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Abstract
Quantitative magnetic resonance imaging (MRI) techniques have been developed as imaging bio-

markers, aiming to improve the specificity of MRI to underlying pathology compared to conven-

tional weighted MRI. For assessing the integrity of white matter (WM), myelin, in particular, several

techniques have been proposed and investigated individually. However, comparisons between

these methods are lacking. In this study, we compared four established myelin-sensitive MRI tech-

niques in 56 patients with relapsing–remitting multiple sclerosis (MS) and 38 healthy controls. We

used T2-relaxation with combined GRadient And Spin Echoes (GRASE) to measure myelin water

fraction (MWF-G), multi-component driven equilibrium single pulse observation of T1 and T2

(mcDESPOT) to measure MWF-D, magnetization-transfer imaging to measure magnetization-

transfer ratio (MTR), and T1 relaxation to measure quantitative T1 (qT1). Using voxelwise Spearman

correlations, we tested the correspondence of methods throughout the brain. All four methods

showed associations that varied across tissue types; the highest correlations were found between

MWF-D and qT1 (median ρ across tissue classes 0.8) and MWF-G and MWF-D (median ρ = 0.59).

In eight WM tracts, all measures showed differences (p < 0.05) between MS normal-appearing WM

and healthy control WM, with qT1 showing the highest number of different regions (8), followed by

MWF-D and MTR (6), and MWF-G (n = 4). Comparing the methods in terms of their statistical sen-

sitivity to MS lesions in WM, MWF-D demonstrated the best accuracy (p < 0.05, after multiple

comparison correction). To aid future power analysis, we provide the average and standard devia-

tion volumes of the four techniques, estimated from the healthy control sample.
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1 | INTRODUCTION

Quantitative magnetic resonance imaging (MRI) techniques that are

used as markers of white matter (WM) and myelin content include

magnetic resonance relaxation-based and magnetization transfer-

based methods. Both approaches provide WM contrast related to

myelin, but are predicated on different assumptions and models, and

may not directly correspond to each other (Alexander et al., 2011; De

Santis, Drakesmith, Bells, Assaf, & Jones, 2014). Diseases of WM, and

multiple sclerosis (MS) in particular have motivated the search for

quantitative and specific MRI measures of myelin content as measures

of treatment response and remission (Filippi et al., 2012). Although

conventional clinical MRI protocols for monitoring MS include qualita-

tive T1 and T2 weighted images, these lack specificity to the underly-

ing pathology and are difficult to compare across imaging sites and

scanners (Barkhof, Calabresi, Miller, & Reingold, 2009). Quantitative

MRI can supplement standard clinical imaging by providing detection

of changes within normal appearing tissue, as well as biological char-

acterization of these alterations (MacKay and Laule, 2016).

Multicomponent relaxation-based techniques model tissue water

compartments by observing the difference in relaxation times. For

example, water trapped between myelin bilayers and the water inside

or outside of axons have different T1 and T2 relaxation times, and by

measuring the relative signal contribution from each component, a

measure such as the myelin water fraction (MWF) can be obtained

(Deoni, Rutt, Arun, Pierpaoli, & Jones, 2008; MacKay et al., 2006). The

MWF is positively correlated with myelin content, and therefore

lower MWF is thought to reflect a decrease in myelin content (Laule

et al., 2008). Quantification of the macromolecular content as a proxy

for myelin can be performed using the magnetization transfer ratio

(MTR; Filippi et al., 1995; Schmierer, Scaravilli, Altmann, Barker, &

Miller, 2004), the more advanced quantitative magnetization transfer

(qMT; Schmierer et al., 2007), or the macromolecular tissue volume

(MTV; Mezer et al., 2013). A decrease in MTR is commonly inter-

preted as a decrease of myelin. T1-relaxation time (commonly referred

to as quantitative T1, qT1) is also found in the literature as a quantita-

tive biomarker for pathology (Margaret Cheng, Stikov, Ghugre, &

Wright, 2012), with increased qT1 associated with myelin loss.

Many of these techniques have been investigated in MS (Harrison

et al., 2013; Kitzler et al., 2012; Kolind et al., 2012; Ontaneda, Thomp-

son, Fox, & Cohen, 2016). For multi-echo techniques, Laule et al. (2006,

2008) demonstrated strong associations across tissue types between

histological staining of myelin and the T2-relaxation-based MWF

obtained with a multi-echo spin echo sequence. The acquisition can be

achieved in clinically feasible times using a combined GRadient And

Spin Echo (GRASE) sequence (Prasloski et al., 2012); the MWF

measurement obtained using a GRASE is here termed MWF-G. An

alternative, and more recently, multicomponent relaxation technique is

mcDESPOT, from which the fraction of signal attributed to myelin

water (here called MWF-D), similar to MWF-G, can be obtained. To

date, there is no human ex vivo histology validation of mcDESPOT.

