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Abstract

Background: Alu elements are primate-specific retroposons that mobilize using the enzymatic machinery of L1 s.
The recently completed baboon genome project found that the mobilization rate of Alu elements is higher than in
the genome of any other primate studied thus far. However, the Alu subfamily structure present in and specific to
baboons had not been examined yet.

Results: Here we report 129 Alu subfamilies that are propagating in the genome of the olive baboon, with 127 of these
subfamilies being new and specific to the baboon lineage. We analyzed 233 Alu insertions in the genome of the olive
baboon using locus specific polymerase chain reaction assays, covering 113 of the 129 subfamilies. The allele frequency
data from these insertions show that none of the nine groups of subfamilies are nearing fixation in the lineage.

Conclusions: Many subfamilies of Alu elements are actively mobilizing throughout the baboon lineage, with most being
specific to the baboon lineage.
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Background
Alu elements are non-autonomous, non-long terminal re-
peat (non-LTR) retroposons found in high copy numbers
in the genomes of primates [1, 2]. They consist of a left and
right monomer separated by an A-rich middle linker re-
gion, along with an A-rich tail at the 3′ end of the element
[3, 4]. These elements mobilize using proteins encoded by
LINE-1 elements (L1 s), via a retrotransposition mechan-
ism termed Target Primed Reverse Transcription (TPRT)
[5, 6]. This mechanism allows for the creation of new cop-
ies of the element and for these copies to be inserted at
novel locations in the genome (Reviewed in [1, 2, 7, 8]).
Alu elements are short (approximately 300 base pairs (bp)),
making them relatively easy to amplify and genotype via
polymerase chain reaction (PCR) and agarose gel electro-
phoresis. They have also been useful for phylogenetic and
population genetics analyses, as they are nearly homoplasy

free and the ancestral state of an element is known to be
the absence of that insertion [9]. Hence, they have been
used in a number of molecular studies over the last few de-
cades [10–25].
Alu elements can be broken down into subfamilies based

on diagnostic mutations [26–29]. There are 3 major sub-
families of Alu elements: J, S, and Y [30]. These major sub-
families of Alu elements can be further expanded based on
diagnostic mutations that they have accrued over millions
of years [31]. Some subfamilies of elements can be shared
within a number of closely related taxa, but other recent
studies have identified elements that are unique to only a
particular species or genus [15, 32]. This parallel evolution
of Alu subfamilies results in each primate lineage having its
own network of recently integrated Alu subfamilies [2].
The recent work of the Baboon Genome Analysis Consor-
tium has revealed a great deal of information about the
content of the baboon genome, including a much higher
rate of AluY mobilization than seen in other primates
(Rogers et al: The comparative genomics, epigenomics and
complex population history of Papio baboons. In
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Preparation). Previous work on Alu elements in baboons
has already been informative for population structure, spe-
cies identification, and as a polymorphic marker for hybrid
individuals in the field [33–35].
Baboons (genus Papio) are found throughout sub-

Saharan Africa in distinct ranges with slight overlap.
There are six species of baboons that are part of most
recent studies, including: yellow baboon (Papio cynoce-
phalus), olive baboon (Papio anubis), hamadryas baboon
(Papio hamadryas), guinea baboon (Papio papio),
chacma baboon (Papio ursinus), and the kinda baboon
(Papio kindae). These six baboons are largely differenti-
ated based on morphological differences (size, pelage
coloration), as well as geographic range, dispersal, and
social traits (Rogers et al: The comparative genomics,
epigenomics and complex population history of Papio
baboons. In Preparation) [36–38]. Though they differ in
the above ways, many of these species are also known to
be interfertile, with a number of studies examining their
active hybrid zones [39–43]. Given their anatomical and
physiological similarity to humans, baboons have been
used for a number of medical studies, and have proven
particularly valuable for cardiovascular studies [44–46].
In this study, due to the rapid mobilization of AluY ele-
ments in baboons reported in Rogers et al., and the re-
cent utility of Alu elements for studies in baboons, we
aimed to analyze the expansion of Alu subfamilies in the
genome of the olive baboon, Papio anubis.

