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Abstract

Motivation: Network alignment (NA) aims to find regions of similarities between species’ molecu-

lar networks. There exist two NA categories: local (LNA) and global (GNA). LNA finds small highly

conserved network regions and produces a many-to-many node mapping. GNA finds large con-

served regions and produces a one-to-one node mapping. Given the different outputs of LNA and

GNA, when a new NA method is proposed, it is compared against existing methods from the same

category. However, both NA categories have the same goal: to allow for transferring functional

knowledge from well- to poorly-studied species between conserved network regions. So, which

one to choose, LNA or GNA? To answer this, we introduce the first systematic evaluation of the

two NA categories.

Results: We introduce new measures of alignment quality that allow for fair comparison of the dif-

ferent LNA and GNA outputs, as such measures do not exist. We provide user-friendly software for

efficient alignment evaluation that implements the new and existing measures. We evaluate prom-

inent LNA and GNA methods on synthetic and real-world biological networks. We study the effect

on alignment quality of using different interaction types and confidence levels. We find that the su-

periority of one NA category over the other is context-dependent. Further, when we contrast LNA

and GNA in the application of learning novel protein functional knowledge, the two produce very

different predictions, indicating their complementarity. Our results and software provide guidelines

for future NA method development and evaluation.

Availability and implementation: Software: http://www.nd.edu/~cone/LNA_GNA

Contact: tmilenko@nd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Motivation, background and related work
With advancements of high throughput biotechnologies, large

amounts of protein-protein interaction (PPI) data have become

available (Breitkreutz et al., 2008; Brown and Jurisica, 2007).

Comparative analysis of PPI data across species is referred to as net-

work alignment (NA). NA is gaining importance, since it can be

used to transfer biological knowledge from well- to poorly-studied

species, thus leading to new discoveries in evolutionary biology.

NA aims to find topologically and functionally similar (con-

served) regions between PPI networks of different species (Faisal

et al., 2015). Like genomic sequence alignment, NA can be local

(LNA) or global (GNA). LNA aims to find small highly conserved

subnetworks, irrespective of the overall similarity of compared net-

works (Fig. 1(a)) (Ciriello et al., 2012; Hu and Reinert, 2015; Mina

and Guzzi, 2012; Pache and Aloy, 2012; Sharan et al., 2005). Since

the highly conserved subnetworks can overlap, LNA typically results

in a many-to-many node mapping between nodes of the compared
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networks—a node can be mapped to multiple nodes from the other

network. In contrast, GNA aims to maximize overall similarity of

the compared networks, at the expense of suboptimal conservation

in local regions (Fig. 1(b)). GNA produces a one-to-one (injective)

node mapping—every node in the smaller network is mapped to

exactly one unique node in the larger network (Clark and Kalita,

2015; Hashemifar and Xu, 2014; Ibragimov et al., 2013; Kuchaiev

and Pr�zulj, 2011; Malod-Dognin and Pr�zulj, 2015; Neyshabur et al.,

2013; Patro and Kingsford, 2012; Saraph and Milenkovi�c, 2014;

Seah et al., 2014; Singh et al., 2007; Sun et al., 2015; Todor et al.,

2013; Vijayan et al., 2015).

NA can also be categorized as pairwise or multiple, based on

how many networks it can align. See Faisal et al. (2015) for a review

of pairwise and multiple NA. Here, we focus on pairwise NA.

Given the different outputs of LNA and GNA, it is difficult to

directly compare them. Hence, when a new NA method is pro-

posed, it is compared only against existing methods from the same

NA category. In this context, NA methods can be evaluated with

measures of topological and biological alignment quality. An

alignment is of good topological quality if it reconstructs the

underlying true node mapping well (when this mapping is known)

and if it conserves many edges. An alignment is of good biological

quality if the mapped nodes perform similar function. LNA output

is evaluated biologically but not topologically. This is because

LNA outputs a many-to-many node mapping and thus to date it

has not been clear how to compute edge conservation that has

been defined only for one-to-one mapping (Saraph and

Milenkovi�c, 2014). GNA is evaluated both topologically and

biologically.

Despite the different output types of LNA and GNA, which

makes their direct comparison difficult, the two NA categories

have the same ultimate goal: to transfer functional knowledge

from well- to poorly-studied species, thus redefining the traditional

notion of sequence-based orthology to network-based orthology.

For this reason, we introduce the first ever comparison of LNA

and GNA.

1.2 Our approach and contributions
In the process of developing our novel framework for a fair compari-

son of LNA and GNA (Fig. 2), we do the following.

1. We evaluate 10 prominent LNA and GNA methods.

2. We evaluate the NA methods on both synthetic networks with

known true node mapping and real-world networks with un-

known true node mapping. For the latter, we explore the impact

on the results of using different PPI types and PPIs of varying

confidence.

3. We develop new alignment quality measures that allow for a fair

comparison of LNA and GNA, since such measures do not exist.

We measure both topological and biological alignment quality.

4. We study the effect on the results of using only network topo-

logical information versus including also protein sequence infor-

mation into the alignment construction process.

5. Our LNA versus GNA evaluation reveals the following. When

using only topological information during the alignment con-

struction process, GNA outperforms LNA both topologically

and biologically; when sequence information is also included,

GNA is superior to LNA in terms of topological alignment qual-

ity, while LNA is superior to GNA in terms of biological quality.

Our approach is overall robust to the choice of PPI data, mean-

ing that both different PPI types and confidence levels lead to

consistent results in all cases topologically and in most cases

biologically.

6. In addition to the thorough method evaluation, whose results

provide guidelines for future NA method development, we apply

the NA methods to predict novel protein functional knowledge.

We find that LNA and GNA produce very different predictions,

indicating their complementarity when learning new biological

knowledge.

7. We provide a graphical user interface (GUI) for NA evaluation

integrating the new and existing alignment quality measures.

2 Materials and methods

2.1 Data description
We analyze PPI networks with (1) known and (2) unknown true

node mapping.