However, Hurley et al. (2010) used the shaking pup preclinical model

of dysmyelination and showed that MWF-D was sensitive, at the

very least, to an absence of myelin. Wood et al. (2016) performed

whole-brain mcDESPOT in a cuprizone mouse model and found a

decrease in MWF-D, related to the expected demyelination. MTR has

been validated against postmortem tissue using histopathology, show-

ing good sensitivity to myelin and demyelination (Schmierer et al.,

2004). However, since MTR measures the interaction between macro-

molecular protons and bulk water, it is also related to the total water

content of tissue and therefore, in cases of WM injury, edema, and

inflammation can obscure the myelin-related signal (Gareau, Rutt, Kar-

lik, & Mitchell, 2000; Vavasour, Laule, Li, Traboulsee, & MacKay, 2011).

In addition, some postmortem studies have found an even larger associ-

ation between MTR and axonal count (Mottershead et al., 2003; Van

Waesberghe et al., 1999). Single component measures of qT1 have also

been shown to correlate strongly with histological staining for myelin

(Schmierer et al., 2007). However, interpretations of changes in T1 are

confounded by the known relationship between 1/T1 and 1/water

content (Fatouros, Marmarou, Kraft, Inao, & Schwarz, 1991; Gelman,

Ewing, Gorell, Spickler, & Solomon, 2001; Kamman, Go, Brouwer, &

Berendsen, 1988; Rooney et al., 2007). Thus, it is difficult to deduce

whether changes in T1 are due to demyelination and/or changes in total

water content.

The common feature of most of these validation studies is that

they have shown that the quantitative image contrast is similar

between myelin-sensitive techniques, though they do not correspond

only to the amount of myelin present. Even histological stains, such as

luxol fast blue, provide a contrast; the optical density of these con-

trasts does not in itself provide a quantification of tissue content

(Stüber et al., 2014). In general, strong correlations across tissue types

(in the brain typically white and gray matter) indicate that two

methods have similar tissue contrast, an important precondition.

However, the level of consistency between quantities from the differ-

ent methods is unclear.

In this study, we investigated the cross-subject similarity between

four prominent quantitative MRI techniques that are associated with

WM content: Multi-echo T2 relaxation, mcDESPOT, MTR, and qT1.

The techniques were compared against each other to determine which

technique best separates tissue between MS patients and healthy

controls. Finally, we investigated the relative sensitivity of each of

these techniques to lesional WM in individual patients with MS.

2 | METHODS

2.1 | Participants

The study cohort consisted of 56 patients with relapsing–remitting

MS (19:37 male:female; mean age = 37 years, range = 20–55; median

O'MUIRCHEARTAIGH ET AL. 2105



EDSS = 2.0, EDSS range = 0.0–4.0) recruited as part of a clinical trial

of ocrelizumab versus interferon beta 1a (OPERA II; NCT01412333)

(Hauser et al., 2017), and 38 age and gender-matched healthy controls

(13 male; mean age = 34, range = 20–53). As described in Hauser

et al. (2017), to be eligible to take part in the study, MS patients were

required to have at least two undocumented clinical relapses within

the previous 2 years or one clinical relapse in the year before screen-

ing. MRI data needed to show MS consistent abnormalities and no

neurological worsening over the 30 days prior to screening. In addi-

tion, participants were excluded if they had a disease duration of over

10 years.

Data presented here were acquired at baseline, prior to the initia-

tion of treatment. Details of the patient and control cohort are pre-

sented in Table 1. Thirty-two MS patients did not have an MTR scan

due to time constraints, thus 24 of the 56 patients had all four MRI

techniques acquired (MS Patients Subset in Table 1). This subset of

24 was used when comparing imaging methods in the MS group only.

This study was approved by the University of British Columbia Clinical

Research Ethics Board and all subjects provided written informed con-

sent before participating in the study.

2.2 | MRI data acquisition

All MR imaging was performed on a Philips 3T Achieva scanner (Best,

The Netherlands) using an eight-channel head RF array coil. For locali-

zation, a true midline sagittal scan (TR = 1900 ms, TI = 800 ms, TE =

10 ms) and a quick T2-weighted scan (TR = 2,792 ms, TE = 90 ms,

60 axial slices acquired at 3 mm slice thickness, in-plane voxel size =

1 × 1 mm2, field of view [FOV] = 250 × 188 × 180 mm3) were per-

formed. A 3D-T1-weighted gradient echo scan (TR = 28 ms, TE = 4ms,

60 axial slices acquired at 3 mm slice thickness, in-plane voxel size =

1 × 1 mm2, flip angle = 27�, FOV = 250 × 188 × 180 mm3) was also

acquired. For lesion identification, a proton density weighted (PDw)

(TR = 2000 ms, TE = 10 ms, 60 axial slices acquired at 3 mm slice

thickness, in-plane voxel size = 1 × 1 mm2, FOV = 250 × 200 × 180

mm3, echo train length [ETL] = 3), a T2-weighted (TR = 6,100 ms,

TE = 80 ms, 60 axial slices acquired at 3 mm slice thickness, in-plane

voxel size = 1 × 1 mm2, FOV = 250 × 188 × 180 mm3, ETL = 8), and

a FLAIR (TR = 9,000 ms, TE = 80 ms, TI = 2,500 ms, 60 axial slices

acquired at 3 mm slice thickness, in-plane voxel size = 1 × 1 mm2,

FOV = 250 × 188 × 180 mm3, ETL = 12) sequence were collected.