Methods
Ascertainment of baboon-specific Alu elements
Loci were ascertained by first using RepeatMasker [47] on
the reference genome of the olive baboon, Papio anubis
(Panu_2.0). Alu elements were parsed out of the resulting
RepeatMasker file. The sequence of each full length (starts
at or before position 4 in the element and ends after pos-
ition 266) AluY insertion, along with 500 bases of flanking
in 5′ and 3′ direction of the Alu element, was compared
to the rhesus macaque (rheMac8) and human (hg19) ref-
erence genomes using BLAT [48]. We then compared the
resulting BLAT files for any locus that had an appropriate
gap size in the genomes that would indicate an insertion
that was only present in the genome of the olive baboon.

COSEG analysis & network figure creation
Our Papio specific set of Alu elements was aligned to the
AluY consensus sequence [49] using cross_match (http://
www.phrap.org/phredphrapconsed.html; last accessed
December 2017). The data set was then analyzed via
COSEG (www.repeatmasker.org/COSEGDownload.html;
last accessed November 2017) to determine subfamilies.
The middle A-rich region of the AluY consensus sequence
was omitted while tri and di segregating mutations were
considered. Using these criteria, a set of ten or more

identical sequences was considered an individual Alu sub-
family. A network analysis of all subfamilies of Alu ele-
ments identified by COSEG was created by uploading the
source and target subfamily information into Gephi
(v0.9.1) [50].

Oligonucleotide primer design
Primers were designed using an in house Python script that
utilized BLAT, MUSCLE (v3.8.31) [51], and a modified ver-
sion of Primer3 [52]. Briefly, target sequences acquired
from the genome of the reference olive baboon and ortho-
logous sequences were found in human (hg19), chimpan-
zee (panTro4), and rhesus macaque (rheMac8) using
BLAT. These sequences were then aligned using MUSCLE,
and potential oligonucleotide primer locations were identi-
fied using Primer3. Oligonucleotide primers for PCR were
ordered from Sigma Aldrich (Woodlands, TX). A complete
list of PCR primers and genomic locations is available in
Additional file 1 (worksheet “PCR Primer Information”).

Polymerase chain reaction assays
The PCR format and the DNA samples used for PCR as-
says are reported in Additional file 1 (worksheet “DNA
panel”). We attempted to analyze at least 5 Alu inser-
tions from each of the 9 main groups of Alu subfamilies
in this report. PCR amplification was performed in
25 μL reactions that contained 25–50 ng of template
DNA, 200 nM of each primer, 1.5 mM MgCl2, 10× PCR
buffer, 0.2 mM deoxyribonucleotide triphosphates and 1
unit of Taq DNA polymerase. The PCR protocol is as
follows: 95 °C for 1 min, 32 cycles of denaturation at
94 °C for 30 s, 30 s at a 57 °C annealing temperature,
and extension at 72 °C for 30 s, followed by a final ex-
tension step at 72 °C for 2 min. Gel electrophoresis was
performed on a 2% agarose gel containing 0.2 μg/mL
ethidium bromide for 60 min at 200 V. UV fluorescence
was used to visualize the DNA fragments using a BioRad
ChemiDoc XRS imaging system (Hercules, CA). Loci
that did not amplify clearly were re-run using the Jump-
Start Taq DNA Polymerase kit from Sigma Aldrich.

Nucleotide model selection & tree design
The consensus sequence of each identified Alu subfamily
was input into jModelTest-2.17 [53] for analysis and to
determine the best model of nucleotide evolution for the
data set. The Akaike Information Criterion (AIC) model
selected was Trn +G, which includes variable base fre-
quencies with equal transversion rates, but variable transi-
tion rates. The Bayesian Information Criterion (BIC)
selected was TrNef+G, which includes equal base frequen-
cies, equal transversion rates, but variable transition rates.
The AIC model selected by jModelTest was input into

PhyML [54], which was used to create the maximum
likelihood tree, and the BIC model selected by
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jModelTest was input into BEAST (v2.4.6) [55], which
was used to create the Bayesian tree. The TreeAnnotator
program in BEAST was then used to summarize the in-
formation from the BEAST output, and FigTree (v1.4.3)
(http://tree.bio.ed.ac.uk/software/figtree/) was then used
to visualize and create figures for both the maximum
likelihood and Bayesian trees.