Networks with known true node mapping contain a high-

confidence S.cerevisiae (yeast) PPI network with 1004 proteins and

8323 PPIs (Collins et al., 2007) and five noisy networks constructed

by adding to the high-confidence network 5, 10, 15, 20 or 25% ofFig. 1. Illustration of (a) LNA and (b) GNA

Fig. 2. Summary of our LNA versus GNA evaluation framework, consisting of the following steps: (1) Input: networks from different species containing different

types of PPIs. Note that for this network set, we do not know the true node mapping. Thus, we analyze an additional set of networks with known true node map-

ping. (2) Network comparative analysis: using prominent LNA or GNA methods (as listed) to align networks across different species. During the alignment con-

struction process, we set each method’s node cost function (see Section 2.3) to use topological information only, sequence information only, or combined

topological and sequence information. (3) Output: many-to-many node mapping for LNA or one-to-one node mapping for GNA. (4) Evaluation: measuring topo-

logical and biological quality of each alignment. (5) Results: fair comparison of LNA and GNA, and novel protein function prediction
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lower-confidence PPIs from the same dataset (Collins et al., 2007);

the higher-scoring lower-confidence PPIs are added first. We align

the high-confidence network with each of the noisy networks. Since

all networks contain the same nodes, we know the true node map-

ping. The high-confidence network is an exact subgraph of each

noisy yeast network. This popular evaluation test has been adopted

by many existing NA studies (Kuchaiev and Pr�zulj, 2011; Kuchaiev

et al., 2010; Patro and Kingsford, 2012; Saraph and Milenkovi�c,

2014; Vijayan et al., 2015).

Networks with unknown true node mapping are PPI data from

BioGRID (downloaded in November 2014) of four species:

S.cerevisiae (yeast), D.melanogaster (fly), C.elegans (worm) and

H.sapiens (human). For each species, we extract four PPI networks

containing different interaction types and confidence levels: (i) all

physical PPIs, where each PPI is supported by at least one publica-

tion (PHY1), (ii) all physical PPIs, where each PPI is supported by at

least two publications (PHY2), (iii) only yeast two-hybrid physical

PPIs, where each PPI is supported by at least one publication (Y2H1)

and (iv) only yeast two-hybrid physical PPIs, where each PPI is sup-

ported by at least two publications (Y2H2). We vary the PPI type

(all physical interactions, most of which are obtained by AP/MS,

versus Y2H only) to test the robustness of our approach to this par-

ameter. We vary PPI confidence levels because PPIs supported by

multiple publications are more reliable than those supported by only

a single publication (Cusick et al., 2009). For each network, we ex-

tract and use its largest connected component (Supplementary

Section S1 and Supplementary Table S1).

2.2 Network aligners evaluated in our study
To evaluate LNA against GNA, we choose most of the recent pair-

wise LNA and GNA methods that have publicly available and rela-

tively user-friendly software. This results in four LNA methods and

six GNA methods: NetworkBLAST (Sharan et al., 2005),

NetAligner (Pache and Aloy, 2012), AlignNemo (Ciriello et al.,

2012) and AlignMCL (Mina and Guzzi, 2012) from the LNA cat-

egory; and GHOST (Patro and Kingsford, 2012), NETAL

(Neyshabur et al., 2013), GEDEVO (Ibragimov et al., 2014),

MAGNAþþ (Vijayan et al., 2015), WAVE (Sun et al., 2015) and

L-GRAAL (Malod-Dognin and Pr�zulj, 2015) from the GNA cat-

egory. An exception to the above guidelines is NetworkBLAST—

despite being an early LNA method, NetworkBLAST still remains a

popular LNA baseline. All methods are described in Supplementary

Section S2 and Supplementary Table S2, and their parameters that

we use are shown in Supplementary Table S3.

2.3 Aligners’ node cost functions
All considered NA methods construct their alignments by first com-

puting pairwise similarities between nodes from different networks

via a node cost function (NCF). One can compute node similarities

by accounting for: (i) topological information only (T) in order to

measure how well the (extended) network neighborhoods of two

nodes match, (ii) sequence information only (S) in order to measure

the extent of sequence conservation between the nodes or (iii) com-

bined topological and sequence information (T&S). We study the ef-

fect on alignment quality of using only topological information

versus also using sequence information in NCF.

We evaluate each aligner for each of the three above cases. The

exceptions are NetworkBLAST, NetAligner, NETAL and

GEDEVO, for the following reasons. Regarding NetworkBLAST

and NetAligner, they only allow for using sequence information

within NCF. The two methods require E-value scores as input and it

is unclear how to convert topological information into values that

are at the same scale as the E-values. Regarding NETAL, its

implementation failed to run when we tried to include sequence in-

formation into its NCF. Regarding GEDEVO, by design, its imple-

mentation allows for only using topological information and using

this information in a specific format (i.e. as a 73-dimensional vector

per node), where it is unclear how to convert sequence information

into this particular format.

Topology- and sequence-based NCFs that we use within the dif-

ferent NA methods are discussed in Supplementary Section S3 and

Supplementary Table S4. Given the topology- and sequence-based

NCFs for two nodes from different networks, we compute the

nodes’ combined (T&S) NCF as the linear combination of the indi-

vidual NCFs: NCFðT&SÞ ¼ a�NCFðTÞ þ ð1� aÞ �NCFðSÞ.
Initially, we have chosen a ¼ 0:5 in order to equally balance be-

tween T and S. However, to give each method the best case advan-

tage, our final strategy is to vary the value of a from 0.1 to 0.9 in

increments of 0.1 and use the best a value in each test (for each

method). Since using a ¼ 0:5 and using the best a value lead to

qualitatively identical results according to our analysis (as we will

show in Section 3), for simplicity, henceforth, we only report the re-

sults when using the best a value for T&S (unless otherwise noted).

2.4 Evaluation of alignment quality
Next, we discuss measures that we use to evaluate topological

(Section 2.4.1) and biological (Section 2.4.2) alignment quality. We

introduce the following definitions. Let f be an alignment between

two graphs G1ðV1;E1Þ and G2ðV2;E2Þ. Given a node u from one

graph, let f(u) be the set of nodes from the other graph that are

aligned under f to u. Given a node set V, let f ðVÞ ¼ [v2V f ðvÞ. Let G
0
1ðV 01;E01Þ and G02ðV 02;E02Þ be subgraphs of G1 and G2 that are

induced on node sets f ðV2Þ and f ðV1Þ, respectively. We define con-

served and non-conserved edges as follows. A conserved edge is

formed by two edges from different networks such that each end

node of one edge is aligned under f to a unique end node of the other

edge. In other words, a conserved edge is composed of two edges

from different networks that are aligned under f (Fig. 3(a)). A non-

conserved edge is formed by an edge from one network and a pair of

nodes from the other network that do not form an edge (i.e. that

form a non-edge) such that each end node of the edge is aligned

under f to a unique node of the non-edge (Fig. 3(b) and (c)).