Table 2 summarizes all pulse sequence parameters.

2.3 | Quantitative imaging sequences

2.3.1 | GRASE

Multi-echo T2 relaxation was measured using a GRASE sequence

(TR = 1,000 ms, TE = 10 ms, ETL = 32, 20 axial slices acquired at

5 mm slice thickness and reconstructed to 40 slices at 2.5 mm slice

thickness, slice oversampling factor = 1.3, in-plane voxel size =

1 × 1 mm2, FOV = 230 × 192 × 100 mm3, EPI factor = 3) (Prasloski,

Rauscher, et al., 2012).

2.3.2 | mcDESPOT

The mcDESPOT protocol was composed of a series of sagittally ori-

ented spoiled gradient recalled echo (SPGR) and balanced steady-state

free procession (bSSFP) acquisitions across a range of flip angles (α) as

well as an inversion-recovery-prepared SPGR (IR-SPGR) scan for cor-

rection of flip angle inhomogeneity (Deoni, 2011). A common isotropic

voxel size of 1.7 × 1.7 × 1.7 mm3 and field of view of 220 × 160 ×

220 mm3 were used for all images. Scan parameters for the individual

sequences were: SPGR: TR = 6.5 ms; TE = 3.6 ms; α = [2, 3, 4, 6, 9,

13, 18]�, bSSFP: TR = 5.8 ms; TE = 2.9 ms; α = [7, 11, 15, 19, 24,

30, 47]�, IRSPGR: TR = 6.5 ms; TE = 3.2 ms; α = 5�; TI = 450 ms; for

the bSSFP volumes, all flip angles were acquired with phase-cycling

patterns of 0� and 180� for correction of off-resonance effects

(Deoni, 2011).

2.3.3 | Magnetization transfer imaging

The magnetization transfer imaging acquisition consisted of a 3D gra-

dient echo sequence (TR = 85 ms, TE = 3.7 ms, 20 axial slices

acquired at 5 mm slice thickness and reconstructed to 40 slices at

2.5 mm slice thickness, in-plane voxel size = 1 × 1 mm2, FOV = 230 ×

192 × 100 mm3, α = 18�, with and without an off-resonance RF

pulse centered 1.1 kHz below the water frequency, sinc-gaussian

envelope of duration = 15 ms, bandwidth = 190 Hz, amplitude = 2.3

× 10−6 T).

2.4 | Quantitative image processing

The signal decay curve obtained by the GRASE T2 relaxation sequence

was modeled by multiple exponential components and the T2 distribu-

tion was estimated using nonnegative least squares with the extended

phase graph algorithm as well as spatial regularization (Prasloski,

Mädler, Xiang, MacKay, & Jones, 2012; Whittall & MacKay, 1989;

Yoo et al., 2015). The MWF-G was calculated in each image voxel as

the ratio of the area under the T2 distribution with 10 ≤ T2 ≤ 40 ms

TABLE 1 Overview of the study cohort

MS patients (N = 56) MS patients subset* (N = 24) Healthy controls (N = 38)

Age (years) Mean: 37 Mean: 37 Mean: 35, range: 20–53

Range 20–55 Range 20–53

Sex 19 M, 37 F 9 M, 15 F 13 M, 25 F

EDSS Median: 2.0 Median: 2.0

Range: 0–4.0 Range: 0–4.0

Lesion volume (mm3) Mean: 7394, median: 3523, range: 446–47,370 Mean: 4031, median: 2327, range: 214–14,047

Number of lesions (count) Mean: 26.5, median: 22.5, range: 3–71 Mean: 33, median: 30.5, range: 3–71

*Only patients with all 4 quantitative imaging techniques collected.
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to the total area under the distribution. From the mcDESPOT data,

the MWF-D and qT1 maps were calculated using the processing

methods outlined in Deoni and Kolind (2015); briefly, the SPGR and

IR-SPGR scans were used for DESPOT1 with High-speed Incorpora-

tion of RF Field Inhomogeneities (DESPOT1-HIFI) analysis (Deoni,

2007), resulting in maps of the global T1 and the B1 field. The bSSFP

data (acquired with two phase-cycling schemes) and the global T1

and B1 maps were then used to calculate global T2 and B0 field

maps using DESPOT2 with full modeling (DESPOT2-FM) analysis

(Deoni, 2009). Finally, the B0 and B1 maps combined with the SPGR

and bSSFP (with both phase-cycling schemes) were used to calculate

the MWF using stochastic region contraction (Deoni & Kolind, 2015).

