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ABSTRACT Nontuberculous mycobacterial (NTM) pulmonary infections in people with
cystic fibrosis (CF) are associated with significant morbidity and mortality and are increas-
ing in prevalence. Host risk factors for NTM infection in CF are largely unknown. We
hypothesize that the airway microbiota represents a host risk factor for NTM infection. In
this study, 69 sputum samples were collected from 59 people with CF; 42 samples from
32 subjects with NTM infection (14 samples collected before incident NTM infection and
28 samples collected following incident NTM infection) were compared to 27 samples
from 27 subjects without NTM infection. Sputum samples were analyzed with 16S rRNA
gene sequencing and metabolomics. A supervised classification and correlation analysis
framework (sparse partial least-squares discriminant analysis [sPLS-DA]) was used to iden-
tify correlations between the microbial and metabolomic profiles of the NTM cases com-
pared to the NTM-negative controls. Several metabolites significantly differed in the NTM
cases compared to controls, including decreased levels of tryptophan-associated and
branched-chain amino acid metabolites, while compounds involved in phospholipid me-
tabolism displayed increased levels. When the metabolome and microbiome data were
integrated by sPLS-DA, the models and component ordinations showed separation
between the NTM and control samples. While this study could not determine if the
observed differences in sputum metabolites between the cohorts reflect metabolic
changes that occurred as a result of the NTM infection or metabolic features that contrib-
uted to NTM acquisition, it is hypothesis generating for future work to investigate host
and bacterial community factors that may contribute to NTM infection risk in CF.

IMPORTANCE Host risk factors for nontuberculous mycobacterial (NTM) infection in peo-
ple with cystic fibrosis (CF) are largely unclear. The goal of this study was to help identify
potential host and bacterial community risk factors for NTM infection in people with CF,
using microbiome and metabolome data from CF sputum samples. The data obtained in
this study identified several metabolic profile differences in sputum associated with NTM
infection in CF, including 2-methylcitrate/homocitrate and selected ceramides. These find-
ings represent potential risk factors and therapeutic targets for preventing and/or treating
NTM infections in people with CF.
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Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the
cystic fibrosis transmembrane conductance regulator (CFTR) gene and is character-

ized by impaired mucociliary clearance, recurrent respiratory infections, and progres-
sive lung function decline, leading to early mortality (1, 2). Currently, nontuberculous
mycobacterial (NTM) infections affect about 20% of individuals with CF, with some
studies estimating that rate to be as high as 32.7% (3). The prevalence rates of NTM
infection in CF are increasing worldwide by as much as 5% per year (4–7). While CFTR
dysfunction and structural lung disease (e.g., bronchiectasis) are known risk factors for
NTM infection, limited information is available on risk factors associated with NTM
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infections among people with CF (8). Epidemiologic studies revealed some general
trends in host NTM risk factors in CF, including higher lung function, a lower body
mass index, and older age (5, 6, 9–12). Despite identification of these trends, current
attempts to use patient-specific clinical data to determine NTM infection risk have
been largely inconclusive (13, 14).

Exposure to NTM arises from environmental sources, including soil and surfaces exposed
to water, such as tap water (15, 16). In ;40% of patients (17), NTM infections (i.e., one or
more airway cultures positive for NTM) result in a diagnosis of NTM pulmonary disease (i.e.,
signs and symptoms of clinical decline attributed to the NTM infection) (18, 19), which is fur-
ther associated with significant morbidity, health care-associated costs, and burdens of care
(20–22). In most cases, the NTM responsible for airway infection in CF are either
Mycobacterium abscessus complex or Mycobacterium avium complex, while other species,
such asMycobacterium simiae,Mycobacterium kansasii, andMycobacterium fortuitum, are iso-
lated in CF less frequently (5, 23, 24). While the increasing use of CFTR modulators has
helped treat the underlying cause of CF and increased life expectancy, CFTR modulators
have not yet shown sustained reductions in prevalence rates of CF pathogen infections,
including NTM (25–29). Continued elucidation of the underlying determinants of NTM infec-
tion in people with CF therefore remains a priority.

Recent studies in CF and non-CF bronchiectasis have identified associations between
airway microbiota, NTM infection, and NTM pulmonary disease (30, 31). The goal of this
study was to determine features of the airway microbiome and metabolome associated
with NTM infection in CF. We hypothesized that airway microbiome and metabolome differ
between people with CF with and without NTM infection and that these differences may
represent host NTM infection risk factors.

RESULTS
Clinical data. A total of 69 sputum samples were collected from 59 subjects; 42

samples were from 32 subjects belonged to the NTM case cohort (14 samples collected
before incident NTM infection [pre-NTM] and 28 samples collected following incident
NTM infection [post-NTM]), while 27 were from NTM-negative controls. A total of 10
subjects who were part of the NTM case group contributed two samples each, nine
subjects contributed one pre- and one post-NTM sample each, and one subject pro-
vided two post-NTM samples. The 27 control subjects contributed one sample each.

