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Abstract

selection of cases and controls.

higher than adjustment for PCs in certain situations.

examining cluster specific effects.

Background: Population stratification can cause spurious associations in a genome-wide association study (GWAS),
and occurs when differences in allele frequencies of single nucleotide polymorphisms (SNPs) are due to ancestral
differences between cases and controls rather than the trait of interest. Principal components analysis (PCA) is the
established approach to detect population substructure using genome-wide data and to adjust the genetic
association for stratification by including the top principal components in the analysis. An alternative solution is
genetic matching of cases and controls that requires, however, well defined population strata for appropriate

Results: We developed a novel algorithm to cluster individuals into groups with similar ancestral backgrounds
based on the principal components computed by PCA. We demonstrate the effectiveness of our algorithm in real
and simulated data, and show that matching cases and controls using the clusters assigned by the algorithm
substantially reduces population stratification bias. Through simulation we show that the power of our method is

Conclusions: In addition to reducing population stratification bias and improving power, matching creates a clean
dataset free of population stratification which can then be used to build prediction models without including
variables to adjust for ancestry. The cluster assignments also allow for the estimation of genetic heterogeneity by

Background

In GWAS, varying ancestral backgrounds lead to popu-
lation stratification inflating the type I error rate [1,2].
Even European Americans are affected by population
stratification bias [3].

PCA [4], spectral graph theory [5], structured associa-
tion analysis [6,7] and genomic control [8] can detect
underlying population substructure with SNP data.
Investigators typically use PCA to detect population
structure and then adjust the estimates of genetic effects
for the top number of principal components (PCs) to
control for population stratification bias [4]. Genomic
control divides the test statistic for each SNP by the
genomic control inflation factor (L), defined as the
observed median test statistic across all tests genome-
wide divided by the expected median test statistic. The

* Correspondence: ntimofee@bu.edu

1Department of Biostatistics, Boston University School of Public Health,
Boston, MA, 02118, USA

Full list of author information is available at the end of the article

( BiolVed Central

test statistic for each SNP is divided by the same value,
irrespective of whether the particular SNP is structured,
and thus results in a loss of power [4]. A wide range of
alternative methods have been proposed to adjust for
population stratification by applying an adjustment to
the test statistic, using permutation tests or by perform-
ing stratified analyses [9-11].

Alternatively, population stratification can be obviated
by matching cases and control with respect to genetic
ancestry [12]. Matching does not require the investigator
to account for population stratification bias by adjusting
for PCs or dividing test statistics by the genomic control
inflation factor. Guan et al [13] match cases and controls
using a genetic similarity score computed directly from
genotype data as a weighted identity by state estimate.

We propose a different algorithm in which we identify
clusters of varying genetic ancestry using the results of
PCA from genome-wide data. The algorithm includes a
novel approach to choosing the appropriate number of
informative PCs, a clustering step to group subjects into

© 2010 Solovieff et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:ntimofee@bu.edu
http://creativecommons.org/licenses/by/2.0

Solovieff et al. BMC Genetics 2010, 11:108
http://www.biomedcentral.com/1471-2156/11/108

clusters of genetic diversity and a novel “scoring index”
(SI) to choose the appropriate number of clusters. Luca
et al [14] implemented a similar algorithm for matching
cases and controls with the main difference being that
parametric tests that may not be robust to departures
from model assumptions are used while our algorithm
is non-parametric and does not require strict
assumptions.

We test the sensitivity and specificity of our algorithm
on simulated data and provide applications on African
populations from the Human Genome Diversity Project
[15] and a cohort of centenarians with European ances-
try [16]. We demonstrate that by matching cases and
controls within each cluster the inflation in test statistics
caused by population stratification bias substantially
decreases as compared to unmatched cases and controls
and in certain situations matching is more powerful
than adjusting for the top number of PCs. More impor-
tantly, our method allows for the creation of a dataset
free of population stratification which can then be used
for prediction modeling [17]. Prediction models contain-
ing principal components as covariates are study specific
and cannot easily be generalized to a different study in
which the values of the PCs are unknown. The clusters
produced by the algorithm also allow for the exploration
of locus heterogeneity and we provide an example of a
SNP in APOE in which the odds ratio varies widely
across ethnic groups in Europe.

Results

Algorithm

The algorithm that we developed consists of the follow-
ing three components: 1) selection of informative PCs
for the cluster analysis; 2) clustering to discover popula-
tion substructure; 3) a novel score to automatically
select the best number of clusters that satisfy a variety
of criteria. We select the informative PCs by visually
inspecting a heatmap and scree plot of the top PCs (Fig-
ure 1). A heatmap displays the top PCs in the columns
and the subjects in the rows. The intensity of the color
corresponds to the value of the PC and the subjects are
reordered so that individuals with similar PC values are
displayed next to each other in the heatmap. The heat-
map allows one to visually inspect the joint pattern pro-
duced by a set of PCs and to choose the informative
PCs. The scree plot graphs the natural logarithm of the
eigenvalue versus the component number. The informa-
tive number of PC is identified by a “kink” in the plot
after which a straight line is observed. Based on the top
PCs, we cluster individuals using k-means clustering.
K-means clustering assigns subjects to a pre-specified
number of clusters by maximizing the distance between
subjects in different clusters. Distance is defined as the
Euclidean distance between subjects with respect to
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their top PCs. Since k-means does not provide a metric
for choosing the appropriate number of clusters, we
developed an algorithm and scoring index to identify
the optimal number of clusters. The algorithm performs
M executions of k-means clustering for each cluster
size, k = 2,3,...K, and computes a measure of accuracy,
stability and between cluster distance for each execution
and cluster size. We use these 3 measures because an
optimal cluster assignment should accurately assign
individuals based on the PCs, should be consistent from
execution to execution for a particular number of clus-
ters and should also maximize the distance between
individuals in different clusters. We compare these three
measures computed in the data to those expected under
random cluster allocation using permutation analysis,
and summarize the gain of accuracy, stability and dis-
tance into a score. The derivation of the components is
described in detail in the methods. In the following sec-
tions we describe the results of the experiments we con-
ducted to evaluate the properties of the algorithm.

