpret the optimal signal-to-noise ratio set by
tonic inhibition as a prior over expected signal precision,
possibly defined by phylogenetic and ontogenetic processes.
On the other hand, rapid changes in the excitation–inhibition
balance could dynamically accommodate the relative pre-
cision of the excitatory drive as a function of its intrinsic
properties and top-down modulations, hence controlling
precision encoded in the granular layer output (figure 3).
The importance of this balance for state estimation is inti-
mated by the remarkable number of mechanisms capable of
tuning it. Together, these mechanisms could underpin rapid
but accurate changes in neural representations, which
would afford to the cerebellar cortex sufficient temporal res-
olution to encode body and environmental state dynamics
[84], in service of well-timed, predictive computations
throughout the brain [85–87].

Arguably, neural dynamics underlying state estimation in
the cerebellar cortex should necessarily be sensitive to uncer-
tainty associated with inference, as discussed more generally
in the context of cortical functioning [26,27,88]. Cortical
control of excitation ismuchmore complex than in the granular
layer, hinting at a more sophisticated neural inference.
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Figure 3. Tuning of the system’s excitability controls precision of represen-
tations. Left: the excitation–inhibition balance in the granular layer (circular
blue and pink arrows) is a function of both MF input and neural mechanisms
signalling its precision by tuning Golgi cell inhibition. Right: within a popu-
lation, specific neurons might exhibit higher or lower synaptic gain,
depending for instance on stimulus overlap with their receptive field,
while at a network level, population gain associated with precision of
upstream representations dictates the responsiveness of neural ensembles.
Golgi cell inhibition sets population gain, such that the balance of excitation
and inhibition in granule cells reflects precision-weighted input; and encodes
neural representations whose precision determines their transmission and
influence on downstream integrative layers via parallel fibres. In (a), MF
input is coupled with high population gain and strongly drives granule
cells, pushing excitation (pink bar) to overcome inhibition (blue bar). The
ensuing population activity then represents states with high precision, exem-
plified by the red distribution. In (b), MF input convey less reliable
information, and the low gain brings inhibition to balance excitation,
making the network almost unresponsive. The small network output, in
turn, encodes state estimates with low precision, which will not be effective
in driving neural inference downstream.
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Figure 2. Putative mechanisms for precision-weighting control excitation–
inhibition balance in the granular layer. Extracerebellar MFs entering the
granular layer are presumed to drive state estimation or belief updating in
the cerebellar cortex, whose evoked activity encodes precision-weighted esti-
mates of (somatic and environmental) states of the system. This weighting
controls the excitation–inhibition balance in granule cells and is induced
by activity of Golgi cells. A variety of factors, which we link to input precision,
can condition Golgi cells and therefore granular layer dynamics. These include
temporal properties (e.g. synchrony) of MF activity as well as its spatial
organization, shaping interactions between neighbouring patches of granular
layer via lateral inhibition and distal parallel fibres. At the same time, activity
from downstream layers and circuits can dynamically adapt the state of the
network by changing Golgi cell activity through climbing fibres, Lugaro cells
and nucleocortical inhibition. In addition, the serotoninergic and noradren-
ergic system too can boost and hinder Golgi cell inhibition respectively,
possibly promoting systemwise coordination, for example, between neo-
and cerebellar cortex. Finally, present states are also influenced by past infer-
ence and experience, through nuclear MF feedbacks and plastic changes in
granular layer connectivity [83], determining the impact and spatial organiz-
ation of extracerebellar MFs input. In this picture, Golgi cells are a crucial hub
for state estimation in the cerebellar cortex, contextualizing new MF
information and conditioning granule cell response accordingly.
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Nonetheless, fine-tuning of granule cell activity via Golgi cells
also seems to be calibrated by a variety of mechanisms, includ-
ing top-down signals from cerebellar nuclei, as well as from
downstream layers in the cerebellar cortex itself. This in turn
should bear on any theory aiming to explain cerebellar compu-
tations. In particular, recurrent connectivity within it has
usually been neglected or oversimplified; by contrast, a prob-
abilistic inference framework may provide a starting point for
explaining this anatomical detail, as shown in this review.

Testing these ideas requires both theoretical and exper-
imental efforts. Here we have assumed a general principle,
namely, that precision in neural representations should
affect their propagation across the different stages of
inference—by tuning population gain. However, future
work should aim at investigating the exact nature of this
probabilistic encoding throughout the cerebellar circuit.
From the experimental side, testing these ideas requires track-
ing and manipulation of spatiotemporal properties of
excitation–inhibition balance in the granular layer, as MF
input is transformed into parallel fibre output. The exact
shape of ensuing activity patterns depends on many factors,
including kinetics variability at the Golgi-granule cell
synapses [56], which might result from plastic mechanisms
in the granular layer [83]. Previous works have examined
the consequences of altering excitation levels in this network,
showing a direct link to motor impairment, including tre-
mors, ataxia and reduced reflex adaptation [54,89,90].
Interestingly, Golgi cell ablation alters the spatio-temporal
patterns of activity in the granule cell population without
necessarily producing overexcitation, as the result of compen-
satory mechanisms such as reduced N-methyl-D-aspartate
activity [91]. This highlights the importance of fine-grained
granule cell activity patterns for downstream computations
[90]—here argued to be the result of Golgi cell-mediated pre-
cision-weighting at the first stage of state estimation in the
cerebellar cortex. Ultimately, technical advances in the field
[92,93] will make it possible to verify or not verify these ideas.

5. Conclusion
The cerebellum is deemed to support behaviour through pre-
dictive processes, adjusting and refining interactions of the
organism with its environment. These processes rely on
internal models that capture consistent relationships between
states of the system and are probabilistic in nature, taking
uncertainty into account. Many data confirm this high-level
description of the cerebellum, but it remains to be understood
how this can emerge from activity of neural networks. In the
present work, we link Golgi cell inhibition in the granular
layer with mechanisms sensitive to the relative precision of
MF input, and the ensuing excitation–inhibition balance in
granule cells with a precision-weighted response.
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