Subject demographics and characteristics are described in Table 1 (data based on
sample-specific comparisons except where indicated). The NTM cases and NTM-nega-
tive controls did not significantly differ in the majority of clinical characteristics, though
the NTM cases tended to be younger with better lung function (median age, 25.9 years,
ppFEV1 [percent predicted forced expiratory volume in 1 s], 63) compared to the con-
trols (median age, 31.6 years; ppFEV1, 46) (age, P = 0.41; ppFEV1, P = 0.13). Rates of
infection with other CF pathogens were similar between the groups. The majority of
the NTM cases (;60%) had M. avium complex infection; M. abscessus complex was the
second most common (Table 2). The minority of NTM cases were diagnosed with NTM
pulmonary disease (14.3% and 21.4% of the subjects in the pre-NTM and post-NTM
groups, respectively), and only three of the subjects were on treatment for NTM infec-
tion at the time of sample collection. While the majority of clinical variables also did
not differ between the clinical cohorts in the subset of 41 subjects that had 16S rRNA
gene sequencing in addition to metabolomics performed on the samples, the NTM
subjects were younger (20.68 versus 30.85 years) and had greater disease aggressive-
ness than the controls (age, P, 0.0001; disease aggressiveness, P = 0.018) (Table S1).

Metabolomics. The complete metabolic data set for all 902 biochemicals detected is
available at https://github.com/caverlyl/NTM_metabolomics. Multiple metabolites signifi-
cantly differed (i.e., P , 0.05 and q , 0.2) between the NTM case and control cohorts
(Table 3). The NTM case cohort had trends toward lower levels of itaconate (an anti-inflam-
matory metabolite involved in macrophage activation) (P = 0.07; q = 0.228), significantly
higher levels of C18 ceramides (sphingolipids involved in inflammation and cell signaling)
(P , 0.05; q , 0.2), and significantly decreased levels of 2-methylcitrate/homocitrate (a
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metabolite of the methylcitrate pathway) (P = 0.002; q = 0.111) (Fig. 1A to C). Samples from
the NTM case cohort also had decreases in certain tryptophan associated metabolites
(Fig. 1D), decreased branched-chain amino acid metabolites (Fig. 1E), and increases in other
compounds involved in phospholipid metabolism (P , 0.05; q # 0.172 for all mentioned
metabolites). Additionally, certain metabolites were also found to be significantly higher in
both the pre- and post-NTM sputum samples than the controls. These metabolites include
amino acids, such as serine and threonine; compounds involved in histidine, lysine, trypto-
phan, branched-chain, and aromatic amino acid metabolism; long-chain fatty acids and

TABLE 1 Subject demographics and clinical characteristics

Characteristic

No. (%)a for:

P value

NTM-positive subjects
(42 samples from 32
subjects)

NTM-negative controls
(27 samples from 27
subjects)

Age, yrs [median (IQR)]b 25.9 (20.2–37.8) 31.6 (23.5–39.3) 0.41
Sex (% male)c 40.6 59.3 0.19

CF genotypec

F508del homozygous 16 (50.0) 11 (40.7) 0.40
F508del heterozygous 13 (40.6) 11 (40.7)
Other 3 (9.4) 5 (18.5)

ppFEV1 [median (IQR)]b 63 (43–75) 46 (36–66) 0.13

Disease aggressiveness
Mild 18 (42.9) 17 (63.0) 0.22
Moderate 15 (35.7) 5 (18.5)
Severe 9 (21.4) 5 (18.5)

Acceptable BMIb 25 (59.5) 15 (55.6) 0.81

Current CF respiratory culturesb

P. aeruginosa 17 (40.5) 15 (55.6) 0.32
MRSA 11 (26.2) 4 (14.8) 0.37
MSSA 18 (49.2) 12 (44.4) 1
S. maltophilia 9 (21.4) 3 (11.1) 0.34
Achromobacter spp. 2 (4.8) 1 (3.7) 1
Burkholderia spp. 0 (0) 3 (11.1) 0.06
Aspergillus spp. 10 (23.8) 6 (22.2) 1

CF respiratory cultures,$1 positived

P. aeruginosa 26 (61.9) 20 (74.1) 0.43
MRSA 16 (38.1) 7 (25.9) 0.43
MSSA 25 (59.5) 19 (70.4) 0.45
S. maltophilia 19 (45.2) 5 (18.5) 0.04e

Achromobacter spp. 5 (11.9) 4 (14.8) 0.73
Burkholderia spp. 1 (2.4) 3 (11.1) 0.29
Aspergillus spp. 20 (47.6) 14 (51.9) 0.81

Diagnosis of CF-related diabetesb 18 (42.9) 5 (18.5) 0.04e

Chronic azithromycinb 24 (57.1) 21 (77.8) 0.12
Chronic inhaled antibioticsb 21 (50.0) 20 (74.1) 0.08
Inhaled steroidsb 33 (78.6) 16 (59.3) 0.11
CFTR modulatorsb 15 (35.7) 8 (29.6) 0.79

Clinical stateb

Baseline 18 (42.9) 13 (48.1) 0.48
Exacerbation 9 (21.4) 8 (29.6)
Treatment 11 (26.1) 4 (14.8)
Recovery 4 (9.5) 2 (7.4)

aExcept where noted otherwise. IQR, interquartile range.
bAt sample collection.
cPatient-specific comparison.
dWithin 2 years prior to sample collection.
eStatistically significant.
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lipid metabolites; and pyrimidine metabolism compounds. Last, a number of dipeptide
metabolites (e.g., leucylglycine, phenylalanylalanine, and valylglycine) were found to be sig-
nificantly higher in the control group than the post-NTM group (P , 0.05; q , 0.2 for all
listed metabolites). A complete list of all metabolites detected along with their statistical
comparisons and values can be found in Table S2.