Simulations

We first simulated genotype data containing no popula-
tion substructure (see Methods). The heatmap of the
top PCs shows no distinct pattern and the scree plot is
flat (Figure 1A) suggesting that the data do not contain
substructure and clustering is unnecessary. To assess
the sensitivity of the method, we simulated genotype
data with the number of clusters ranging from 2 to 10
clusters under two scenarios, equal and unequal sample
sizes across clusters (see Methods). The power of the
scoring index to identify the correct cluster size and
allocate subjects to the correct cluster was greater than
95% in most cases and in some cases 100% (Table 1).
When the maximum scoring index was used to identify
the cluster size, the power was low for a cluster size of
2 with equal sample sizes (78%) and a cluster size of
2 and 3 with unequal sample sizes (56%, 64%). In these
situations the scoring index remained relatively constant
across several cluster sizes and the maximum SI tended
to overestimate the true number of clusters. However,
using the optimal SI increased the power to 100% for a
cluster size of 2 with equal sample sizes and 99% and
97% for a cluster size of 2 and 3 with unequal sample
sizes. The optimal SI is defined as the smallest cluster
size for which the estimated SI falls within the 95% con-
fidence interval of the maximum SI.

Real Data with African Ancestry

We then tested the sensitivity of our algorithm to group
real data from individuals with known ancestry from
7 African populations in the Human Genome Diversity
Panel. The heatmap identified the top 7 PCs as most
informative while the scree plot identified the top 5 PCs
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can still observe variability beyond the first 2 principal components.

Figure 1 Scree Plot and Heatmap of Top 20 PCs: The scree plots and heatmaps are presented for the simulated data with no structure (left),
HGDP Africans (middle), NECS (right). The scree plot graphs the natural logarithm of the eigenvalue (y-axis) versus the component number (x-
axis). A kink is not observed in the scree plot for the simulated data with no population substructure (a). For the HGDP Africans (b) and the
NECS (c) the scree plot identifies a kink at the 5™ and 4™ PCs, respectively. In the heatmaps, each column is a PC and each row is an individual.
Original PCs are standardized by row and the color intensities correspond to the standardized value of the PC for each individual (green: higher
than average, red: lower average) and are sorted by the corresponding eigenvalues, and rows are sorted by hierarchical clustering. While no
pattern is found in the heatmap of the simulated example without population structure, a distinct pattern is observed for the HGDP Africans and
the NECS. The pattern in the HGDP Africans is the most distinct since these populations are well defined and are very different from each other.
The pattern for the NECS is more subtle because the variability in subjects of European ancestry is much lower than in Africans. However, one

Table 1 Power of Scoring Index

Scenario 1: Equal N Scenario 2: Unequal N

K Max S| Optimal SI Max SI Optimal SI
2 0.78 1 0.56 0.99

3 0.97 1 0.64 0.97

4 0.99 1 0.86 0.99

5 1 1 0.99 1

6 0.99 1 0.99 0.99

7 1 1 0.99 0.99

8 1 1 0.99 0.99

9 1 1 0.99 0.99

10 1 1 1 1

We report the proportion of datasets for which the correct number of clusters
is identified and the subjects are correctly allocated their respective cluster.
The maximum Sl corresponds to the cluster size at which the SI is maximized
and the optimal SI corresponds to the smallest cluster size for which the SI
falls within the 95% CI of the maximum SI.

(Figure 1). Since the pattern for the top 7 PCs is quite
strong in the heatmap, we used the top 7 PCs instead of
only the top 5 for clustering. The SI identified 8 clusters
as the optimal cluster size (Figure 2). The Biaka, Man-
denka, Mbuti Pygmy and San populations are assigned
to their own cluster. The Yorubans are clustered with
the Bantu and 2 of the Mozabite subjects in the 8" clus-
ter and show a stronger similarity with each other than
with the other Africans in this analysis. The plots of the
PCs support the clustering of these subjects (Figure 3)
and are consistent with the origin of the Bantu near the
southern boundary of modern Nigeria and Cameroon
and the known genetic similarity between Bantu and
Yorubans [18,19]. In the plot of PC6 and PC7 (Figure 3)
we see a distinct separation of the Mandenka from the
Yorubans and Bantu which indicates that these PCs are
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Figure 2 Accuracy, Stability, Between Cluster Distance and Scoring Index (SI) for HGDP Africans. Accuracy, stability and between cluster
distance on the k-means cluster assignments are displayed in red and the measures on the permuted cluster assignments are displayed in blue.
The SI averages the relative gain in the accuracy, stability and between cluster distances and maximizes at 8 clusters (0.931, CI: 0.923, 0.938)).
Note that the graphical display of accuracy, stability and distance shows that none of the score components would be sufficient to identify the
correct number of clusters. For example, high accuracy is not sufficient to conclude that the clustering is optimal. In this example, the accuracy
is nearly perfect when the number of clusters is less than 7 suggesting that any number of clusters less than 7 is equally optimal, however these
numbers are not all equally optimal as demonstrated by the measures of stability and between cluster distances that continually increase.
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important to increase the sensitivity of clustering. The
remaining Mozabite subjects were split among 3 clus-
ters. This genetic diversity is consistent with the history
of the Mozabites and recent studies that reveal genetic
ancestry from sub-Saharan Africa, the Middle East and
Europe [18]. Previously reported analyses of these data
that were based on inspection of the first two PCs failed
to detect this level of diversity based on purely genetic
data. Patterson et al [19] could only detect differences
between San and Bantu/Yorubans combined. Our analy-
sis shows that a larger number of PCs is necessary to
detect finer population structure that could introduce