2.4.1 Topological evaluation

First, we describe existing topological alignment quality measures,

along with their drawbacks. Next, we propose new measures that

are motivated by the drawbacks of the existing measures.

Existing measures. Recall that intuitively an alignment is of high

topological quality if it reconstructs the underlying true node

Fig. 3. Illustration of conserved and non-conserved edges. (a) A conserved

edge is formed by two edges ðu; vÞ 2 G1 and ðu0; v 0Þ 2 G2 such that u is

aligned to u0 and v is aligned to v 0. A non-conserved edge is formed by (b) an

edge ðu; vÞ 2 G1 and a non-edge ðu0; v 0Þ 2 G2 , or by (c) a non-edge ðu; vÞ 2 G1

and an edge ðu; vÞ 2 G2, such that u is aligned to u0 and v is aligned to v 0 .

Nodes of the same color come from the same network. A solid line represents

an edge. Nodes linked by a dashed line are aligned under f
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mapping well (when such mapping is known) and if it conserves

many edges.

To evaluate how well an alignment reconstructs the true node

mapping, node correctness (NC) has been widely used (Kuchaiev

and Pr�zulj, 2011; Kuchaiev et al., 2010). To date, NC has been

defined only for GNA, as the fraction of nodes from the smaller

network that are correctly aligned (under injective mapping f) to

nodes from the larger network with respect to the true node map-

ping. The reason that NC has not been defined for LNA is that

with LNA, a node from the smaller network can be mapped to

multiple nodes from the larger network, and thus, it is not clear

how to measure the percentage of nodes from the smaller network

that are correctly aligned. Hence, below, we generalize NC for

both LNA and GNA. NC can only be used when the true node

mapping is known.

To measure how well edges are conserved under an alignment,

three measures have been used to date: edge correctness (EC)

(Kuchaiev et al., 2010), induced conserved structure (ICS) (Patro

and Kingsford, 2012), and symmetric substructure score (S3)

(Saraph and Milenkovi�c, 2014). S3 has been shown to be superior

to EC and ICS, since intuitively it not only penalizes alignments

from sparse graph regions to dense graph regions (as EC does), but

also, it penalizes alignments from dense graph regions to sparse

graph regions (as ICS does). Hence, we only focus on S3. Like NC,

S3 has been only defined in the context of GNA, as
jE�

1
j

jE1 jþjE02 j�jE
�
1
j,

where jE�1j is the number of edges from G1 that are conserved by

f (in this case, G1 is the smaller of the two networks in terms of the

number of nodes). The reason that S3 has not been defined for

LNA is that with LNA that allows for many-to-many node map-

ping, it is not clear how to count conserved edges, since an edge

from one network could be aligned to multiple edges from the

other network. Hence, below, we generalize S3 to both LNA and

GNA.

New measures. To address the above issues, we propose new

measures.

(1) Precision, recall and F-score of node correctness (P-NC,

R-NC and F-NC, respectively). NC, defined only for GNA, meas-

ures how well an alignment reconstructs the true node mapping.

As such, NC evaluates the precision of the alignment—the percent-

age of the aligned node pairs that are also present in the true node

mapping. However, the corresponding recall—the percentage of

all node pairs from the true node mapping that are aligned under

f—is not measured explicitly. This is because for GNA, recall has

the same value as precision. On the other hand, with LNA, preci-

sion and recall could have different values. In order to generalize

NC for both GNA and LNA, we propose P-NC, R-NC and F-NC.

Let M be the set of node pairs that are mapped under the true node

mapping. Let N be the set of node pairs that are aligned under f.

P-NC is defined as jM\Nj
jMj . R-NC is defined as jM\Nj

jNj . As is typically

done (Hripcsak and Rothschild, 2005), we use F-NC, the harmonic

mean of P-NC and R-NC, to combine the two individual measures.

We have also tried other ways of combining P-NC and R-NC, such

as by computing their geometric mean, and the results from using

the geometric mean are significantly correlated (P-value < 10�308)

with the results from using F-NC. Therefore, henceforth, we report

results for F-NC but not for the geometric mean. Like NC, our

three new measures can only be used when the true node mapping

is known.

(2) Generalized S3 (GS3). To generalize S3 for both GNA and

LNA, we propose GS3 to count edge conservation under f, inde-

pendent on whether f is injective or many-to-many. We define GS3

as the percentage of conserved edges out of the total of both con-

served and non-conserved edges:

GS3 ¼ Nc

Nc þNn
; (1)

where Nc and Nn are the numbers of conserved and non-conserved

edges, respectively, computed as follows. Nc ¼
P

uv2E0
1
jfðu0; v0Þju0 2

f ðuÞ; v0 2 f ðvÞ; ðu0; v0Þ 2 E02gj. Nn is the sum of N1
n (i.e. the number

of non-conserved edges formed by aligning an edge from G1 and a

non-edge from G2; Fig. 3(b)) and N2
n (i.e. the number of non-

conserved edges formed by aligning a non-edge from G1 and an

edge from G2; Fig. 3(c))). N1
n and N2

n can be computed using

Equations 2 and 3, respectively. Clearly, for GNA, Equation 1 for

GS3 is S3 itself.

N1
n ¼

X

uv2E0
1

jfðu0; v0Þju0 2 f ðuÞ; v0 2 f ðvÞ; u0 6¼ v0gj �Nc: (2)

N2
n ¼

X

u0v02E0
2

jfðu; vÞju 2 f ðu0Þ; v 2 f ðv0Þ; u 6¼ vgj �Nc: (3)

(3) NCV combined with GS3 (NCV-GS3). Recall that GS3 meas-

ures how well edges are conserved between G01 and G02. LNA could

produce small conserved subgraphs, which could result in high GS3

score. This would mistakenly imply high alignment quality if we

only rely on GS3. But if we adopt an additional criterion of what a

good alignment is, namely high node coverage (NCV), which is the

percentage of nodes from G1 and G2 that are also in G01 and G02 (i.e.
jV 0

1
jþjV 0

2
j

jV1 jþjV2 j), then small conserved subgraphs with high GS3 would actu-

ally have low alignment quality with respect to NCV. Thus, we com-

bine NCV and GS3 into NCV-GS3 to get a more complete picture of

the actual alignment quality. We define NCV-GS3 as the geometric

mean of the two individual measures, because we want at least one

low alignment quality score to imply low combined score.