MTR maps were created by calculating (M0 − Ms)/M0 × 100 for each

voxel, where M0 is the image without the saturation pulse and Ms is

the image with the saturation pulse.

2.5 | Registration to template space

To provide a representative common space for the datasets collected

here, a study-specific template was constructed, from the high flip

angle (18�) T1w SPGR image of 40 subjects. This was performed using

the ANTs package (version 2.1.x; https://github.com/stnava/ANTs)

and implemented using the buildtemplateparallel.sh script (Avants

et al., 2011). We chose the high flip angle T1w image as it has good

gray/WM tissue contrast and has isotropic resolution whereas the 3D

gradient echo T1w image had nonisotropic voxels. This template was

built from an age-matched subgroup of the subjects with and without

MS (40 images in total, 10 male and 10 female per group, with an

average age of 36). A final nonlinear transformation was calculated

from this template space to MNI space, also using the ANTs package.

Within-subject, MTR (image without the saturation pulse), MWF-G

(first echo GRASE image), and PDw images were registered to the high

flip-angle T1-weighted SPGR images from the mcDESPOT sequence

using rigid registration (FLIRT; Jenkinson & Smith, 2001). For each

subject, this T1w image was then nonlinearly registered to the study-

specific template (ANTs; Avants, Epstein, Grossman, & Gee, 2008).

Finally, using the combined registrations, the MWF-G, MWF-D, qT1,

and MTR quantitative maps were registered and resampled into 1 mm

isotropic MNI space in a single linear interpolation step. In addition, for

the patient sample, the lesion masks (which are described below) were

registered and resampled into MNI space using nearest neighbor inter-

polation. The registration pipeline is outlined in Figure 1.

FIGURE 1 Registration pipeline for resampling all images to a common template [Color figure can be viewed at wileyonlinelibrary.com]
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2.6 | Delineation of lesion and regions of interest

Lesions were identified on the T2w, PDw, and FLAIR for each subject

by an experienced radiologist, placing one or more seed points where a

lesion was identified. Segmentation was then performed automatically

using the provided seed points according to the method described

by Tam, Traboulsee, Riddehough, Sheikhzadeh, and Li (2011) and

McAusland et al. (2010). In addition to the semi-automatically defined

lesions masks, additional masks of the boundary of each lesion (2 mm

dilation of the semi-automatically defined lesion) were created and are

referred to here as peri-lesional tissue.

Tissue masks were derived from the Harvard–Oxford atlas distrib-

uted as part of the FSL package (https://fsl.fmrib.ox.ac.uk/fsl). Three

masks were created, one for gray matter, one for WM, and one encom-

passing subcortical structures (amygdala, hippocampus, basal ganglia,

and thalamus; Figure 3). Anatomical regions of interest in WM were

defined in standard space using the JHU probabilistic tractography atlas

(Hua et al., 2008). These regions were then combined with the group

WM tissue mask to ensure only WM was included. Eight major WM

bundles were investigated: anterior thalamic radiation (ATR), cingulum,

cortico-spinal tract (CSP), forceps major, forceps minor, inferior fronto-

occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), and supe-

rior longitudinal fasciculus (SLF). For patients, the tissue and WM regions

of interest excluded both the lesion and perilesional tissue, thus full brain

WM segmentation is referred to as normal-appearing WM (NAWM).

2.7 | Summary and correlation maps

A group average quantitative map and a standard deviation (SD) map

were created for each modality from the healthy control group.

Spearman correlation maps between the different quantitative values

at every voxel were calculated for the whole brain using 3dTcorrelate,

part of the AFNI package (Cox, 1996). Correlation maps and histo-

grams (per tissue class) of the correlation coefficients were produced.

2.8 | Receiver operator characteristic maps

For all quantitative data sets available in the patient population,

individual-patient voxelwise difference maps were created by

Z-normalizing the patient's parameter maps to the mean and SD of the

healthy control sample. In the 24 patients for whom all four quantitative

sequences were successfully acquired (see Table 1 for characteristics),

receiver operator characteristic (ROC) curves were constructed for each

individual dataset, testing the accuracy of each MRI method for lesional

WM detection (Fawcett, 2006). These curves were generated by using

a range of Z-score cutoffs between the minimum and maximum Z-score

and comparing whether each voxel was inside or outside of the Z-score

cutoff and whether the same voxel was included or not included within

the semi-automated lesion masks. For every threshold, the proportion

of voxels outside of the Z-score cutoff (considered to be lesional from

the advanced MR technique) that were also inside the semi-automated

lesion mask is equal to the true positive rate. The percentage of voxels

above the Z-score cutoff but outside of the semi-automated lesion mask

is equal to the false positive rate. To compare the sensitivity/specificity

of the four methods to manually defined lesions, the area under the

curve (AUC) of ROCs from each dataset was calculated for each subject

and compared pairwise across all methods using a nonparametric Fried-

man test. Post hoc inter-method comparisons were tested using Wil-

coxon tests (Demšar, 2006), corrected for multiple comparisons using

the Bonferroni–Holm step-down method.