Microbiome and metabolomic data integration. We next sought to identify rela-
tionships between the sputum metabolites and the bacterial community profiles in the
subset of samples (n = 43 samples and 41 subjects) that also had 16S rRNA gene
sequencing. To identify the microbial and metabolomics profiles that were most dis-
criminating between the NTM cases and controls, DIABLO was utilized to integrate the
metabolomics and microbial data into one supervised analysis. The sparse partial least-
squares discriminant analysis (sPLS-DA) ordinations show a clear separation between
NTM case and control samples (Fig. 2). To support the sPLS-DA results, analysis of var-
iance (ANOVA) with a Benjamini-Hochberg correction applied to the calculated q val-
ues was also used to test for differentially abundant features and identified multiple
metabolites that differed between the NTM case and control groups, with lactobacillic
acid displaying the smallest P value (P = 7.95E205; q = 0.072) (Table S3). The separa-
tion of the NTM case and control groups by ordination is further supported by high ac-
curacy (.90%) of classification on the sample set, with 21 of the 26 control samples
being classified as controls and 12 of the 17 NTM samples being classified as NTM
(Table S4). A supplemental PERMANOVA figure is also included to further support the
sPLS-DA results (Fig. S1). This separation is borderline significant, with a P value of
0.052. Based on the classification of the sample set, the individual ordinations perform
about as well as the combined ordination for classification (Fig. S2 and S3). Lastly, to
further support the DIABLO results, generalized linear model (GLM) analysis with

TABLE 3 Statistical summary of significantly altered biochemicals in sputummetabolites between subjects with and without NTM infectiona

Test Comparison

No. of biochemicals for which:

P £ 0.05 0.05< P< 0.10

Total
No. increased;
no. decreased Total

No. increased;
no. decreased

Welch’s two-sample t test Pre-NTM vs. ctrl 58 7; 51 73 11; 62
Post-NTM vs. ctrl 70 16; 54 79 17; 62
All NTM vs. ctrl 138b 21; 117 67 17; 50
Post-NTM vs. pre-NTM 14 8; 6 26 11; 15

Paired t test Post-NTM vs. pre-NTM 26 17; 9 31 17; 14
aBiochemicals (811 compounds of known identity [named biochemicals] and 91 compounds of unknown structural identity [unnamed biochemicals]) that achieved
statistical significance (P# 0.05), as well as those approaching significance (0.05, P, 0.10).

bThis value falls within the 20% FDR (q, 0.2).

TABLE 2 NTM-related clinical data

Parameter

No. (%) in group

Pre-NTM
(n = 14)

Post-NTM
(n = 28)

Speciesa

M. avium complex 9 (64.3) 16 (57.1)
M. abscessus complex 0 (0) 8 (28.6)
Other 5 (35.7) 5 (17.9)

Age (yrs) relative to initial positive NTM
culture [median (IQR)]

20.49 (20.80 to20.29) 0.81 (0.0083 to 2.21)

NTM pulmonary diseaseb 2 (14.3) 6 (21.4)
NTM therapyc 0 (0) 3 (10.7)
aPercentages may not total 100% due to mixed-species infections.
bInitiated antimycobacterial therapy within 2 years of sample collection (post-NTM group) or 2 years of first
positive NTM culture (pre-NTM group).

cAt time of sample collection.
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FIG 1 Metabolic profile of itaconate and various ceramides before and after NTM infection in CF patients and
in NTM-negative CF controls. Box plots displaying the scaled intensities of (A) itaconate, (B) ceramides, (C) 2-

(Continued on next page)
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LASSO regularization was utilized to identify variables that can be classified as impor-
tant predictors based on their coefficient value. As with the ANOVA, many of the iden-
tified features correspond to those detected utilizing the DIABLO analysis, specifically
Veillonella (coefficient value = 0.367) (Table S5).

To further identify correlations between the microbial and metabolic features that dif-
fered between the NTM case and control groups, we next looked at the first two compo-
nents of the sPLS-DA ordination. The two components of the sPLS-DA ordination are
made up of the features that provide the greatest separation of the classes. Each compo-
nent is made up of correlated microbial and metabolomic features (Fig. 3 and 4). For
example, the components in Fig. 3 are based on the x axis values of the metabolome
and microbiome in Fig. 2, while the components in Fig. 4 are constructed from the y axis
values of the metabolome and microbiome in Fig. 2. For component 1 (Fig. 3), some
of the microbial features are more tightly clustered with metabolic features; in the initial
split of the hierarchical clustering of features, three operational taxonomic units (OTUs)
(Veillonella, Atopobium, and Prevotella) formed a cluster, while the other two OTUs
(Prevotellaceae_unclassified and Alloprevotella) formed a second cluster that includes all of
the metabolites (Fig. 5A). For component 2 (Fig. 4), microbial and metabolic features are

FIG 2 NTM cases display significantly different microbial and metabolomic profiles from NTM-negative controls. Separate sPLS-DA (DIABLO) ordinations for
microbiome and metabolome (2 classes). Orange, NTM positive, blue, control.