2.4.2 Biological evaluation

To evaluate the biological quality of LNA and GNA, we use two

existing measures: Gene Ontology (GO) correctness (Kuchaiev and

Pr�zulj, 2011; Kuchaiev et al., 2010; Neyshabur et al., 2013) and the

accuracy of known protein function prediction (Faisal et al., 2014;

Kuchaiev and Pr�zulj, 2011; Patro and Kingsford, 2012; Sharan

et al., 2005). Many GO annotations are obtained via sequence com-

parison (Crawford et al., 2015). Using such data to evaluate align-

ments of NA methods that already use sequence information in

NCF would lead to biased results (Kuchaiev and Pr�zulj, 2011).

Therefore, we only use GO annotations that have been obtained

experimentally.

(1) GO correctness (GC). This measure quantifies the extent to

which protein pairs that are aligned under f are annotated with the

same GO terms (Supplementary Section S4) (Kuchaiev et al., 2010).

(2) Precision, recall and F-score of known protein function pre-

diction (P-PF, R-PF and F-PF, respectively). We make GO term pre-

diction(s) for each protein from G1 or G2 that is annotated with at

least one GO term through a multi-step process. First, we hide the

protein’s true GO terms. Second, we find statistically significant

alignments with respect to each of those GO terms. Third, we pre-

dict the protein’s GO terms based on the GO terms of its aligned

counterpart(s) under f only from the statistically significant align-

ments. Fourth, after we make predictions for all proteins, we evalu-

ate the precision, recall and F-score of the prediction results (i.e.

P-PF, R-PF and F-PF, respectively) with respect to the true GO terms
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of the proteins. For details about this 4-step process, see

Supplementary Section S4.

2.5 Application to novel protein function prediction
One application of NA is to predict novel function of proteins based

on the annotations of their aligned counterparts under f. We use

LNA and GNA in this context to find statistically significant align-

ments and make novel protein function predictions from such align-

ments (Supplementary Section S5).

3 Results and discussion

After we validate our alignment quality measures (Section 3.1), we

use the measures to evaluate LNA against GNA on networks with

known (Section 3.2) and unknown (Section 3.3) true node mapping.

3.1 Validation of the alignment quality measures
Here, we aim to evaluate whether our proposed alignment quality

measures (and in particular F-NC and NCV-GS3; Section 2.4.1) are

actually meaningful. In the process, we also evaluate the existing

F-PF measure (Section 2.4.2). We focus on these three measures for

reasons discussed in Sections 3.2.1 and 3.3.1. We evaluate the meas-

ures in the following context: If we keep decreasing quality of a

known alignment, a good measure should recognize the decreasing

alignment quality and consequently lead to decreasing scores.

To test whether our measures show this behavior, we perform two

tests.

First, we vary the noise level in a correct node alignment, which

is simply the known mapping from a node set to itself (e.g. node a is

mapped to node a, node b is mapped to node b, node c is mapped to

node c and so on). Such node mapping is clearly independent of the

network topology or the NA method. Specifically, starting with the

correct mapping between nodes from the set of yeast networks with

known true node mapping (Section 2.1), we introduce 0–100% of

noise into this mapping (where the noise corresponds to the percent-

age of mismatched node pairs, such as node a being mapped to node

c), resulting in 21 alignments of decreasing quality. Then, for each

measure, we compute the scores of the 21 alignments. We observe

the trend that indicates that all measures are meaningful: their scores

decrease with increase in noise level, i.e. with decrease in alignment

quality (Supplementary Fig. S1).

Second, we perform a similar test, except that now we introduce

the noise into the network topology directly, prior to aligning with

each NA method the high-confidence yeast network to its noisy ver-

sions. We perform two variations of this test: (i) we ensure that each

noisy network matches the degree distribution of the high-

confidence network and (ii) we impose no such constraint. Since

both variations lead to same trends, we report results for variation 1

only. This analysis is truly meaningful only when using topological

information alone in NCF (corresponding to T; Section 2.3), since it

is the network topology that we introduce the noise into.

Consequently, for T, a good measure should definitely lead to

decreasing alignment quality scores with increase in noise level. On

the other hand, this analysis could be biased when using at least

some amount of sequence information in NCF (corresponding to

T&S and S; Section 2.3), because even while increasing the noise in

the network topology, NA methods could still be heavily guided by

sequence-based node similarities. Consequently, for T&S and S, NA

methods could lead to high alignment quality scores even at high

topological noise levels, especially with respect to measures that

account for how well the aligned nodes match, such as F-NC and F-

PF. However, this behavior should not be a sign that such measures

are not meaningful; instead, this behavior should reflect the bias of

using sequence information in NCF in this analysis.

With this in mind, our results are as follows. For T, all measures

show decreasing alignment quality scores with the increasing noise

(Fig. 4), as good measures should. Hence, this validates the meas-

ures. GNA is more robust to noise than LNA, as the scores drop

faster for LNA than for GNA as noise increases. Importantly, recall

that F-NC and F-PF reflect the correspondence or functional similar-

ity between the aligned nodes, and thus, alignments of high quality

in terms of F-NC or F-PF are biologically meaningful and can conse-

quently efficiently guide the transfer of biological knowledge be-

tween the aligned networks. Now, since for T, F-NC and F-PF

scores are high at the lowest noise levels and low at the highest noise

levels for all NA methods (Fig. 4), this implies that topological infor-

mation alone considerably reflects the underlying biological infor-

mation, with superiority of GNA over LNA at the (meaningful)

lowest noise levels. For T&S and S, alignment quality scores again

decrease with increase in noise level for all methods in terms of

NCV-GS3, which is not surprising as this is an edge-based (rather

than node similarity-based) measure of alignment quality. Here,

LNA and GNA perform similarly; Fig. 4 and Supplementary Fig.