confounding in GWAS and confirms the utility of the
heatmap plot of PCs.

Real Data with European Ancestry

In a cohort of 1051 centenarians and 290 controls from
the New England Centenarian Study, the algorithm
detected many specific European ethnic groups. The
heatmap and the scree plot identified the top 4 PCs as
informative (Figure 1) and the algorithm identified
9 clusters (Figure 4). Based on partial information of
ancestry (birth places and native language of grandpar-
ents) for the subjects in the NECS, we found that the 9
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Figure 3 Pairwise PC Plots of HGDP Africans Colored by Cluster Assignment. The legend reports the cluster assignment, population and
sample size for each cluster. The Biaka, Mandenka, Mbuti pygmy and San are separated into the first 4 clusters. The eighth cluster (black)
contains the Yorubans, Bantu and 2 subjects from the Mozabite population and these subjects cluster together in each of the above plots
indicating that these cannot be differentiated based on the first 7 PCs. The remaining Mozabite are split between clusters 5-7 and show
variability in PC5, PC6 and PC7 suggesting that these individuals are more heterogeneous than the other African populations.

clusters correlated with distinct ethnic groups in Europe
(Figure 5) demonstrating that the clustering algorithm
can detect fine distinctions among subjects of European
descent. The population substructure in subjects of
European descent is typically identified as the pattern

formed by PC1 and PC2 in Figure 5 that identifies
Ashkenazi Jews and a Northwest to Southeast cline across
Europe [3,20]. The pattern formed by PC3 and PC4,
generally not reported, also correlates clearly with specific
ethnic groups in Europe such as the Anglo-Saxons,
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Figure 4 Accuracy, Stability, Between Cluster Distance and Scoring Index for NECS. Accuracy, stability and between cluster distance on the
k-means cluster assignments are displayed in red and the measures on the permuted cluster assignments are displayed in blue. The scoring
index maximizes at 11 clusters (SI = 0.886, 95% Cl: (0.876, 0.896)). The mean score for 9 clusters (0.879) falls within the 95% confidence interval of
11 clusters and thus is as good as 11 clusters but is more parsimonious. and is also the optimal solution. In general, we expect the permuted
stability to increase with an increasing number of clusters because a larger number of pairs will be consistently assigned to different clusters
since there are more available clusters. However, note the peculiar trend of cluster stability in this example: the permuted stability decreases
when moving from k = 2 to 4 clusters and then gradually increases. This occurs because one cluster contains the majority of the subjects for
these clusters sizes and thus the number of pairs of subjects assigned to the same cluster, by chance, is much higher than in the case where
there are equal sample sizes in each cluster. Thus it is important to account for the permuted measurements when selecting the optimal

number of clusters.
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Celto-Germanic, Scandinavians, Saxons, Irish-Celtic,
Italians, Ashkenazi Jewish, Slavic, Slavo-Germanic and
Celtic.

Effect of Matching on the Power of a GWAS

Understanding the genetic diversity of the NECS allows
one to select genetically matched controls and reduce
population stratification bias. For example, in our
GWAS of exceptional longevity (EL) [17] we set out to
expand the NECS control sample by drawing cluster-

matched subjects from a sample of approximately 3,600
subjects from the Illumina database. We conducted a
combined PCA of the NECS centenarians and controls,
and ~3,600 Illumina controls and the heatmap of the
top 20 PCs suggested that the top 4 PCs are the most
informative (Figure 6). The clustering algorithm identi-
fied 8 clusters as the optimal solution (SI = 0.919, 95%
CI: (0.907, 0.931)). We matched cases to controls within
each of the 8 clusters to balance the overall proportion
of cases and controls across the clusters, resulting in the
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on partial information (birth places and native language of grandparents) of the subjects’ ancestry, the clusters were labeled according to the
most common ethnic group in the region [37].

addition of 745 Illumina controls to the existing NECS
controls set. We then performed two sets of GWAS for
EL, one with the matched data and a second analysis
with an equal number of randomly selected Illumina
controls, using additive models. The QQ plot in Figure 6
displays the results for SNPs genome-wide and demon-
strates the striking reduction in the inflation of test sta-
tistics for the matched controls as compared with the
unmatched controls. The genomic control factor A
decreases from 1.44 for the unmatched set to 1.07 for
the matched set. Matching does not require the investi-
gator to account for population stratification bias by
adjusting for PCs or by dividing test statistics with the
genomic control inflation factor which can decrease the
power of detecting true associations [4]. For example, an
unmatched PC-adjusted analysis with the same number
of controls randomly chosen from the Illumina database
would lose almost all of the top associations suggesting
a loss in power. (Figure 7) Furthermore, in the QQ plot
(Figure 6) the tail of the distribution of p-values for the
adjusted unmatched GWAS is lower than the tail for
the matched GWAS which again suggests a loss in
power. The genomic control factor for the unmatched

PC adjusted analysis (A = 1.04) is slightly lower than for
the matched analysis, however the difference is not
substantial.