FIG 1 Legend (Continued)
methylcitrate/homocitrate, (D) tryptophan metabolites, and (E) branched-chain amino acid metabolites
between subjects without NTM (Ctrl) and subjects with NTM infection (NTM Pre and Post). The box plots
display the minimum and maximum distribution, the limits of the upper and lower quartile, the median, mean
(1) and the extreme data points (*). Data were normalized to sample mass extracted, log transformed, and
compared between subjects with and without NTM using Welch’s two-sample t tests and adjustment for
multiple comparisons. *, P , 0.05 and q , 0.2.
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FIG 3 NTM infections in CF patients display significantly different microbial and metabolomic profiles from control samples when examining
combined ordinations of component 1. (A) Global overview of the correlation structure of the combined sPLS-DA (DIABLO) ordination
components of the microbiome and metabolome. (Left) Visual representation of split between groups by microbiome (y axis) and
metabolome (x axis) for component 1. Correlation between microbial and metabolomic aspects of component 1 is shown in the bottom left
panel. (Right) Loading weights indicating relative contribution of individual features to component 2. Colors indicate the class of the sample
with the maximum observed value for each feature. (B) Summary of component 1 of sPLS-DA (DIABLO) ordination.
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FIG 4 NTM infections in CF patients display significantly different microbial and metabolomic profiles from control samples when examining combined
ordinations of component 2. (A) Global overview of the correlation structure of the combined sPLS-DA (DIABLO) ordination components of the microbiome
and metabolome. (Left) Visual representation of split between groups by microbiome (y axis) and metabolome (x axis) for component 2. Correlation
between microbial and metabolomic aspects of component 2 is shown in the bottom left panel. (Right) Loading weights indicating relative contribution of
individual features to component 2. Colors indicate the class of the sample with the maximum observed value for each feature. (B) Summary of
component 2 of sPLS-DA (DIABLO) ordination.
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mixed fairly evenly across clusters (Fig. 5B). The five contributing features to the microbial
portion of component 2 are Haemophilus, Staphylococcus, Oribacterium, Streptococcus.1,
and Bacteroidetes_unclassified; Oribacterium is higher in the control group, while the other
four are higher in the NTM group (Fig. 4B). Note that based on the coloring in Fig. 3B, the
microbial features that increase with the component score are sometimes higher in con-
trol samples and other times higher in NTM samples (i.e., the colors of bars on the same
side vary). For example, Streptococcus.1, is higher in the NTM group despite the fact that it
trended in the same direction as Oribacterium, which is higher in the control group. This
may indicate that some of these less impactful OTUs are not particularly good features for
the classification of these samples. Instead, the value of this component for classification
may come primarily from the first three features. The metabolic portion of component 2
(Fig. 4B) is primarily driven by N-palmitoyl-sphingosine (d18:1/16:0), dimethylglycine, palmi-
toyl-sphingosine-phosphoethanolamine (d18:1/16:0), ceramide (d18:1/17:0, d17:1/18:0), and
3-hydroxyhexanoylcarnitine (1). Dimethylglycine and 3-hydroxyhexanoylcarnitine (1) are

FIG 5 Heat maps displaying the metabolomics and 16S microbiome features. Hierarchical clustering with Euclidean distances was applied to rows and
columns, as indicated by the dendrogram on the top and left sides. Values for each feature are standardized to zero mean and unit variance. Features
listed for component 1 (A) and 2 (B) of sPLS-DA (DIABLO).
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more highly expressed in control samples, while the other three are more highly expressed
in NTM samples (Fig. 4B).

Heat maps provide a detailed view of the features that make up each component and
how they separate the classes (Fig. 5A and B). Certain OTUs and metabolites that contribute
the most to the separation of classes are those that cluster near a feature from the other
omics data set. For example, in component 1, Prevotellaceae_unclassified and Alloprevotella
are closely clustered with metabolites based on their expression (Fig. 5A), and they all contrib-
ute significantly to component 1 (Fig. 3B and 5A). Haemophilus, Prevotellaceae_unclassified,
Staphylococcus, and Alloprevotella are also generally positively correlated with many of the
most discriminating metabolites (palmitoyl-sphingosine-phosphoethanolamine [d18:1/16:0],
ceramide [d18:1/17:0, d17:1/18:0], and N-palmitoyl-sphingosine [d18:1/16:0]) (Fig. 6A and B).
Similarly, the most discriminating feature for the metabolic component 1 (palmitoyl dihydros-
phingomyelin [d18:0/16:0]) is the metabolite that most resembles OTUs based on expression
(i.e., its contribution to component 1 is the largest of the listed metabolites) (Fig. 3B). The
other most discriminating OTUs are those that are negatively correlated with and cluster fur-
thest from the metabolites. These include, in order of decreasing contribution to component
1, Veillonella, Atopobium, and Prevotella (Fig. 3B). All of these OTUs (and Streptococcus.1) are
negatively correlated with multiple metabolic features (Fig. 6A and B). The metabolic features
in component 1 are all more highly expressed in the control group than the NTM group
(Fig. 3B).

Controls. Sequencing error rates based on analyses of mock communities ranged
from 0.000177 to 0.00412. No significant signal was detected from either the water
blanks or reagent controls that would suggest PCR or reagent contamination of spu-
tum samples (Fig. S4).

DISCUSSION

We identified metabolic patterns in sputum that significantly differ between people
with CF with and without NTM infection. The untargeted metabolomics analysis revealed
numerous metabolites that significantly differed between the NTM case and NTM nega-
tive-control subjects. These include metabolites that play important roles in the host
immune response and in bacterial proliferation. Identification of associations between spu-
tum metabolites and NTM infection, including metabolites in the NTM cohort prior to NTM
infection onset that differed from NTM-negative controls, is hypothesis generating for
future studies to address knowledge gaps in host risk factors for NTM infection in people
with CF.