S2). This behavior of NCV-GS3 even when using some sequence in-

formation in NCF only further validates this measure. For F-NC and

F-PF, the node similarity-based measures, as expected (see above),

the scores for all LNA methods and for most of the GNA methods

do not always decrease with increase in noise level. That is, scores at

lower noise levels (when the aligned networks are similar) are some-

times the same as scores at higher noise levels (when the networks

are dissimilar). This behavior confirms that the NA methods rely

more heavily on sequence information than on topological informa-

tion when matching similar nodes. This leads to many sequence-

similar aligned node pairs independent of the topological noise level

Fig. 4. Validation of the representative newly proposed alignment quality

measures, (a) F-NC and (b) NCV-GS3, when introducing increasing noise level

from 0 to 100% into the high-confidence yeast network (from the set of net-

works with known true node mapping) prior to aligning the high-confidence

network with its noisy versions, for each of the aligners, with respect to T and

S. For T&S, see Supplementary Figure S2. Results for F-PF closely match

those for F-NC and are thus not reported. If some of the analyzed four LNA

and six GNA methods are missing in the given panel, that means that the

given method cannot be run with the corresponding type of information used

in NCF (T or S)
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and consequently to many nodes being aligned to themselves (lead-

ing to high F-NC) or to other functionally similar nodes (leading to

high F-PF).

We perform an additional (third) test of whether the analyzed

measures are insensitive to the edge order of the input networks (as

good measures should be), and we validate that this is the case

(Supplementary Section S6 and Supplementary Fig. S3).

3.2 Networks with known true node mapping
3.2.1 Relationships between different alignment quality measures

To fairly evaluate different NA methods, we first study relationships

and potential redundancies of different alignment quality measures

in order to select only non-redundant measures to fairly evaluate

LNA against GNA (Supplementary Section S7.1).

For networks with known true node mapping, we use the six

topological measures: P-NC, R-NC, F-NC, NCV, GS3 and NCV-

GS3 (Section 2.4.1). We do not use biological measures (which are

approximate measures of similarity or correspondence between

aligned nodes; Section 2.4.2) because we know the true node map-

ping, i.e. the actual correspondence between nodes that a good

aligner should reconstruct well. For all pairs of measures, we com-

pute Pearson correlation coefficients across all alignments

(Supplementary Section S7.1). Since all six measures are topological,

we expect them to be highly (positively) correlated with each other.

Indeed, we find that over all of T, T&S and S combined, 89 and

71% of all pairs of measures are significantly correlated for LNA

and GNA, respectively, with 60% of all pairs being in the intersec-

tion of LNA and GNA (Fig. 5(a) and (b), Supplementary Fig. S4,

and Supplementary Section S7.1). The six measures by definition

naturally cluster into two groups, one group consisting of P-NC,

R-NC and F-NC, measures that quantify how well the alignment

captures the true node mapping, and the other group consisting of

NCV, GS3 and NCV-GS3, measures that capture the size of the

alignment. Since (by definition) the two groups of measures evaluate

alignment quality from different perspectives, since in the first group

F-NC combines P-NC and R-NC while in the second group NCV-

GS3 combines NCV and GS3, since within each group the measures

are somewhat redundant (in the sense that, according to our results,

F-NC overall correlates well with each of P-NC and R-NC, and

NCV-GS3 overall correlates well with each of NCV and GS3), and

since (according to our results) NCV-GS3 correlates the best with

F-NC among all of NCV, GS3 and NCV-GS3, henceforth, we focus

on F-NC and NCV-GS3 as the most representative non-redundant

measures.

3.2.2 Comparison of LNA and GNA

To fairly evaluate LNA against GNA, we perform ‘best method’ and

‘all methods’ comparisons of the NA methods. By ‘best method’

comparison, we mean the following: to claim that LNA is better

than GNA, at least one LNA method has to beat all four of the

GNA methods. Analogously, to claim that GNA is better than LNA,

at least one GNA method has to beat all four of the LNA methods.

If none of the two conditions are met, then we say that neither LNA

nor GNA is superior. By ‘all methods’ comparison, we mean the fol-

lowing: to claim that LNA is better than GNA, each of the four

LNA methods has to beat all four of the GNA methods.

Analogously, to claim that GNA is better than LNA, each of the

four GNA methods has to beat all four of the LNA methods. If none

of the two conditions are met, then we say that neither LNA nor

GNA is superior. We perform each of the ‘best method’ and ‘all

methods’ comparisons with respect to each of T, T&S, S and B,

where B is the best-case scenario, i.e. the best of T, T&S and S.

Namely, given two networks and an NA method, three alignments

will be produced, one for each of T, T&S and S. Then, B is the best

of the three alignments with respect to the given alignment quality

measure (different quality measures might identify different align-

ments as B out of T, T&S and S).

Here, we report our findings for the ‘best method’ comparison,

while we provide results for the ‘all methods’ comparison in the

Supplement. We focus on the ‘best method’ comparison for two rea-

sons. First, we believe that the ‘best method’ comparison is more

relevant than the ‘all methods’ comparison. This is because in order

to properly answer which of LNA and GNA is superior, what mat-

ters is to find the best of all considered LNA methods and the best of

all considered GNA methods and compare the resulting best meth-

ods only. That is, it might not be good to insist that even the worst

LNA method beats the best GNA method (or vice versa), as this

could severely weaken the comparison between LNA and GNA, es-

pecially if the worst LNA (or GNA) method is simply a poor-

performing approach. Second, results for the two comparison types

are qualitatively similar, which further strengthens our findings.

We find the following. Overall, for the ‘best method’ comparison,

GNA is superior to LNA in all cases, for each of T, T&S, S and B

(Figs 6 and 7, and Supplementary Fig. S5). Again, similar results hold

for the ‘all methods’ comparison (Supplementary Fig. S5). When we

zoom into these results in more detail to identify the best of all meth-

ods considered in our study (Fig. 7 and Supplementary Figs S6 and

S7) , we find that AlignMCL is the best of all considered LNA meth-

ods, while MAGNAþþ and WAVE are the best of all considered

GNA methods. For details, see Supplementary Section S7.2; we pro-

vide this discussion in the Supplement since identifying the best par-

ticular method(s) is not a key question of our study. Further, we note

that both LNA and GNA are more robust to the choice of networks

to be aligned when some sequence information is used in NCF (i.e.

with respect to T&S and S) than when only topological information

is used (i.e. with respect to T), as supported by smaller standard devi-

ations in Figure 7(b) and (c) compared to Figure 7(a).

Fig. 5. Pairwise relationships (Pearson correlations) between the six topo-

logical alignment quality measures for LNA (a and c) and GNA (b and d), for

networks with known true node mapping (a and b) and networks with un-

known true node mapping (c and d), with respect to T. For equivalent results

with respect to T&S and S, see Supplementary Figures S4 and S10 (Color

version of this figure is available at Bioinformatics online.)