Effect of Matching on Power

To investigate the effect of matching on the power of a
GWAS, we simulated genotype data to compare the
power and false positive rate of a GWAS in which we
match cases and controls and a GWAS in which the
subjects are unmatched but the analysis is adjusted for
the top 10 PCs (see Methods). The false positive rate
across all scenarios was close to the nominal level
(Table 2). The GWAS using the matched subjects was
more powerful than the PC adjusted unmatched analysis
with the same sample size (Figure 8). The gain in power
for matched analysis ranged from 1.0% to 23.4%. When
matching is performed, a number of controls are
excluded due to the inability to match them. To exam-
ine the effect of adding in all controls versus using a
smaller pool of matched controls, we added a varying
number of controls to the unmatched analysis (see
Methods). As expected the power of the PC adjusted
unmatched analysis increases as more controls are
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Table 2 False Positive Rate of Matched and PC adjusted
Unmatched GWAS

Scenario Cases/Controls False Positive Rate*

Matched 2000/2000 5.00E-07
Unmatched + PCs 200072000 8.00E-07
Unmatched + PCs 2000/2250 9.00E-07
Unmatched + PCs 2000/2500 1.30E-06
Unmatched + PCs 2000/2750 1.20E-06
Unmatched + PCs 2000/3000 9.00E-07
Unmatched + PCs 2000/3250 1.00E-06
Unmatched + PCs 2000/3500 8.00E-07
Unmatched + PCs 2000/3750 9.00E-07
Unmatched + PCs 2000/4000 8.00E-07

*False positive rate with a p-value cut-off of 1E-06

We report the false positive rate of a matched GWAS and compare it to PC-
adjusted unmatched GWASs with varying number of controls. The false
positive rate is computed using a p-value cut-off of 1E-06.

added and surpasses the power of the matched analysis
when 1000 to 1500 subjects are added (Figure 8). This
result suggests that using all controls and adjusting for
PCs as opposed to matching will become more powerful
if the number of unmatched controls is substantially lar-
ger than the number of matched controls.

Locus Heterogeneity

Breaking the subjects into clusters also has the advan-
tage of examining cluster specific allele frequencies and
genetic effects. As an example, the allele frequencies for
rs405509, a SNP near APOE known to be associated
with exceptional longevity and other age-related diseases
[21,23], varies greatly among European ethnic groups
(Figure 9). Interestingly the association between EL and
this SNP also varies between clusters with odds ratios
ranging from 0.38 in the Italians to 1.09 in the Irish Cel-
tics. (Figure 9) Small differences in allele frequencies can
affect the power to detect a true main effect when the
SNP is part of a SNP- SNP interaction [24] and thus
close examination of cluster specific allele frequencies
between discovery and replication sets can be useful for
replication.

Discussion

Our analyses suggest that the algorithm works well in
simulated datasets and in real data of Africans and Cau-
casians of European ancestry and can reduce or elimi-
nate population stratification. Choosing the appropriate
number of PCs for clustering is a critical choice. We
chose the number of PCs by evaluating patterns
observed in a heatmap and in a scree plot; although
subjective, in many situations a clear choice is evident.
We emphasize that investigators should carefully exam-
ine the results of the PCA prior to clustering to ensure
that population substructure in fact exists in the data. If
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analysis when the sample is the same for both analyses. As we add more controls to the unmatched analysis, the power increases and surpasses
the power of the matched analysis when 1000 to 1500 additional controls are added. Note that the power is adjusted for the varying false

positive rate across scenarios.

1000
# of Controls Added

1500 2000

population substructure is absent, clustering is unneces-
sary and will lead to overfitting. Although we use
k-means clustering in our algorithm [25], alternative
techniques including k-medoids, hierarchical clustering,
and model based clustering could be used. Model based
clustering requires parametric assumptions about the
distribution of the data and it can outperform k-means
clustering when the assumptions are correct but per-
form poorly when they are not.

The SI provides a novel statistic for choosing the best
number of clusters by combining measures of accuracy,
stability and between cluster distances. Maximizing only
one or two of these measures is insufficient for choosing
an optimal number of clusters. For example, the cluster-
ing may be accurate and stable for a given number of
clusters, however there may be a different number of
clusters for which the accuracy and stability are compar-
able but the between cluster distance is better. Some
advocate choosing the number of clusters at which a
“kink” occurs in the between cluster distance since the
measure will increase by a larger amount when

informative clusters are created and will increase by a
smaller amount when the clustering method begins to
create uninformative clusters [25]. However, one does
not always observe a distinct “kink” (see Figure 4). An
alternative statistic called the gap statistic [26] monitors
the within cluster distance, compares it to a null distri-
bution and chooses the number of clusters for which
the deviation of the within cluster distance from the
null distribution is maximized. In practice, a maximum
may never be attained for a reasonable range of cluster
sizes as demonstrated in the examples of the HGDP
Africans and NECS (Figure 10).