3 | RESULTS

Sample mean and SD maps of the 38 healthy control datasets are illus-

trated in Figure 2. In all four methods, the SD values are lower in WM

than in gray matter, reflecting the fact that these are healthy adult

controls (so no large deviations in WM content are expected). All ana-

lyses comparing methods or including the patient group were

FIGURE 2 Population average images of the weighted and quantitative images for the healthy control cohort only. Red lines indicate the edge of

coverage for all subjects in the myelin water fraction and magnetization transfer ratio images. Images are shown in MNI space on a coronal
Y = −2 and an axial slice Z = −2 [Color figure can be viewed at wileyonlinelibrary.com]
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performed in standard MNI space and only in areas of the brain with

coverage in all four modalities.

3.1 | Correlations between techniques

To assess the similarity between methods at capturing individual differ-

ences, voxelwise Spearman rank correlations between parameters are

demonstrated in Figure 3 (upper triangular). The histogram of the corre-

lation values for four different tissue classes in healthy controls are in

the lower triangular. The correlation maps shown in the upper triangle

of Figure 3 are also provided in nifti format on neurovault (https://

neurovault.org/collections/4709/) and at https://www.msmri.com/.

Correlations across tissue classes (gray matter, WM, and subcorti-

cal gray structures) are reported in Table 3. These are reported sepa-

rately for the healthy control population (n = 38) and the subset of

patients for whom all four modalities were available (n = 24). The

correlation coefficients (ρ) are summarized in Table 3. The most

consistent correlations across all tissue classes were found between

MWF-D and qT1 (median ρ across tissue classes 0.80, mean ρ = 0.77)

and MWF-G and MWF-D (median ρ = 0.59, mean ρ = 0.59). In

lesional tissue, for the 24 patients for whom all quantitative modalities

were available, qMRI estimates covaried between all pairs of methods.

3.2 | MS and healthy control comparisons

Violin plots were created for each tissue class (gray matter, WM, and

subcortical structures) in the patient and control groups (Figure 4a),

indicating the spread of values for each region. In these analyses, all

available data in the patient group was used (n = 24 for MTR, and

n = 56 for the other methods). For all methods, significant differences

FIGURE 3 Cross-sectional Spearman's rank correlations between quantitative techniques, calculated for every voxel (upper triangular) in the

healthy control cohort. Normalized histograms of the voxelwise correlations are also plotted according to tissue class (lower triangular, correlation
coefficient value bins on the x-axis) with subcortical structures (red mask/dashed line), white matter (green mask/line), and gray matter (blue
mask/line). Images are shown thresholded for visualization only at ρ > 0.321 or ρ < 0.321, p < 0.05 (two-tailed, uncorrected). Raw unthresholded
volumes are available as supplementary material. Images are shown in MNI space on a coronal Y = −2 and an axial slice Z = −2 [Color figure can
be viewed at wileyonlinelibrary.com]

TABLE 3 Pearson's correlation coefficients between average quantitative values across subjects in different tissue classes

Patients (N = 24)

Modality Controls (N = 38) Normal appearing Pathological

1 2 GM WM Subcortical GM WM Subcortica Lesion Perilesion

MWF-G QT1 −0.24 * −0.51 −0.09 −0.19 * −0.71 * −0.57 * −0.66 * −0.64

MWF-G MWF-D * 0.53 * 0.57 * 0.51 0.50 * 0.69 * 0.62 * 0.66 * * 0.63

MWF-G MTR 0.23 * 0.54 −0.26 0.07 0.41 −0.10 * 0.57 0.48

MWF-D MTR * 0.60 0.35 −0.11 * 0.54 0.25 0.17 * 0.54 0.37

MWF-D QT1 * −0.71 * −0.65 * −0.56 * −0.79 * −0.81 * −0.80 * −0.97 * −0.93

MTR QT1 * −0.90 −0.40 −0.14 * −0.87 −0.44 −0.42 * −0.54 −0.39

WM, white matter; GM, gray matter. Asterisk indicates p < 0.01
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between MS and controls were detectable between mean quantita-

tive values in WM regions (p < 0.05, corrected for multiple compari-

sons). Notably, these summary values for each tissue type explicitly

excluded tissue identified as lesional and peri-lesional on clinical

inspection. Figure 4b illustrates single subject Z-scores for patients

compared to the healthy control template. There was extensive over-

lap with the control average in the patient average for NAWM.