3160 L.Meng et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
Deleted Text: 2&hx00A0;&hx00A0;
Deleted Text: <italic>1&hx00A0;&hx00A0;</italic>
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
Deleted Text: ,
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
Deleted Text: ,
Deleted Text: &hx0025;
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: <italic>2&hx00A0;&hx00A0;</italic>
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
Deleted Text: ,
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw348/-/DC1


All results reported in Sections 3.1 and 3.2 correspond to using

the best a value in NCF for T&S (Section 2.3). Using a ¼ 0:5 to

equally balance between topological and sequence information in

NCF leads to comparable results (Supplementary Figs S8(a), (b) and

S9), which further strengthens our findings. In general, we find that

when a given NA method is run in the T&S mode, using any a in the

[0.1,0.9] range leads to similar topological and biological alignment

quality (Supplementary Fig. S8(a) and (b)).

3.2.3 Summary

For this network set, GNA is superior to LNA. AlignMCL is super-

ior to all considered LNA methods. MAGNAþþ and WAVE are su-

perior of all considered GNA methods.

3.3 Networks with unknown true node mapping
3.3.1 Relationships of different alignment quality measures

Just as for networks with known true node mapping (Section 3.2.1),

our first goal for four sets of networks with unknown true node

mapping (Y2H1, Y2H2, PHY1 and PHY2, which encompass

different species, PPI types and PPI confidence levels; Section 2.1) is

to understand potential redundancies of different alignment quality

measures and choose the best and most representative of all redun-

dant measures for fair evaluation of LNA and GNA. All reported re-

sults are for all four sets of networks combined, unless otherwise

noted. In Section 3.3.3, we break down the results per network set,

in order to evaluate their robustness to the choice of network data in

terms of PPI type and confidence level.

For the networks with unknown true node mapping, we use all

seven measures: three topological (NCV, GS3 and NCV-GS3;

Section 2.4.1) and four biological (GC, P-PF, R-PF and F-PF;

Section 2.4.2). For all pairs of measures, we compute Pearson correl-

ation coefficients across all alignments (Supplementary Section S8.

1). Since by definition all seven measures naturally cluster into two

groups (one group consisting of the three topological measures that

capture the size of the alignment in terms of the number of nodes or

edges, and the other group consisting of the four biological measures

that quantify the extent of functional similarity of the aligned

nodes), we expect within-group correlations to be higher than

across-group correlations. Indeed, this is what we observe overall

for both LNA and GNA with respect to each of T, T&S and S (Fig.

5(c) and (d), Supplementary Fig. S10, and Supplementary Section

S8.1). Specifically, over all of T, T&S and S combined, 52 and 78%

of all within-group correlations are significant for LNA and GNA,

respectively, with 48% overlap between LNA and GNA. Similarly,

89 and 94% of all across-group correlations are non-significant for

LNA and GNA, respectively, with 83% overlap between LNA and

GNA.

These results (the majority of the within-group correlations

being significant and the majority of the across-group correlations

being non-significant) imply that topological and biological align-

ment quality are not significantly correlated, which clearly holds for

both LNA and GNA. This was already observed by the existing

GNA studies (Clark and Kalita, 2014; Crawford et al., 2015; Patro

and Kingsford, 2012), which noted that the topological versus biolo-

gical fit between aligned networks conflict to a larger extent than

previously realized. An explanation could be that the discovery of

the current experimental biological knowledge may have been

guided by sequence-based (rather than network-based) analyses.

Our findings support this hypothesis: in 99% of all cases, for the

same NA method and the same pair of networks, alignments for

T&S or S are superior to alignments for T in terms of biological

quality. Similarly, it was already shown that functional similarities

of aligned proteins reach their maximum for either T&S or S, but

not for T (Malod-Dognin and Pr�zulj, 2015). If the current experi-

mental biological knowledge is indeed biased towards sequence

data, given that sequences and network topology can lead to com-

plementary biological insights (Memi�sevi�c et al., 2010), our above

findings should not be surprising. Yet, we argue that network top-

ology can be a valuable source of biological knowledge that can lead

to novel insights compared to sequence data alone, as was already

recognized by many of the existing NA studies and as our study add-

itionally confirms. Namely, we have already shown in Section 3.1

that network topology reflects well the underlying biological infor-

mation, and we additionally show in Section 3.5 that using some

amount of topology can yield unique biological predictions that are

not captured when using only sequences.

Going back to choosing the most representative measures, since

by definition the two groups of measures (NCV, GS3 and NCV-GS3

versus GC, P-PF, R-PF and F-PF) evaluate alignment quality from

different perspectives, since in the first group NCV-GS3 combines

NCV and GS3 while in the second group F-PF combines P-PF and

T T&S

BS

(a) (b)

(c) (d)

Fig. 7. Detailed comparison of LNA and GNA for networks with known true

node mapping with respect to F-NC and NCV-GS3 alignment quality meas-

ures, for (a) T, (b) T&S, (c) S and (d) B. Each point represents alignment qual-

ity of the given NA method averaged over all network pairs, and each bar

represents the corresponding standard deviation. A missing point indicates

that the given NA method cannot use the corresponding type of information

in NCF and thus no result is produced

F-NC NCV-GS3

(a) (b)

Fig. 6. Overall ‘best method’ comparison of LNA and GNA for networks with

known true node mapping with respect to (a) F-NC and (b) NCV-GS3 align-

ment quality measures, for T, T&S, S and B. Each bar shows the percentage

of the aligned network pairs (over both considered alignment quality meas-

ures combined) for which LNA is superior (black), GNA is superior (grey), or

neither LNA nor GNA is superior (white). For detailed results, see Figure 7

and Supplementary Figure S5
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R-PF (and P-PF is also redundant to GC), since (according to our re-

sults) the measures within each of the two groups are overall well

correlated and thus redundant to each other, and since (according

to our results from Section 3.2.1) NCV-GS3 correlates the best with

F-NC for networks with known true node mapping among all of

NCV, GS3 and NCV-GS3, henceforth, we focus on NCV-GS3 and

F-PF as non-redundant topological and biological measures,

respectively.