DIABLO with a supervised analysis was utilized to integrate the results from the untar-
geted metabolomics on the subset of the patients and samples with 16S microbial
sequencing results. Analyzing the data using both an individual and combined omics
approaches, our sPLS-DA analysis displayed a clear separation between NTM-case and
control samples. In order to capture the full scope of features that separated the case
and control groups, the correlated microbial and metabolomic features were categorized
into two components which displayed significant correlations between selected bacterial
OTUs and metabolites.

Metabolites that were found to significantly or nearly significantly differ from control
and pre-NTM and post-NTM samples included itaconate, ceramides (C18 backbones), 2-
methylcitrate/homocitrate, and intermediates in the utilization of both aromatic and
branched-chain amino acid metabolism. The finding that itaconate, a compound produced
by macrophages following activation by lipopolysaccharides (LPS) and/or interferons that
also has anti-inflammatory properties, is lower in the NTM case group (both pre- and post-
NTM infection) is especially interesting (32, 33). Studies have found that itaconate can in-
hibit Mycobacterium tuberculosis proliferation by inhibiting the glyoxylate shunt enzyme,
isocitrate lyase (ICL) (34–36). However, other studies have shown that M. tuberculosis has
the ability to either digest or dissimilate large quantities of itaconate into pyruvate and ace-
tyl coenzyme A (acetyl-CoA) (33, 37, 38). Importantly, itaconate is able to inhibit the growth
of M. tuberculosis when the bacterium is in minimal medium supplemented with short-
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FIG 6 Circos plot of correlations between microbiome and metabolome. Positive and negative correlations
of (A) 0.3 correlation cutoff and (B) 0.6 correlation cutoff, identified between microbial OTUs and
metabolites of components 1 and 2 of sPLS-DA. Microbial OTUs are labeled by rank abundance and
taxonomic classification. Labels: A, palmitoyl sphingosine-phosphoethanolamine (d18:1/16:0); B, ceramide
(d18:1/17:0, d17:1/18:0); C, glycosyl-N-palmitoyl-sphingosine (d18:1/16:0); D, dimethylglycine; E, 3-hydroxy-
hexanoylcarnitine (1); F, xanthine; G, ascorbic acid 2-sulfate; H, palmitoyl dihydrosphingomyelin (d18:0/16:0);
I, hexanoylcarnitine (C6); J, palmitoyl-dihomo-linolenoyl-glycerol (16:0/20:3n3 or 6).
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chain fatty acids (SCFAs), compounds which are released by anaerobic bacteria in the CF
airway (39). While data on the interactions of NTM and itaconate are limited and beyond
the scope of this study, we hypothesize that a similar inhibitory effect may occur.

Selected ceramides were also increased NTM case group (both pre- and post-NTM
infection) compared to the control group. Currently, data on interactions between
NTM infections and the acid sphingomyelinase/ceramide system are lacking (40). One
study by Utermöhlen et al. demonstrated that acid sphingomyelinase-deficient mice
are more resistant to lethal infections with M. avium than wild-type mice (41).
Ceramides in CF are generally important for the regulation of cytokines and inflamma-
tion, but as with itaconate, some conflicting evidence exists (42, 43). Some studies
have found that ceramides accumulate in the CF airways, which in turn causes inflam-
mation and an increased susceptibility to bacterial infections (42). Conversely, other
studies have found that the increased presence of ceramides in CF patients helps to
reduce overall inflammation and cytokine production in the lungs (44). In mice, for
example, one study found that CF mice had elevated levels of peribronchial macro-
phages and neutrophils, along with increased concentrations of inflammatory markers
such as interleukin 1 (IL-1) and the mouse IL-8 homolog, KC, in comparison with wild-
type mice. Once the ceramide levels were normalized by genetic inhibition of acid
sphingomyelinase (an enzyme responsible for catalyzing the breakdown of sphingo-
myelin to ceramide and phosphorylcholine), all of the aforementioned molecular
inflammatory markers were normalized as well (44). While the reason for the rise in cer-
amide levels is unclear, studies have established that ceramide regulation in CF
patients is dysregulated, and that multiple stimuli, such as UV irradiation, heat, cyto-
kines, oxidative stress, and LPS, can generate ceramides (43).

The decrease in the metabolite 2-methylcitrate/homocitrate is also an intriguing
result, as the methylcitrate pathway is the main pathway involved in propionate utiliza-
tion (45). An increasing body of evidence has demonstrated that mycobacteria utilize
fatty acids during infection (46, 47). Propionate, a SCFA, can serve as a nutrient and car-
bon source for many different species of bacteria; however, at high enough levels; the
metabolite is toxic, highlighting the importance of the methylcitrate pathway (45–47).
Moreover, the SCFA is a common by-product of bacterial fermentation, and with the
observed increase in anaerobic bacteria preceding NTM infection, this suggests that
propionate is an essential metabolite for NTM in the CF airway (45).

Observed decreases in aromatic and branched-chain amino acids (BCAAs) in the NTM
case group are an expected finding, as both of these types of amino acids are essential for
the growth of Mycobacterium (48, 49). Mycobacteria, like many other organisms, produce
aromatic amino acids through the shikimate pathway, with the enzyme 3-deoxy-D-arabino-
heptulosonate 7-phosphate synthase (DAH7PS) catalyzing the first step of the reaction (50,
51). However, mycobacteria possess only one isozyme of DAH7PS, which can be controlled
by combinations of aromatic amino acids; this allows the DAH7PS to have a tunable
response to changing metabolic demands when in the presence of all three aromatic
amino acids (51). BCAA availability in the lung is extremely limited, and given the impor-
tance of these compounds in mycobacterial growth, it is not surprising that the levels drop
even further in the presence of NTM species (49, 52).