Lesional and perilesional tissue had lower MWF-D, MWF-G, and

MTR, and higher qT1 values, than the control average in lesional tissue

for almost every individual patient. Similarly, Figure 5 demonstrates

violin plots broken down into eight WM tracts. For both Figures 4

and 5, for healthy controls N = 38 for all metrics, while for MS

patients N = 56 for MWF-G, MWF-D, and qT1; and N = 24 for MTR

(see Table 1 for subject demographics).

3.3 | AUC analysis

To quantify the relative sensitivity and specificity of the four quantita-

tive MR techniques for detecting lesions, we calculated ROC curves

for each individual patient. True positives were defined using the

lesion masks, identified semi-automatically with radiologist supervi-

sion. A nonparametric Friedman test indicated that the AUCs for

FIGURE 4 Top row (a): Average quantitative MRI values in three tissue classes for healthy controls and patients (normal appearing tissue only);

and bottom row (b): The relative difference (Z scaled to the control sample, with control range indicated in gray) in individual patients in the three
tissue classes according to whether the tissue is normal appearing, perilesional or lesional. In this part of the figure, the shaded area represents ±2
standard deviations of the healthy control population values. Note the larger scale on the y-axis for T1 relaxation time [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 5 Top row (a): Average quantitative MRI values in eight white matter tracts (normal appearing tissue only); and bottom row (b): The

relative difference (Z scaled to the control sample, with control range indicated in gray) in individual patients in the eight white matter tracts
according to whether the tissue is normal appearing, perilesional or lesional. In this part of the figure, the shaded area represents ±2 standard
deviations of the healthy control population values. ATR, anterior thalamic radiation; CST, corticospinal tract; IFO, inferior fronto-occipital
fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus [Color figure can be viewed at wileyonlinelibrary.com]
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detecting these delineated lesions were significantly different

between the four quantitative MR techniques (Χ2 = 32.350, df = 3,

p < 0.001). Post hoc Wilcoxon signed rank tests (for paired data) indi-

cated that MWF-G had a significantly lower performance than all

other methods (p < 0.001) and MWF-D performed significantly better

than qT1 (p = 0.017). MWF-D had significantly higher AUC compared

to both qT1 (p = 0.014) and MTR (p = 0.024). There was no significant

difference between qT1 and MTR (p = 0.92). See Figure 6 for a plot of

the ROC curves for each modality averaged over subjects. In this plot,

each false discovery rate is fixed at the average (Fawcett, 2006).

Importantly, the range of AUC values for MTR, qT1, and MWF-G were

only slightly (albeit significantly and consistently) different (see

Figure 6 for average ROCs at fixed false positive rate thresholds).

Table 4 has summary statistics of the AUC measures per modality.

3.4 | Sample quantitative imaging parameter
summary maps and brain coverage

In place of estimating statistical power for a limited amount of study

designs/effect sizes, we include group average mean and SD maps

of each parameter for the healthy control group (Figure 2) and

provided as files in nifti format on neurovault (https://neurovault.org/

collections/4709/) and at https://www.msmri.com/. These summary

statistics were calculated in MNI space.

4 | DISCUSSION

In this work, we have quantified the in vivo relationship between four

advanced quantitative MRI techniques each putatively related to mye-

lin. Metrics calculated from each of these techniques (MWF-G, MWF-

D, MTR, and qT1) showed strong relationships throughout the brain,

though these relationships varied in different tissue types. The mea-

sures were all sensitive to differences in MS tissue compared to

healthy controls, though to varying degrees, and had similar sensitivity

profiles to manually identified MS lesions, with MWF-D being the

most accurate. The strong associations between MWF-D and qT1

observed in the present study have been demonstrated previously by

(De Santis et al., 2014), albeit using a region-of-interest based

approach and looking at average values across subjects. Indeed, if any

measure is specific to myelin, it should also show close correspon-

dence to T1 in healthy tissue (Stüber et al., 2014).

However, in the MS brain specifically, the combination of increased

water content, demyelination, and tissue iron deposition may disrupt

this relationship. In the extreme case of completely demyelinated tis-

sue, the inverse relationship between myelin and T1 would break down

as the MWF maps will approach zero. Correlation coefficients between

MWF-D and MWF-G indicated a moderate correlation in most tissue

types. In fact, after MWF-D and qT1, MWF-D and MWF-G were the

pairs of measures significantly correlated across the most tissue classes.

We observed weak, nonsignificant correlations in most tissue classes

between MWF-D and MTR. Similar to all other inter-method compari-

sons, the correlation was significant in lesional tissue, indicating that

although the methods may be measuring different quantities in healthy

tissue, they are similarly sensitive in MS lesions.