3.3.2 Comparison of LNA and GNA

As in our analysis from Section 3.2.2, here we perform ‘best method’

and ‘all methods’ comparisons. For both comparison types, with re-

spect to topological alignment quality, GNA is always superior to

LNA for each of T, T&S, S and B (Fig. 8(a) and Supplementary Fig.

S11). With respect to biological alignment quality, GNA is superior

to LNA for T for majority of the cases, while LNA is superior to

GNA for T&S, S and B (Fig. 8(b) and Supplementary Fig. S11).

When we zoom into the above results (Supplementary Figs S12–S16)

in order to identify the best NA method(s) among all methods con-

sidered in our study, we find that AlignNemo and AlignMCL are the

best of all considered LNA methods, while for GNA, the best of all

considered GNA methods varies depending on whether we are

measuring topological versus biological alignment quality and de-

pending on the type of information used in NCF. For details, see

Supplementary Section S8.2; we provide this discussion in the

Supplement since identifying the best particular method(s) is not a

key question of our study.

All results reported in Section 3.3 correspond to using the best a
value in NCF for T&S. Using a ¼ 0:5 leads to comparable results

(Supplementary Figs S8(c), (d) and S17). In general, we find that

when a given NA method is run in the T&S mode, using any a in the

[0.1,0.9] range leads to similar topological and biological alignment

quality (Supplementary Fig. S8(c), (d)).

3.3.3 Robustness to the choice of network data

We aim to study the effect on results of using different network sets

(PHY1, PHY2, Y2H1 and Y2H2), in order to test the robustness of

the results to the choice of PPI type and confidence level. For ‘best

method’ comparison and each of T, T&S, S and B, with respect to

topological alignment quality, results are always consistent across

the different network sets (and they are consistent with the above re-

ported results for all four network sets combined; Fig. 8). With re-

spect to biological alignment quality, results for different network

sets are consistent in 67% of all cases when varying PPI type and in

50% of all cases when varying PPI confidence level. Thus,

our evaluation framework is robust to the choice of network data

with respect to topological alignment quality and mostly robust

with respect to biological alignment quality. For ‘all methods’ com-

parison and each of T, T&S, S and B, results are always consistent

across the different network sets with respect to both topological

and biological alignment quality (Supplementary Fig. S18).

3.3.4 Summary

Overall, when using only topological information in NCF, GNA

outperforms LNA in terms of both topological and biological align-

ment quality. When adding sequence information to NCF, GNA is

superior topologically, while LNA is superior biologically. The best

of all considered LNA methods are AlignMCL and AlignNemo. The

best of all considered GNA methods varies depending on whether

one is measuring topological versus biological alignment quality and

on the type of information used in NCF. Our evaluation is robust to

the choice of network data with respect to topological alignment

quality and mostly robust with respect to biological alignment

quality.

The reason why GNA outperforms LNA in terms of topological

alignment quality (meaning that GNA identifies larger amount of

conserved edges and larger conserved subgraphs that LNA), irre-

spective of the type of NCF information used during the alignment

construction process, could be due to the following key difference

between the design goals of LNA and GNA. Namely, LNA aims to

find small (on the order of a dozen nodes) but highly-conserved sub-

networks, irrespective of the overall similarity between the com-

pared networks. On the other hand, GNA aims to find a large

conserved subgraph (though at the expense of matching local re-

gions suboptimally), and typically it does so by directly optimizing

edge conservation (and possibly other measures) while producing

alignments. As such, simply by design, GNA might have an advan-

tage over LNA in terms of the expected topological alignment qual-

ity, which our results confirm.

In terms of biological alignment quality, GNA again outper-

forms LNA for T. This indicates that when using within NCF only

biological information encoded into network topology (i.e. when

not using any biological information external to network topology,

such as sequence information), GNA leads to better biological pre-

dictions than LNA. Also, in this case, the topological alignment

quality results correlate well with the biological alignment quality

results (as GNA is superior to LNA in both cases). However, when

some amount of sequence information is included into NCF (corres-

ponding to T&S and S), the topological alignment quality results do

not correlate with the biological alignment quality results (as GNA

is superior in the first case, while LNA is superior in the second

case). The reason behind LNA’s superiority over GNA in terms of

biological alignment quality for T&S and S could again be due to

differences in their key design goals. Namely, unlike GNA, LNA

uses the notion of the alignment graph to search for highly con-

served subnetworks (Supplementary Section S2). When sequence in-

formation is used within NCF, nodes in this graph contain

sequence-based orthologs, i.e. highly sequence-similar proteins from

different networks. Since high sequence similarity often corresponds

to high functional similarity, and since our measures of biological

alignment quality are based on the notion of functional similarity

between aligned proteins, by design LNA is ‘biased’ towards result-

ing in high biological quality whenever sequence information is used

in NCF. However, LNA fails to produce biologically as good align-

ments as GNA when only topological information is used in NCF,

as discussed above.

NCV-GS3 F-PF

(a) (b)

Fig. 8. Overall ‘best method’ comparison of LNA and GNA for networks with

unknown true node mapping from four different species (i.e. yeast, fly, worm

and human) containing four different types of PPIs (i.e. Y2H1, Y2H2, PHY1 and

PHY2) with respect to (a) NCV-GS3 and (b) F-PF alignment quality measures,

for T, T&S, S and B. Each bar shows the percentage of the aligned network

pairs for which LNA is superior (black), GNA is superior (grey), or neither LNA

or GNA is superior (white). For detailed results, see Supplementary Figures

S11 and S12
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3.4 Running time method comparison
The results from Sections 3.2 and 3.3 compare the methods in terms

of alignment accuracy. It is also important to compare the methods

in terms of computational complexity, which we do here.

We run all NA methods on the same Linux machine with 64

CPU cores (AMD Opteron(tm) Processor 6378) and 512 GB of

RAM. Since some NA methods (all LNA methods, as well as

NETAL and WAVE GNA methods) can only run on one core

while the others (GHOST, GEDEVO and MAGNAþþ GNA

methods) can run on multiple cores, for fair comparison, we run

all methods on a single CPU core. An exception is GHOST, as its

implementation still uses two threads even when its code is config-

ured to use one core. We analyze the methods’ entire running

times, both for computing node similarities and for constructing

alignments. Also, we measure only running times needed to con-

struct alignments, ignoring the time needed to precompute node

similarities. We do the above when aligning worm and yeast PPI

networks of Y2H1 type (Table 1). We choose these networks be-

cause both are relatively small, and thus, the execution time for

the slowest of all methods on a single core is reasonable (within

one day). For any other network pair, running the slowest method

on a single core would take much longer. Here, we choose the

same value of a (a ¼ 0:5) for all NA methods, in order to fairly

compare their running times.