Results
COSEG analysis and alignment
In this study, through the use of python scripts and BLAT
comparisons to the genomes of human and rhesus ma-
caque, we ascertained and examined a total of 28,114
baboon-specific, full-length Alu element insertions. We
used the genome of the rhesus macaque as an outgroup
for comparison, as the Papio lineage diverged from the
macaque lineage roughly 8 million years ago and our pri-
mary interest was finding elements that were unique to the
genome of the baboon. Cross_match (see methods) was
used for pairwise alignment, and these insertions were
uploaded and analyzed by COSEG, producing 129 distinct
Alu subfamilies for further investigation. The number of
elements matching each consensus sequence produced by
COSEG can be found in Additional file 1 (Worksheet
“Subfamily Counts”). The consensus sequence for each of
these 129 Alu subfamilies is available in Additional file 2.
These subfamilies were uploaded into Gephi for
visualization (Fig. 1 with a high resolution PDF available in
Additional file 3). There are 9 major clusters of Alu ele-
ments (assigned a cluster number 1–9) that radiate from a
single, central node (Subfamily 0) as shown in Fig. 1. Our
subfamilies expand in a star-burst pattern, similar to bush-
like shaped expansions of Alu elements previously re-
ported [56]. It is important to note that the subfamily
names assigned by the COSEG output are random, and
not numerically ordered to be indicative of the network of
source and offspring elements.

To determine if the subfamilies were novel, we aligned
the consensus sequences of the subfamilies that were pro-
duced by COSEG with one another and to Alu elements
from RepBase [49] using MUSCLE (Fig. 2, and complete
alignment in Additional file 2). The resulting MUSCLE out-
put was visualized in BioEdit [57] to determine if these sub-
families were novel or had been previously discovered. We
found that 127 of 129 subfamilies were newly discovered in
this study, with only two of these subfamilies that had been
previously identified. Subfamily 70 aligned to the consensus
sequence of AluY, and Subfamily 0 aligned with the consen-
sus sequence of AluMacYa3, previously discovered in the
genome of the rhesus macaque and reported in Repbase
(Smit, A. F. AluMacYa3-SINE1 SINE from Macaca. Direct
submission to Repbase Update (06-Sep-2005)). The central
subfamily for Clusters 2, 3, and 4 (as numbered in Fig. 1)
were aligned, along with the central subfamily for Cluster 7,
8, and 9 (Fig. 2). As the clusters radiate outward from Clus-
ter 1, they accrue more mutations, allowing for the
visualization of subfamily specific evolution.
In order to confirm our computational findings, we de-

signed oligonucleotide primers using an in-house Python
script and analyzed 233 young (< 2% diverged from the
consensus sequence) insertions through locus specific PCR
and gel electrophoresis (Fig. 3). With these 233 assays, we
were able to confirm the presence of 113 of our 127 (89%)
novel subfamilies. We also successfully amplified at least
five insertions from each of the nine major clusters shown
in Fig. 1. The 14 subfamilies that were not successfully PCR
validated were reviewed and we found that these loci were
in repeat-rich genomic regions, limiting the effectiveness of
these particular assays. Detailed information for each locus
examined, as well as primer information and allele fre-
quency data can be found in Additional file 1 (worksheets
“PCR Primer Information” and “Genotypes”).
Full length Alu elements from each of the 9 clusters

were identified and examined for divergence from the
consensus sequence. We found a total of 19,888 full

Fig. 1 Network analysis of the COSEG assigned subfamilies, with each identified subfamily as a single node. Related subfamilies are clustered
together, are connected by lines, and all branch out from the central node (labeled Cluster 1, shown in purple). Line length between subfamilies
is not indicative of number of mutations or evolutionary time between subfamilies

Steely et al. Mobile DNA  (2018) 9:10 Page 3 of 9

http://tree.bio.ed.ac.uk/software/figtree/


length elements that were classified by RepeatMasker to
be members of novel subfamilies discovered in this study.
12,800 (~ 64%) of these Alu repeats were determined to
be less than 2% diverged from their respective consensus
sequence (Table 1). Elements that are less than 2% di-
verged from their consensus sequence are considered to
be relatively young, as they have not accrued many muta-
tions since their insertion [58, 59]. The percentage of ele-
ments less than 2% diverged from their consensus
sequence varies from cluster to cluster, and though the
sample size of elements that were analyzed by PCR was
modest for some of the clusters, the allele frequency
among the individuals of genus Papio for each cluster was
far from fixation, ranging from ~ 40% to ~ 66% (Table 1).
jModelTest-2.17 was used to determine the best nucleo-

tide model for creating a phylogenetic tree. Following the
best model selected by jModelTest, we created both a
Bayesian tree, using the BIC model chosen by jModelTest
(Fig. 4 with a high resolution PDF available in