We have shown that matching is an effective method
to reduce the inflation in test statistics due to popula-
tion stratification both in simulated cases and real data.
Matching in some situations is more powerful than
using an unmatched dataset and adjusting for PCs. Our
method also allows one to create a dataset free of popu-
lation stratification which can be used to build predic-
tion models. We created a clean dataset for the NECS
which was used to build a model of exceptional
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A

Celtic (Irish) 7
OR = 1.09 4

Figure 9 Frequency of rs405509 in Centenarians in 8 Clusters.
The allele frequencies of rs4005509, a SNP near APOE, vary greatly
between the 8 clusters of centenarians identified in the analysis of
the NECS and lllumina subjects. The odds ratio for each cluster is
calculated using a separate logistic regression model of exceptional
longevity and the SNP genotype coded as the number of A alleles.
The odds ratios are quite different among various ethnic groups
indicating that APOE may have a different impact in different ethnic
groups.

longevity and we replicated the model in an indepen-
dent study with high accuracy [17]. The advantage of
this approach is that we did not need to account for
population substructure in the model and were able to
generalize it to an independent study. Including PCs in
a prediction model causes the model to be study specific
and may be difficult to reproduce.

HGDP African NECS

1.0 15
| |
1 1 1

Mean Gap Statistic
s
|
1

Mean Gap Statistic
02 04 06 08 10

on
|

Cluster Size Cluster Size

Figure 10 Gap Statistic Across Varying Cluster Sizes for HGDP
Africans and NECS. The graph plots the mean gap statistic (see
Methods) at each cluster size. The gap statistic for the HGDP
Africans steadily increases to 21 clusters at which point the statistic
cannot be computed due to singleton clusters. For the NECS, the
statistic again increases with an increasing cluster size and does not
reach a point after which the statistic continuously decreases. In
both situations choosing an optimal cluster size is not obvious.
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Furthermore as the availability of external controls
increases through organizations like dbSNP, investiga-
tors can use this method to match the controls to cases
with respect to ancestry and reduce the issue of popula-
tion stratification. Zhuang et al [27] show that expand-
ing the control group can improve power. Of course,
investigators must take precautions to avoid introducing
other forms of bias due to the use of external controls.

As next generation sequencing and the discovery and
analysis of rare variants continue to emerge, population
stratification will remain an obstacle. Our algorithm can
easily be implemented to match cases and controls
when selecting subjects for sequencing and insure that
the selection adequately represents all ethnicities in the
sample thus increasing the chance of finding true novel
polymorphisms.

Conclusions

We developed an algorithm to cluster individuals into
ethnic groups based on PCs computed from SNP data.
We showed that the algorithm works well in real data
of Africans and Caucasians with European ancestry and
also in simulated data. The cluster assignments can be
used to effectively match cases and controls in GWAS
to reduce and even eliminate population stratification
bias. Matching can also aid in genetic risk prediction
models by creating a dataset free of population stratifi-
cation. Furthermore, the cluster assignments can be
used to study locus heterogeneity and identify SNPs and
genes that have a different effect on the phenotype in
different ethnic groups.

Methods

Simulated Datasets

Dataset with No Population Substructure

To test the algorithm on a dataset containing no popu-
lation substructure, we simulated 100,000 SNPs in link-
age equilibrium for 2000 individuals with no underlying
pattern. The allele frequencies for each SNP were ran-
domly simulated with values ranging between 0.05 and
0.95. Genotype frequencies were computed from the
allele frequencies assuming Hardy Weinberg equilibrium
and individuals were randomly assigned genotypes
according to the genotype frequencies.

Dataset with Known Structure

We simulated genotype data in which the number of
clusters ranged from k = 2 to 10. Each dataset contained
1000 individuals and 10,000 SNP in linkage equilibrium.
Each cluster was simulated with Fst = 0.01 correspond-
ing to differences observed among divergent European
populations [28]. For each SNP the founder allele fre-
quency, p, was selected from a uniform(0.05,0.50) distri-
bution, the allele frequency for each cluster, py, was
selected from a beta distribution with shape parameter
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o = p(1-Fst)/Fst and B = (1-p)*(1-Fst)/Fst and the geno-
type frequencies were computed as (Fst(1-py) + (1-Fst)
(1- p* 2(1-Fst) pi(1- pu), Fst pic + (1-Fst) pi’) [29,30].
In scenario 1 we split the subjects equally among the
clusters, rounding up to the nearest integer. In scenario
2, the sample size within each cluster was randomly
chosen with the requirement that each cluster must
contain at least 5% of the total sample size. In each sce-
nario, 900 dataset were simulated (100 for each cluster
size k). For each dataset, a PCA was performed and the
clustering algorithm was used to cluster individuals into
groups. The sensitivity of the algorithm is measured by
the proportion of datasets in which the cluster size is
correctly identified by the scoring index and the algo-
rithm correctly allocates all the subjects to their respec-
tive cluster.