There is a more established history in quantifying the similarity

between MWF-G, MTR, and qT1. Previous results have demonstrated

a lack of correlation between MWF-G and MTR in nonlesional WM

(Vavasour et al., 2011). In an experimental autoimmune encephalomy-

elitis (EAE) guinea pig model, Gareau et al. (2000) suggested MTR was

sensitive to inflammatory-related changes to the structure of WM

whereas MWF-G was related to myelin content itself. They detected

no relationship between MTR and MWF-G. Here, we detected a posi-

tive relationship on average in healthy control WM and in lesional tis-

sue in MS patients. In the MS patient group, NAWM did have a

positive though nonsignificant relationship indicating here in patients

(n = 24), and maybe the Gareau investigation (n = 24 as well), there

may simply have been insufficient samples to detect weak relation-

ships. Several in vivo studies suggest that MTR is most strongly influ-

enced by water content (Fox et al., 2005; Giacomini et al., 2009;

Vavasour et al., 2011; Van Waesberghe et al., 1997). In the present

study, we find weak correlations between MTR and qT1 (which is

strongly linked to water content) in WM, but similar to previous stud-

ies, we find a strong correlation in lesions, most likely due to an

increase in water content.

FIGURE 6 Receiver operator characteristic (ROC) curves for each

quantitative MRI method showing accuracy of detecting manually
labeled lesions by measuring voxel-level difference from controls
(Z-score). Curves represent average true positive rates for fixed false
positive rate values across the sub-sample of 24 patients with MS (only
patients with all 4 MRI [n = 24] modalities available were included in
this analysis) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Summary of area under the curve (AUC) values for each

technique

Mean AUC (SD) Range (min, max)

MWF-G 0.78 (0.12) (0.46, 0.94)

MWF-D 0.89 (0.08) (0.65, 0.97)

MTR 0.86 (0.10) (0.58, 0.96)

T1 0.88 (0.08) (0.61, 0.97)
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In addition to characteristic focal lesions, there are diffuse abnor-

malities in the MS brain and notably: differences in brain volume

(Stefano et al., 2010); increased edema (Filippi et al., 2012) and axonal

swelling (Fisher et al., 2007); and diffuse changes in WM, as observed

in the present study (Figures 4 and 5). We observed moderate global

differences in the myelin-related measures between controls and our

MS cohort (Figure 4), similarly to previous studies (Kitzler et al., 2012;

Faizy et al., 2016; Kolind et al., 2012; Oh, Han, Lee, Nelson, &

Pelletier, 2007; Cercignani, Bozzali, Iannucci, Comi, & Filippi, 2001;

Vavasour et al., 1998). When looking at smaller WM tracts, all MR

measurements in the present study showed differences between sub-

jects with MS and healthy controls in at least some regions (Figure 5).

Comparing MS to controls, qT1 showed the highest number of signifi-

cantly different regions (8), followed by MWF-D and MTR (6), and

then MWF-G (4). These alterations in normal-appearing tissue may

reflect diffuse alterations in the WM. Multi-component relaxation

especially may be sensitive to subtle lesions that may be missed by

radiological inspection (Laule et al., 2004). Additionally, cortical lesions

may have downstream functional or structural effects on connected

gray and WM tissue (Siffrin, Vogt, Radbruch, Nitsch, & Zipp, 2010).

These nonlesional pathological features are likely represented in the

performance curves of the modalities for lesion detection by appar-

ently false positives (Figure 6). Cortical lesions are notoriously difficult

to detect with both conventional and quantitative MRI (Calabrese &

Castellaro, 2017), although with specific sequences, high field imaging,

and ideally retrospective histopathological knowledge of lesion loca-

tion, myelin content of cortical lesions can be investigated by mapping

the lesions detected with these advanced techniques onto myelin-

sensitive MRI (Jonkman et al., 2016)] maps; unfortunately, none of

these methods were available for this study.

One crucial aspect of individual differences relevant here is the

effect of age on all of the quantities. Changes in WM tissue content

occur throughout the lifespan (Callaghan et al., 2014) and, if investi-

gating single patients, this change needs to be taken into account. In

this study, we used an average and SD taken from a sample of healthy

individuals with a wide age-range, from 20 to 52 years. This is not

ideal. MS can occur at any point throughout the lifespan and therefore

detecting lesions or abnormalities needs to be performed in the con-

text of the maturation of the brain at the time of the scan. What is still

missing is a measure of each quantity appropriate to age, akin to a

growth curve, though this has been developed in younger cohorts

(Dean III et al., 2014; Sadeghi et al., 2013).

All quantitative MR measurements showed differences between

lesions and NAWM. Compared to radiologist-detected lesions, MWF-D

had the best performance in detecting these lesions (Figure 6), followed

by qT1 and MTR. Good performance by qT1, in particular, is predictable

since the presence of lesions on PD/T2-weighted images is due to their

increase in water content, and qT1 is greatly influenced by water con-

tent. Lesions identified by MWF-G were the least similar to radiologist-

detected lesions. This could be because MWF-G is only moderately

correlated with water content (r = −0.36; Vavasour et al., 2011), and it

is known that not all lesions show demyelination (Van Der Valk & De

Groot, 2000).