Additional file 4), and a maximum likelihood tree using the
AIC model chosen by jModelTest (Additional file 5). Both
trees were rooted using subfamily 70, which was found to
match the consensus sequence of AluY. The maximum
likelihood tree shows many unresolved relationships be-
tween subfamilies; however, the general grouping of sub-
families is similar to those observed in Fig. 1. The Bayesian
tree is more resolved and displays a defined branching pat-
tern between all subfamilies. The Bayesian tree also displays
subfamily relationships that are highly similar to the rela-
tionships determined by COSEG displayed in Fig. 1. Based
on the Bayesian tree and alignments, we were able to deter-
mine the relative radiation of our Alu subfamilies and their
possible derivatives.

Discussion
The results of this study show an ongoing expansion of
Alu elements in the Papio lineage, with more novel re-
cently integrated subfamilies of Alu elements present

Fig. 2 Alignment of consensus sequence for Alu subfamilies positioned in the central node of radiating clusters illustrated in Fig. 1. a. Alignment of
central subfamilies from Clusters 2, 3, and 4. This alignment shows the accumulation of diagnostic mutations that have occurred over time. Subfamily
41 (Cluster 3) acquired new mutations when compared to Subfamily 32 (Cluster 2), and Subfamily 42 (Cluster 4) shares diagnostic mutations with
Subfamily 41 while acquiring additional mutations. b. Alignment of central subfamilies from Clusters 7, 8, and 9 showing a similar acquisition of
diagnostic mutations over time. Subfamily 16 (Cluster 8) acquired mutations when compared to Subfamily 3 (Cluster 7), and Subfamily 17 (Cluster 9)
continued to acquire mutations when compared to Subfamily 16
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Fig. 3 a. Agarose gel chromatograph of a polymorphic, olive baboon-specific Alu insertion (found at chr3:168089568–168,090,568; primer information
can be found in Additional file 1 (Worksheet “PCR Primer Information”)). Each lane of the gel is labeled at the top of the image. The filled (insertion
present) (~ 590 bp) site is seen only in the reference olive baboon individual (lane 4), and empty (insertion absent) sites (~ 275 bp) are seen in all other
individuals. b. Agarose gel chromatograph of a polymorphic, Papio-specific Alu insertion (found at chr4:144885392–144,886,392; primer information can
be found in Additional file 1 (Worksheet “PCR Primer Information”)). The empty site is found in lane 3 (HeLa, human control), lanes 7 and 8 (chacma
baboons), lane 11 and 12 (kinda baboons), lane 14 (one yellow baboon), and lanes 16 and 17 (gelada baboons). The filled site can be seen in lanes
4–6 (olive baboons), 9 and 10 (guinea baboons), lane 13 (one yellow baboon), and lane 15 (hamadryas baboon). A list of DNA samples is available in
Additional file 1, worksheet “DNA panel”

Table 1 Number of elements from each of the nine clusters of Alu subfamilies

Cluster Full Length
Elements

< 2% Divergence
from Consensus

Percent with less
than 2% divergence

Number of successfully
amplified loci

Allele Frequency

1 8076 4962 61.44 121 0.529995

2 1311 1046 79.79 14 0.553571

3 638 470 73.67 8 0.660173

4 477 436 91.40 6 0.594276

5 1494 1177 78.78 31 0.481322

6 2456 682 27.77 5 0.631944

7 862 452 52.44 10 0.418019

8 3262 2566 78.66 27 0.615822

9 1312 1009 76.91 11 0.414457
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than in any other previously analyzed human or non-
human primate genome [15, 32, 60–68]. For compari-
son, only 14 lineage-specific Alu subfamilies were found
in the genome of the rhesus macaque [61], and 46 Sai-
miri-specific Alu subfamilies were found in a recent ana-
lysis [32]. The 127 novel Alu subfamilies present in the
baboon lineage supports the results of the Baboon Gen-
ome Analysis Consortium, which showed that the ba-
boon lineage has undergone a rapid expansion of Alu
elements (Rogers et al: The comparative genomics, epi-
genomics and complex population history of Papio ba-
boons. In Preparation). Recent work also supports that
the expansion of Alu elements is not unique to the olive
baboon, but rather the Papio lineage as a whole [33, 35].
Of the nine clusters and 127 novel Alu subfamilies re-