Power Analysis

To simulate a scenario in which subjects are matched
with respect to their ancestry, we simulated 2000 cases
and 2000 controls from 4 underlying clusters with the
probability (0.4, 0.3, 0.2, 0.1) of being in clusters 1, 2, 3
or 4, respectively. In the unmatched scenario with the
same sample size, we generated 2000 cases from 4 clus-
ters with probability (0.4, 0.3, 0.2, 0.1) and 2000 controls
with probability (0.1, 0.2, 0.3, 0.4). To examine the effect
of adding controls to the unmatched scenario, we simu-
lated a pool of 2000 extra controls from 4 clusters with
probability (0.1, 0.2, 0.3, 0.4). We then randomly added
a varying number of controls (250, 500, 750, 1000, 1250,
1500, 1750, 2000) to the unmatched scenario. 10,000
SNPs in linkage equilibrium unrelated to disease status
were simulated according to the model described in the
previous section and were used to estimate the false
positive rate. Twenty-four causal SNPs were generated
with relative risks (R) of 1.2, 1.3, 1.4, 1.5 and minor
allele frequencies (p) of 0.1, 0.2, 0.3, 0.4 and 0.5. The
genotype frequencies for the controls were simulated as
previously described. For the cases the genotype fre-
quencies were computed as (Fst(1-py) + (1-Fst)(1- pi)?
2R(1-Fst) px (1- pi), R*(Fst px + (1-Fst) py)) where R
corresponds to the relative risk. These frequencies were
scaled by the sum of the 3 genotype frequencies so that
the probabilities added up to 1.

Real Datasets

Human Genome Diversity Project (HGDP) Africans

We tested our algorithm on 151 individuals from the 7
distinct African populations in the Human Genome
Diversity Project (Bantu, Biaka, Mandenka, Mbuti
pygmy, Mozabite, San, Yoruba) whose ancestry we knew
a priori [15] (Table 3). Data were downloaded from the
[llumina iControlDB database. We performed PCA on
263,722 autosomal SNPs with a call rate greater than
95% and minor allele frequency greater than 5% and
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Table 3 Populations and Studies

Population/Dataset N

Human Genome Diversity Project: African
Bantu 20
Biaka 31
Mandenka 24
Mbuti pygmy 15
Mozabite 30
San 6
Yoruba 24

New England Centenarian Study (NECS) 1341

lllumina Database 3613

applied our algorithm to the PCs. All subjects had a call
rate greater than 93%.

New England Centenarian Study (NECS) set

A subset of subjects from the New England Centenarian
Study containing 1051 cases and 290 controls was used
to test the algorithm. This study was approved by the
Boston University Institutional Review Board. The initial
PCA, containing 298,734 SNPs, identified many chromo-
somal regions with elevated SNP weights due to strong
LD in those regions. We therefore removed SNPs in
strong LD using the program PLINK [31] with a SNP
window of 50, sliding window of 5 SNPs and removed 1
SNP from each pair of SNPs with r? > 0.30. The final
dataset contained 96,457 SNPs with a call rate greater
than 95% and minor allele frequency greater than 5%.
PCs from final dataset did not have elevated SNP
weights for any chromosomal regions for the top 20
PCs. We found that setting the r* threshold higher than
0.30 resulted in elevated SNP weights in many chromo-
somal regions. All subjects had a call rate greater than
93%.

NECS and Illumina Control set

3,613 controls labeled as Caucasian were selected from
the Illumina control database (iControlDB) and com-
bined with the NECS controls. There were 298,734
SNPs common to the NECS and Illumina datasets that
had a SNP call rate > 0.95 and MAF > 0.05. SNPs in
strong LD were removed using the program PLINK
with a SNP window of 50 and sliding window of 5
SNPs and we removed 1 SNP from each pair of SNP
with r? > 0.30 leaving 97,508 SNPs for the analysis. A
PCA was performed on the combined data. All sub-
jects had a call rate greater than 93%. To check for dif-
ferences between the two datasets, we compared the
MAFs between the NECS dataset and Illumina con-
trols. All SNPs had less than a 10% difference in MAFs
between the two datasets and 99.9% of the SNPs had
less than a 5% difference in MAF. We also compared
the PCs using only the NECS dataset with the PCs
using the NECS and Illumina datasets. We found that
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the top 4 PCs which were used for clustering were
strongly correlated among the NECS between the two
PCAs showing that the addition of the Illumina con-
trols did not bias the results of the PCA. The correla-
tion coefficients (Spearman) were 0.98, -0.89, 0.87 and
0.76 for the 1st-4th PCs, respectively.

Principal component analysis

In all applications we used the principal components
analysis implemented in the software smartpca [4] to
detect population substructure among individuals with
genome-wide data.

Algorithm

The algorithm consists of the following components: 1)
selection of informative PCs for the cluster analysis; 2)
clustering to discover population substructure; 3) a
novel score to select the best number of clusters that
satisfy a variety of criteria.

How Many Informative PCs?

The Tracy-Widom statistic can be used to identify the
ancestrally informative principal components. However
this statistic is very sensitive to the inclusion of SNPs in
linkage disequilibrium (LD) and tends to identify a lar-
ger number of PCs [19,32]. Typically, investigators use
the first 10 PCs although this choice is somewhat arbi-
trary. We identify informative PCs for the algorithm by
displaying the results of the PCA in a heatmap and by
the use of a scree plot [33] which plots the natural loga-
rithm of the eigenvalues.