ROC curves are used here as an indicator of relative sensitivity

and specificity of the MRI methods, but their values can be misleading

when the true positive/true negative ratio is very skewed, as is the

case here. Lesion volumes were, on average, about 0.5% of the total

WM volume mask used in this analysis. With these proportions, a 1%

false positive rate could have twice as many false positive voxels as

there are lesional voxels, even with perfect sensitivity (100 true posi-

tive rates). To improve on this, many studies have combined multiple

image modalities, both qualitative and quantitative, to produce more

accurate lesion segmentations (Brosch et al., 2016; Lladó et al., 2012;

Mah, Jager, Kennard, Husain, & Nachev, 2014). Notably, combined

analysis of MWF-G and MTR over time has shown promise in distin-

guishing tissue injury and remyelination (McCreary et al., 2009).

ROC curves also miss another important factor in profiling tissue

biomarkers in MS. Changes in both myelin and water content are

known to occur (Laule et al., 2004), reflecting different aspects of the

pathological processes. To accurately separate these features, any

given technique should preferably be sensitive to one or the other, to

distinguish which process is taking place. From this point of view, it is

apparent here that qT1 is very sensitive to tissue changes (e.g., larger z

scores than any other method in Figures 4 and 5) but not specific to

which change is occurring in the tissue, for example, change in water

content or myelin, reflected in the lower area under the curve in

Figure 6 compared to MWF-D. With the advantages and disadvan-

tages of each technique, it is also necessary to consider the relative

performance of each technique with regards to the acquisition time.

The voxel volume for all sequences was ~5 mm3, with isotropic voxels

and whole-head coverage for mcDESPOT, whereas GRASE and MTR

data were collected with 5 mm thick slices and limited coverage. With

respect to time, GRASE has a disadvantage compared to mcDESPOT

and MTR. GRASE is fundamentally limited by the need to acquire a

sufficient number of data points in the T2-decay, here 32 points going

out to 320 ms, and a sufficiently long TR, in this study TR = 1,000 ms,

to avoid T1-weighting confounds, although recent developments may

allow faster GRASE acquisition (Chen, Majumdar, & Kozlowski, 2014;

Zhang et al., 2015). Sensitivity to tissue-specific changes as well as

acquisition time should be taken into account when selecting the

appropriate quantitative technique to use in a study.

This brings up another methodological limitation when comparing

the different methods. Limitations on matching image resolution

across acquisitions mean that voxels can have different aspects of

partial volume to each other. Therefore, while MWF-D and qT1 are

matched on voxel dimensions and are acquired in the same space,

MWF-G and MTR are highly anisotropic in the slice dimension. This is

a risk, especially when investigating the association’s voxelwise. In

areas such as the ventricles (where there is strong partial volume in

the inferior–superior axis), this could falsely induce or occlude associa-

tions between methods. Although spatial smoothing may help, match-

ing acquisition dimensions can better address the problem. In

addition, the fact that the mcDESPOT acquisition was used for non-

linear registration means that errors in registration are less likely for

qT1 and MWF-D compared to the other two methods where an addi-

tional rigid registration is needed and error may be introduced just to

MTR and MWF-G due to the compound registration approach. In all

cases however, multiple interpolation steps were avoided by combin-

ing the calculated transformations and interpolating from native to

MNI space in a single step.

O'MUIRCHEARTAIGH ET AL. 2113



In summary, we demonstrate that individual differences of WM

tissue content are not consistent between WM quantification tech-

niques in the same individuals. Although important in itself, this is

especially important as these techniques are being used more and

more in research, referred to interchangeably, though they are obvi-

ously quite different. These techniques are also being increasingly

used in clinical trials of WM disorders and, where pathological tissue

is concerned, we show reassuringly good correspondence between

the techniques. However, depending on the exact purpose of a study,

one technique may be preferred over another. For studies that require

the greatest confidence in the interpretation of results as changes

specific to myelin, MWF-G has undergone the greatest degree of vali-

dation and is thought to provide the greatest specificity. If sensitivity

to differences in tissue types (e.g., lesion vs. NAWM, NAWM

vs. healthy control WM) is more important than the strictest specific-

ity, MWF-D and qT1 showed the greatest separation. Consequently,

these techniques are the most likely to be sensitive to change over

time. If acquisition or analysis times are severely limited, MTR or qT1

provide the most practical tools. To enable bespoke power analyses

for future trials and studies, we provide voxelwise estimates of the

sample mean and SD of the four quantitative MRI techniques (https://

neurovault.org/collections/4709/).
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