In the analysis of component 1, all of the correlated metabolites that contributed to
component 1 were significant only in the control group. However, certain OTUs signifi-
cantly correlated with the NTM positive cohort; these OTUs include obligate and facul-
tative anaerobic genera, such as Veillonella, Atopobium, and Prevotella, while an unclas-
sified Prevotellaceae bacterium and Alloprevotella correlated with the control cohort.
Additionally, an interesting clustering trend was observed when examining the heat
maps associated with component 1: the two OTUs correlated with the control group
(unclassified Prevotellaceae and Alloprevotella) both clustered with the metabolites that
were identified as significant in this component analysis. While the reason for this is
unclear, it is consistent with our prior research. Using a different cohort of subjects
with CF and NTM infection, we identified an overall increasing relative abundance of
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Veillonella, Prevotella, and Rothia across longitudinal samples leading to incident NTM
infection in subjects subsequently diagnosed with NTM pulmonary disease, compared
to subjects without NTM pulmonary disease (31).

The results observed for component 1 suggest that the loss of significantly corre-
lated metabolites could be a predisposing factor for NTM infection. For example, the
inclusion of ascorbic acid 2-sulfate (a metabolite of vitamin C) in the control group is
an interesting finding, as vitamin C has been shown to have antimicrobial properties
against M. tuberculosis (53, 54). Additionally, inclusion of the metabolites hexanoylcar-
nitine and xanthine in the control group is also an intriguing finding, as carnitine com-
pounds can be used as bacterial nutrients, while the purine compound xanthine has
been shown to be a viable nitrogen source for M. smegmatis (55, 56). Other metabo-
lites, however, such as palmitoyl-dihomo-linolenoyl-glycerol have less well defined
roles. Whether the reduction of the aforementioned metabolites is leading to changes
in the microbial community of the CF airway, thus creating a niche for NTM bacteria to
proliferate or whether the changes in the microbial community lead to changes in the
metabolome (or a mix of both) remains to be clarified.

For the component 2 analysis, bacterial OTUs such as Haemophilus, Staphylococcus,
Streptococcus, and unclassified Bacteroidetes (the phylum to which Prevotella belongs)
were all correlated with NTM infection, while Oribacterium was correlated with the con-
trol group. The findings for Haemophilus, Streptococcus, and Bacteroidetes match what
was reported in our previous publication, while the correlation with Staphylococcus dif-
fers from it (31). A likely explanation for this discrepancy is that this analysis also
included metabolites from the component analysis, which resulted in significantly dif-
ferent correlation patterns. Furthermore, the metabolites that are significantly corre-
lated may contribute substantially to the growth of the bacterial OTUs in question. As
with the component 1 analysis, a carnitine metabolite was again correlated with the
control group along with dimethylglycine, a derivative of the amino acid glycine, and
the bacterium Oribacterium, a member of the family Lachnospiraceae, which are some
of main producers of short-chain fatty acids in the gut (57). The correlation of dimethyl-
glycine with the control group is an interesting finding, as it very likely could serve as a
nitrogen source for NTM, given the large amount of flexibility some mycobacteria (spe-
cifically M. tuberculosis) have in nitrogen utilization (58, 59). The findings from both
component analyses, displaying distinct differences between the cases and controls
that do not differ in bacterial composition but do in metabolic function and in micro-
bial interactions, fit with the climax-attack model of CF infections (60). Future longitudi-
nal studies will likely aid in elucidating mechanistic links between NTM, the CF airway
microbial community, and the metabolome.

While our study did reveal significant differences between in sputum metabolites and
microbiome between people with CF with and without NTM infection, we acknowledge
study limitations. This was a relatively small, single-center, cross-sectional study which did
not allow the establishment of temporal or cause-and-effect relationships. Samples had
variability in the timing of sample collection in relation to NTM infection, and some sub-
jects contributed multiple samples. While the NTM case and control groups overall did not
significantly differ with regard to the majority of clinical variables known to be associated
with airway microbiota, we acknowledge the possibility that any identified differences in
the microbiota reflected unmeasured clinical variables, rather than NTM infection. Other
important factors that may have contributed to the observed differences in the metabolo-
mics profiles between post-NTM and control subjects could be the effects of NTM on the
resident microbial community, NTM-directed therapeutics (though only three of the sam-
ples were collected during NTM treatment), and the aggressive antibiotics (not NTM
directed) that are often given to people with CF with new NTM infections as part of the
protocol to determine if NTM pulmonary disease (i.e., clinical decline attributed to the NTM
infection, rather than other CF comorbidities) is present.

We acknowledge that the 20% false discovery rate (FDR) of our metabolomics anal-
ysis creates a possibility for false positives in some of the 138 metabolites found to be
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significantly different in the NTM versus control analysis, despite the q values meeting
the FDR. The potential for false discovery can also be applied to the DIABLO analysis,
despite the use of Benjamini-Hochberg-corrected q values. Additionally, while the ROC
curves displayed a strong separation by components and our sPLS-DA approach pro-
duced high accuracy and classification of our data set, our sample size did not allow
separate training and validation sets, and thus, these findings will need validation in in-
dependent cohorts. Future studies will take these limitations into consideration, allow-
ing increased depth and power when analyzing the differences in the microbial com-
munities of CF patients with and without NTM infection. Last, tests with training
samples and external validation are needed to determine how much nonoverlapping
information is contained in the two omics data sets.