We display the top 20 principal components in a heat-
map in which the color of each cell (i, j) represents the
value of the principal component in column j for the
subject in row i, standardized by row. We order the
rows using hierarchical clustering so that individuals
with similar values for PCs are arranged next to each
other. The heatmap highlights the most evident groups
and the number of PCs that determine these groups.
Because the interpretation of the visual display is subjec-
tive, we also use a scree plot of the natural logarithm of
the eigenvalues to identify the important PCs. A scree
plot graphs the log of the eigenvalue for each PC versus
the PC numbers, and the appropriate number of PCs is
identified by a “kink” in the plot after which we observe
a relatively straight line (Figure 1).

K-Means Clustering of the Most Informative PCs

We use k-means clustering to group subjects into K
groups, for a fixed K. K-means assigns subjects to
groups by minimizing the distance between subjects
within each cluster (within cluster distance W(C)) or
equivalently maximizing the distance between subjects
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in different clusters (between cluster distance B(C)). The
overall “within cluster distance” W(C) is the sum of the
distances between subjects allocated to the same clus-
ters:

W(C)=§i Y dex)

k=1 C(i)=k C(i")=k

and the “between clusters distance” B(C) is the dis-
tance between subjects allocated to different clusters,
which is given by the difference between the total dis-
tance between subjects and the W(C):

N

N
1
Total = EZZd(xi,x,) and B(C) = Total - W(C).
i=l i'=1
The distance between subjects within the same cluster
k is defined as:

1

Dy =~ d(x;, x;)
PNDY

C(i)=k C(i")=k

where C(i) maps subject i to cluster k. The distance
between two subjects i and i’ is defined by

p
Distance = d(x;, x;/) = Z(xij - xi’j)2
j=1

and x; denotes the vector of values of the first p prin-
cipal components for subject i.

Scoring Index (SI)

To identify the optimal number of clusters, we propose
an algorithm and SI which evaluates the clustering accu-
racy, stability, and between cluster distance. The algo-
rithm performs k-means clustering for each cluster size,
k =2, 3,..K, for M executions and computes the accu-
racy, stability and between cluster distance for each
cluster size and execution. The rationale for incorporat-
ing these 3 measures into a scoring index is that the
optimal cluster assignment should accurately allocate
subjects to their respective cluster, should be stable
from execution to execution of k-means and should
maximize the distance between subjects allocated to dif-
ferent clusters. These three measures are computed in
the observed data and are compared to those expected
under random cluster allocation using permutation ana-
lysis. We summarize the gain in accuracy, stability and
distance into a scoring index which is used to identify
the optimal number of clusters. We discuss these steps
in detail:
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Cluster Accuracy

To measure the accuracy of each set of K clusters, we
build a linear discriminant model using the cluster
assignments from k-means, and then perform leave-one-
out cross validation to estimate the accuracy to predict
the cluster membership based on the linear discriminant
model. If the clustering is accurate, we expect the linear
discriminant model to accurately predict an individual’s
cluster membership. For each m, we compute the accu-
racy as the proportion of individuals assigned to the
same cluster in cross validation as in k-means.

Cluster Stability

Since each execution of k-means clustering can produce
different cluster assignments, we perform multiple
executions (m = 1,.., M) of the clustering algorithm for
each k, and measure the stability of the results. The
stability will be worse for incorrect group sizes since
k-means will be maximizing to a different local maxi-
mum each time, and thus low stability suggests that the
number of clusters is not optimal. To measure the stabi-
lity of the cluster assignments, we compute the Rand
statistic [34] between the k-means cluster assignments
for each number of clusters. The Rand statistic estimates
the agreement between two sets of clusters by dividing
the number of pairs of individuals in either the same
cluster or in different clusters for both sets by the total
number of pairs of individuals. Specifically, let Cj, ..., Cx
and X3, ..., Xi denote two sets of clusters generated in
two executions of k-means for a fixed k. Let S be the
number of pairs of subjects in the same cluster in both
sets (for example subjects s and s’ allocated both to C;
and X). Let D denote the number of pairs of subjects in
different clusters for both sets (for example s in cluster
C;and X; and s" in C; and X)), and T be the total num-
ber of pairs of subjects. Then the Rand statistic is
defined as R = (S+D)/T. For each execution of k-means,
we randomly choose 1 other execution of the same clus-
ter size and compute the Rand statistic.

Distance: Between Cluster Scatter

At each cluster size k and execution m, the algorithm
computes the normalized between-cluster distance, to
monitor how distinct the clusters are from one another.
This measure will always increase monotonically as the
number of clusters increases. The between cluster dis-
tance provides information about the optimal number of
clusters, however it does not necessarily provide a dis-
tinct number of clusters and does not measure the accu-
racy nor the stability of the cluster assignments.
Permutation

Accuracy, stability and between cluster distance are all
dependent on the number of clusters and on the sample
size in each cluster making it inappropriate to directly
compare these measures across cluster sizes. For exam-
ple, as the number of clusters increases, the accuracy
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decreases simply because it is more difficult to correctly
predict an individual’s cluster assignment with more
available clusters (Figures 2, 4). Distance between
clusters, on the other hand, will always increase as the
number of clusters increases (Figures 2, 4). Therefore, we
generate referent values for each k by randomly permut-
ing the cluster labels generated in each execution of
k-means and then compute the accuracy, stability and
between cluster distance of the permuted cluster assign-
ment. We then compute the relative gain in the observed
accuracy, stability and between cluster distance to the
permuted accuracy, stability and between cluster distance
and combine the measures into a SI. Note that, since the
permuted cluster assignments have the same number of
clusters and subjects per cluster as the observed k-means
cluster assignments, we are simulating these measures
from the appropriate underlying distribution.