We find that for the entire running time, for T, all GNA methods

except GEDEVO and L-GRAAL run faster than the LNA methods;

for T&S, GNA methods run similarly to LNA methods. For S, LNA

is faster than GNA. For only the time needed to construct align-

ments, overall, LNA methods run faster than GNA methods for

each of T, T&S and S (Table 1 and Supplementary Section S9).

In addition to the above single-core analysis, we give each

method the best-case advantage, by running the parallelizable meth-

ods (GHOST, GEDEVO and MAGNAþþ GNA methods) on mul-

tiple cores; we use as many cores as possible with the given method

implementation, where 64 cores is the maximum imposed by our

machine. We show these results also in Table 1. As expected, run-

ning the three NA methods on multiple cores indeed speeds up the

methods’ running times. We do not necessarily see a linear decrease

in running time with the increase in the number of cores, as not all

parts of the given method are parallelizable.

Our results for the best-case, multi-core analysis are as follows.

For the entire running time, for T, GNA runs faster than LNA. For

T&S and S, unlike in the above single-core analysis where LNA is

comparable or superior to GNA, GNA is now always comparable

(if not even superior) to LNA. For only the time needed to construct

alignments, LNA mostly remains faster than GNA (Table 1 and

Supplementary Section S9).

3.5 Novel protein function predictions
Finally, we contrast LNA against GNA in the context of learning

novel protein functional knowledge. We identify alignments in

which the aligned network regions are significantly functionally

similar according to known functional knowledge. Then, from such

alignments, we predict novel functional knowledge in currently

unannotated network regions whenever such regions are aligned to

functionally annotated network regions (Section 2.5). Here, we

choose the same value of a (a ¼ 0:5) for all NA methods, in order to

fairly compare the prediction results between LNA and GNA.

We find that LNA and GNA produce very different predictions,

indicating their complementarity when learning new knowledge. Of

the predictions made by all (LNA or GNA) methods for all of T,

T&S and S, significant portion come from LNA only or GNA only,

and only 10.4% come from both LNA and GNA (Fig. 9(a)).

We zoom into the above results for each of LNA (Supplementary

Fig. S19) and GNA (Fig. 9(b)) to study the effect on the prediction

results of using different types of information in NCF. We aim to

test whether using some amount of topological information in NCF

Table 1. Representative running time comparison of the different NA methods, for each of T, T&S and S

Type Method Entire time (min) Only time needed to construct alignments (min)

T T&S S T T&S S

LNA NetworkBLAST – – 372.6 – – 7.3

NetAligner – – 368.2 – – 2.35

AlignNemo 375.5 450.3 370.0 4.9 0.4 0.4

AlignMCL 377.0 452.1 365.2 1.6 1.75 1.7

GNA GHOST† 78.2 438.5 435.3 7.5 9.5 10.7

GHOST* 16.8 381.8 378.1 4.2 6.5 6.4

NETAL 0.4 – – 0.4 – –

GEDEVO† 2296.0 – – 2290.6 – –

GEDEVO* 135.1 – – 129.7 – –

MAGNAþþ† 287.8 768.9 690.7 224.6 225.2 221.7

MAGNAþþ* 31.6 474.4 383.4 14.7 14.3 14.1

WAVE 17.15 450.8 369.7 2.9 3.1 2.8

L-GRAAL 432.9 378.3 374.0 61.0 6.4 2.1

Both the entire running times and only the running times for computing alignments are shown. For each method that is parallelizable (GHOST, GEDEVO and

MAGNAþþ), its single-core version is marked with the ‘†’ character, and its 64-core version is marked with the ‘*’ character. All other methods are run on a sin-

gle core. The ‘–’ character indicates that the given method cannot use the corresponding type of information in NCF and thus no result is produced.

Fig. 9. Overlap of unique novel protein function predictions between (a) LNA

and GNA over all of T, T&S and S combined, (b) T, T&S and S for GNA. See

Supplementary Figure S19 for overlap of unique novel protein function pre-

dictions between T, T&S and S for LNA
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(corresponding to T or T&S) can yield unique predictions that are

not captured when using only sequence information in NCF (corres-

ponding to S). If so, this would confirm that additional biological

knowledge is encoded in network topology compared to sequence

data. Indeed, this is what we observe, for each of LNA and GNA:

most predictions are unique to the different types of NCF informa-

tion. Thus, network topology and sequence information comple-

ment each other when learning new biological knowledge.

3.6 User-friendly GUI plus source code
We make publicly available our software for NA evaluation (http://

www.nd.edu/~cone/LNA_GNA). The software provides an intuitive

GUI and python source code for any platform. For details, see

Supplementary Section S10 and Figure S20.

4 Conclusions

In this paper, we systematically evaluate LNA against GNA. Our

findings provide guidelines for researchers to properly demonstrate

the superiority of a newly proposed NA (LNA or GNA) method.

That is, we recommend that researchers evaluate the topological

quality of a new NA method against state-of-the-art GNA (rather

than only LNA) methods, irrespective of the type of information

used in NCF, and that they evaluate the biological alignment quality

of the new NA method against state-of-the-art GNA (rather than

only LNA) methods when only T is used in NCF and against LNA

(rather than only GNA) methods when S is also used in NCF.

NA is expected to continue to gain importance as more biolo-

gical network data becomes available. This is because NA can be

used to complement the across-species transfer of functional know-

ledge that has traditionally relied on sequence alignment (Clark and

Kalita, 2014; Faisal et al., 2015). Thus, improvements upon the

existing body of work on NA might be beneficial. For example,

where GNA typically aims to ‘optimize’ topological alignment qual-

ity while LNA typically aims to ‘optimize’ biological alignment

quality, ‘hybrid’ approaches that are designed to inherit the best

from the two somewhat complementary worlds could lead to im-

proved across-species knowledge transfer. Further, most of the exist-

ing NA methods are limited to undirected networks, while many

biological network data are directed. So, NA methods that are able

to handle directed networks are needed. Moreover, approaches that

can align multiple networks at once might further improve the field

of biological network comparison, and we have witnessed valuable

recent efforts in this direction (Elmsallati et al., 2015; Faisal et al.,

2015).
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