While it is not clear at this time how these findings apply to other individuals with
CF, or to NTM infections in other lung diseases, the data found in this study mirror
what has been observed in previous studies, namely, that certain anaerobic bacteria
are overrepresented in patients with NTM infection, and extends these observations to
also include differences in sputum metabolites associated with NTM infection.
Identified differences in these metabolites associated with NTM infection are hypothe-
sis generating for their potential role in susceptibility to NTM infections and will be the
subject of future studies. An increased understanding of the relationship and interac-
tions between the airway microbiota and metabolome in the contexts of bacterial
interactions and host response will be critical to continuing to advance understanding
of the pathophysiology of NTM infections in individuals with CF, and ultimately to
direct development of novel biomarkers and therapeutic approaches.

MATERIALS ANDMETHODS
Subjects, samples, and clinical data. Sputum samples were collected from subjects diagnosed with

CF and enrolled in a long-term, observational study of CF airway microbiota at Michigan Medicine with
approval from the Institutional Review Board (first approved 22 August 2016). Subjects who had under-
gone organ transplantation were excluded. Spontaneously expectorated sputum samples were col-
lected in sterile containers at routine clinic visits. Samples were placed immediately on ice, then ali-
quoted, and frozen at280°C in a biorepository within 4 h.

Clinical data were obtained through Michigan Medicine electronic medical records. NTM subjects
were defined as subjects who had one or more respiratory samples that were acid-fast bacillus (AFB) cul-
ture positive for an NTM species. Sputum samples collected both before (pre-NTM) and after (post-NTM)
incident NTM infection were selected from the biorepository. NTM-negative controls were defined as
subjects who had never had a positive AFB culture, had a negative AFB culture at the time of sample col-
lection, and had at least one negative AFB culture following the time of the included NTM-negative sam-
ple. All eligible NTM cases and NTM-negative controls from a 3-year period (2016 to 2019) were selected
from the biorepository.

Clinical data collected included sex, CFTR genotype, diagnosis of CF-related diabetes, age, percent pre-
dicted forced expiratory volume in 1 s (ppFEV1), medication history, and airway culture results. A positive cul-
ture at the time of sample collection and a history of a positive culture within 2 years prior to sample collec-
tion were recorded for the following organisms: Pseudomonas aeruginosa, Stenotrophomonas maltophilia,
Achromobacter xylosoxidans, methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible S. aur-
eus (MSSA), Burkholderia spp., and Aspergillus spp. Treatment at the time of sample collection was determined
for the following pharmacological therapies: chronic azithromycin, inhaled antibiotics (e.g., tobramycin), CFTR
modulators, and inhaled steroids.

Clinical state at the time of sample collection was categorized using the baseline (B), exacerbation
(E), treatment (T), and recovery (R) states as previously described (61). Aggressiveness of CF disease was
categorized as mild, moderate, or severe by comparing ppFEV1 history preceding sample collection to a
previously published age and lung function-dependent algorithm (62). Body mass index (BMI) was cate-
gorized as indicating risk for pediatric patients if they were below the 50th percentile on the CDC 2- to
20-years-old charts for appropriate age and sex, for adult males if the BMI was less than 23 kg/m2, and
for adult females if the BMI was less than 22 kg/m2 (63, 64).

Metabolomics. Sputum samples were shipped on dry ice for short-chain fatty acid (SCFA) measure-
ments and untargeted metabolomics (ultrahigh-performance liquid chromatography–tandem mass
spectroscopy) at Metabolon, following their standard procedures. Samples were maintained at 280°C
until processed. For SCFA analysis, sputum samples were spiked with stable labeled internal standards,
homogenized, subjected to protein precipitation with an organic solvent, and then analyzed by liquid
chromatography-tandem mass spectrometry (LC-MS/MS) for eight short-chain fatty acids: acetic acid
(C2), propionic acid (C3), isobutyric acid (C4), butyric acid (C4), 2-methyl-butyric acid (C5), isovaleric acid
(C5), valeric acid (C5), and caproic acid (hexanoic acid; C6). For untargeted metabolite measurements,
samples were prepared using the automated MicroLab STAR system from Hamilton Company. All
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methods utilized a Waters Acquity ultraperformance liquid chromatograph (UPLC) and a Thermo
Scientific Q-Exactive high-resolution/accurate mass spectrometer interfaced with a heated electrospray
ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. Raw data
were extracted, peak identified, and QC processed using Metabolon’s hardware and software.
Compounds were identified by comparison to library entries of purified standards or recurrent unknown
entities. A more detailed description of the metabolomics methods can be found in Text S1.

16S rRNA gene sequencing. A subset of samples with sufficient volume available following metabolo-
mics had airway microbiotas also characterized with 16S rRNA gene sequencing. Sputum samples were
thawed on ice and then homogenized with 10% Sputolysin (MilliporeSigma, Burlington, MA, USA). DNA
extractions for sputum samples and reagent controls were performed with mechanical disruption by bead
beating followed by incubation with bacterial lysis buffer (Roche Diagnostics Corp., Indianapolis, IN, USA),
lysostaphin (MilliporeSigma, Burlington, MA, USA), and lysozyme (MilliporeSigma, Burlington, MA, USA), fol-
lowed by treatment with proteinase K (Qiagen, Germantown, MD, USA) as previously described (65). DNA
were extracted and purified using a MagNA Pure nucleic acid purification platform (Roche Diagnostics Corp.,
Indianapolis, IN, USA) according to the manufacturer’s protocol. Prior studies demonstrated stability of bacte-
rial DNA in CF sputum stored at280°C over a 15-year period (66).