Scoring Index

To combine the measures of accuracy, stability and
between cluster distance, the SI averages the relative gain
in accuracy, relative gain in stability and relative gain in
between cluster distance at each cluster size. Specifically,
assume that for each execution m (m = 1,2,..., M) and
cluster size k (k = 1,2,...,.K) Ag, ., x and Ap, ,,,  are the
observed and permuted accuracy, Bg, ,, x and Bp, ,,, i are
the observed and permuted between cluster distance and
So, m xand Sp, ,,  are the observed and permuted stabi-
lity. The SI is computed as:

M

Slk - L 2 ( AO,m,k - AP,m,k ) +

M (l - AP,m,k )

( SO,m,k - SP,m,k )
( 1- SP,m,k )

( BO,m,k - BP,m,k )
( 1- BP,m,k )

m=1

The SI ranges between 0 and 1. The optimal num-
ber of clusters is identified by the number of clusters
that maximizes the SI. In some situations the differ-
ences between the SI can be relatively small for a
range of cluster sizes. For the sake of parsimony, it is
advisable to choose as the optimal solution the smal-
lest number of clusters that has a mean within the
95% confidence interval of the maximum number of
clusters. The confidence interval is computed in the
following way. Since each score component falls
between 0 and 1, a beta distribution is a reasonable
distribution for each component. We used moment
matching to estimate the parameters of the beta dis-
tribution and assume that the score components fol-
low Beta distributions:

(Ao = Apmi)
(1= Apu)
N is the total sample size and NAg, ,,, x and NAp ,,, «
represent the number of subjects correctly assigned to
their cluster for the observed and permuted assign-
ments, respectively, for execution m and cluster size k.

1. ~beta( NAg . = NAp i N = NAo .1 ), where
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Bomi—B
2. %ﬁ“ ~ beta( SSBg . ~ SSBp s SST ~ SSBo 1, ), Where
P,m,k

SST is the total distance between subjects measured
by the informative PCs used for clustering and SSBo,
m k and SSBp, ,,, i are the sums of squares between
clusters for the observed and permuted assignment,
respectively, for execution m and cluster size k.

(Somi =Spmi)
3. l=Somr)
represents the total number of pairs of subjects and
NSo, m, k and NSp, ,,, « are the number of concor-
dant and discordant pairs for the observed and per-
muted cluster assignments, respectively, for
execution m and cluster size k.

~ beta( NSo i = NSp e NS = NSomi ), where NS

Then the variance of SI; is computed as

M
11 Ao mk —Ap mi
Var(SI,) = —— Z Var| —=% e
Bl =375 { [ 1-

M
— Ll Z (NAO,m,k - NAP,m,k)(N - NAO,m,k)
M?9 (N =NAp . 1. )2(N = NAp . +1)

m=1
N (SSBo, e = SSBp i 1) (SST = SSB 1)
(SST — SSBy, 1) *(SST = SSBp 1 1o +1)

+ (NSO/m/k B NSP,m/k)(NS - NSO/m/k) :|

(NS = NSp k) (NS = NSp . +1)

and the 95% confidence interval is computed as the
25" and 97.5™ quantile of a beta(a,p) where

_a(l-8I,) ,  a(-SI,)
p= SI, p= SI,,

The computation of the algorithm is summarized in
Figure 11. In all examples, we used M = 100 and K =
30. A function for the clustering algorithm written in R
and an example is provided as additional file 1. The run
time for one thousand, 2 thousand and 3 thousand indi-
viduals with M = 100 and K = 30 is 13 minutes, 34 min-
utes and 69 minutes, respectively.

Gap Statistic

The gap statistic [26] was computed for the HGDP Afri-
cans and the NECS using the gap() function of the
SAGx package [35] in R [36]. The function is extremely
computer intensive and thus we computed the gap sta-
tistic on 5 random cluster assignments, as computed by
k-means, out of the total 100 executions for each cluster
size. The statistic could not be computed on the HGDP

Page 14 of 16

1: Select principal components using
heatmap and log-eigenvalue diagram

3

2. K-means clustering forming k clusters
i using principal components <

+

3. Randomly permute cluster
assighments

+

4: Compute accuracy and between-
cluster distances for K-means and
permuted cluster assignments

+

5. Repeat2-4 form = 1,2,...M execution

+

6: After M executions complete, proceed
to Step 7

v

| 7. Compute stability at each execution |

v
8. Compute scoring index and 95% CI

v

—{ 9. Repeat 2-7 fork = 2,3,....K clusters |

Figure 11 Computation of Clustering Algorithm. The flow chart
outlines the steps of the algorithm. The optimal number of clusters
is identified by the number of clusters that maximizes the scoring
index. In some situations the scoring index can be relatively equal
for a range of cluster sizes in which case it is advisable to choose
the smallest number of clusters that has a SI within the 95%
confidence interval of the maximum SI. We implement this heuristic
in all examples.

African dataset for cluster sizes larger than 22 because
at least 1 cluster contained only 1 subject.

GWAS Analysis

All GWAS used a logistic regression model with an
additive model for the SNP genotype and all SNPs had
a call rate > 0.95 and MAF > 0.01. Analyses were per-
formed using the software PLINK.

Additional material

Additional file 1: Implementation of clustering algorithm. The zip file
contains an R script with the implementation of the clustering algorithm,
example files and help documentation.
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