The V4 region of the bacterial 16S rRNA gene was amplified using touchdown PCR with barcoded
dual-index primers. The touchdown PCR cycles consisted of 2 min at 95°C, followed by 20 cycles of 95°C
for 20 s, 60°C (starting from 60°C, the annealing temperature decreased 0.3°C each cycle) for 15 s and
72°C for 5 min, then followed by another 20 cycles of 95°C for 20 s, 55°C for 15 s, and 72°C for 5 min, and
a hold at 72°C for 10 min. The amplicon libraries were then normalized and sequenced on Illumina
sequencing platform using a MiSeq reagent kit V2 (Illumina, San Diego, CA, USA). The final load concen-
tration was 4 to 5.5 pM with a 15% PhiX spike to add diversity. Sequencing of the V4 region of the bacte-
rial 16S rRNA gene was performed by the University of Michigan Microbial Systems Molecular Biology
Laboratory as previously described (67).

16S sequences were processed with mothur (v.1.43.0) according to the MiSeq standard operating
procedure (SOP) (https://mothur.org/wiki/miseq_sop/; accessed March 2020) (68). mothur “shared” and
taxonomy files were loaded into phyloseq (1.26.0) in R (3.5.1) for initial processing. Silva v132 (69) was
used for the alignment step, and RDP Classifier v16 (70) was used for taxonomic classification. All other
mothur settings were set according to the SOP. Samples with fewer than 500 reads and OTUs with aver-
age relative abundances less than 0.1% across all samples were removed prior to downstream analyses
(2 samples excluded) (71).

Data analyses. (i) Clinical data. To examine differences between clinical and demographic variables
in the NTM and control sample cohorts, numeric variables were analyzed using Welch’s two-sample
t test, and categorical and binary variables were analyzed using Fisher’s exact test in base R (3.6.1).

(ii) Metabolomics data. For the Metabolon analysis of the complete metabolomics data set, untar-
geted metabolomics data were processed and analyzed by Metabolon. Specifically, the data were scaled
by mass utilized (i.e., the masses of the metabolites in question were used as a scale to establish a high
and low end) and then rescaled to set the median to 1. SCFA data were scaled by their root mean square
by the base R function “scale” with “center=FALSE.” q values were calculated for the complete metabolo-
mics data set (all NTM cases compared to NTM-negative controls) using the methods of Storey and
Tibshirani (72). The FDR was calculated as the q value that corresponded with the lowest significant
P value (P , 0.05), resulting in a FDR of 20% for the complete metabolomics data set. Missing values
were imputed with the minimum value for all metabolites.

(iii) Microbiome and metabolome data integration. For the subset of samples that had micro-
biome data in addition to metabolomics data, the metabolomics data were filtered to remove low var-
iance features using the function nearZeroVar from the caret package (73). Metabolite values were log
transformed, and the OTU data set was centered log-ratio (CLR) transformed, taking the log of the ratio
between observed frequencies (i.e., data points) and their geometric mean. This was done because the
transformation makes the data symmetric and linearly related and places the data in a log-ratio coordi-
nate space (74, 75). The multiblock discriminant analysis was performed using the DIABLO (76) sPLS-DA
framework from the mixOmics R package. The design value was set at 0.5 to achieve an even balance
between maximizing correlation between omics data sets and maximizing the separation between
groups (77). One advantage of sPLS-DA is that it shows the correlations (in the context of this analysis,
correlation refers to what is described by the DIABLO group, which is essentially an approximated
Pearson correlation calculated from the PLS analysis (78)) between omics data sets that are most rele-
vant for the separation of our groups of interest. Furthermore, sPLS-DA performs a feature selection
unlike traditional PLS-DA, resulting in smaller models that are easier to interpret and more generalizable
(76). The tune.splsda function was used on each omics data set to determine the optimal number of fea-
tures and components. In each case, the optimal number of features and components is 1. However,
due to the exploratory natures of this study, we chose to set the number of components at 2.

To complement the sPLS-DA results and guide the choice of number of features per component, we
used a generalized linear model (GLM) analysis utilizing a cross-validated LASSO approach for feature
selection. To generate the GLM, all of the microbial and metabolomic features were entered into to the
cv.glmnet function with the following options: a = 1, family = “binomial,” and type.measure = “class.”
The model that gave minimum mean cross-validated error was chosen using the s = “lambda.min”
option with the coef() function in glmnet. All ordinations, heat maps, and correlation results were gener-
ated using the plotIndiv, plotDiablo, cimDiablo, and circoPlot functions of the mixOmics R package with
the exception of the of the principal-coordinate analysis (PCoA) and permutational multivariate analysis
of variance (PERMANOVA), which were done using the vegan, ape, and phyloseq R packages (76, 79).
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q values for the combined microbiome and metabolome data sets were calculated using the Benjamini-
Hochberg method.

Reproducibility. Mock community DNA (ZymoBIOMICS microbial community DNA standard) was
sequenced to determine sequencing error rates. Water controls were included to assess for PCR contam-
ination, and reagent controls were sequenced to assess for DNA contamination of sputum samples.

Data availability.Metabolomics data, mothur log file, OTU tables with taxonomy, and analytic code
are available at https://github.com/caverlyl/NTM_metabolomics. Raw sequencing data are available at
NCBI (BioProject ID PRJNA594304).
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