ported here, all of the elements (Fig. 1) appear to be de-
rived from subfamilies discovered in the genome of
Rhesus macaque [61]. The central subfamily of Cluster
1, which was determined to match the consensus se-
quence of AluMacYa3, seems to be the source or parent
to a large number of closely related subfamilies. All of
the members of Cluster 6 are also very closely related to
AluMacYa3, showing only a small number of insertions
or deletions near and moving into the middle A-rich re-
gion of the element. The central nodes of Cluster 2, 3,
and 4, (subfamily 32, 41, and 42, respectively), as well as
the surrounding, related subfamilies, all appear to be

derived from Alu YRa1 [61]. The central nodes of Clus-
ters 7, 8, and 9 (subfamily 3, 16, and 17, respectively)
show a similar pattern, as they are likely derived from
AluYRa4 [61]. The apparent origin of these elements is
not surprising given that the Papio lineage diverged from
the macaca lineage roughly 8 million years ago (mya)
(Rogers et al: The comparative genomics, epigenomics
and complex population history of Papio baboons. In
Preparation) Interestingly, the subfamilies present in
Cluster 5 are similar to the AluYc (originally named Yd)
[69] element present in humans, and the AluYRb [61]
family from the genome of Rhesus macaque. Each sub-
family present in Cluster 5 (as well as the previously
known similar elements in human and rhesus) shares
the same 12 bp deletion in the left monomer of the
element, supporting the prolonged activity and evolution
of these closely related Alu subfamilies through multiple
lineages [69].
All of the elements in our study expand out from a

central subfamily, subfamily 0, originally found in the
genome of the Rhesus macaque. The novel elements in
our study follow the star-like or bush-like pattern of evo-
lution (Fig. 1) as seen in a number of previous studies of
Alu subfamily structure [56]. The expansion seen in
these nine clusters supports the intermediate master
gene model or stealth model, with multiple active ele-
ments leading to the expansion of new subfamilies (see

Fig. 4 Bayesian tree created in BEAST, showing the relationship between subfamilies. The tree was rooted using the AluY consensus sequence
(Subfamily 70). Each branch is colored based on the color of the cluster shown in Fig. 1 that the subfamily belongs to
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Clusters 2–4, and Clusters 7–9) [56, 70]. The elements
uncovered by this study appear to be quite young, with
the majority of the full-length representatives of our
novel subfamilies being under 2% diverged from their
respective consensus sequences (see Table 1). The allele
frequencies for polymorphic elements in each cluster also
reflects this, as none of the clusters of closely related sub-
families appear to have reached fixation for the presence
of the Alu element (Table 1) based on our small panel of
Papio individuals (Additional file 1). The rapid radiation/
expansion of genus Papio, which occurred only ~ 2.5 mya,
likely contributes to this lack of allele fixation, along with
gene flow from troop migration and hybridization occur-
ring along active hybrid zones (Rogers et al: The compara-
tive genomics, epigenomics and complex population
history of Papio baboons. In Preparation) [33].
The Bayesian phylogenetic analysis (Fig. 4) largely sup-

ports the relationships displayed in the network analysis
of COSEG results. However, it is important to note that
the relationships shown in the network analysis reflect
what COSEG has determined to be source and offspring
elements, not phylogenetic relationships. Discrepancies
between the phylogenetic tree and the network analysis
are likely the result of two elements showing closer se-
quence identity, even if they did not come from the
same “parent” node of the network analysis.
The recent findings of the Baboon Genome Analysis

Consortium, along with other recent studies of mobile ele-
ments in the baboon genome have provided a great deal
of new information (Rogers et al: The comparative gen-
omics, epigenomics and complex population history of
Papio baboons. In Preparation) [33, 35]. This study found
127 novel Alu element subfamilies, supporting the high
Alu mobilization rate reported by the Baboon Genome
Analysis Consortium (Rogers et al: The comparative gen-
omics, epigenomics and complex population history of
Papio baboons. In Preparation). It is important to note,
however, that these elements are considered to be lineage-
specific based on the genomic information currently avail-
able. Additionally, it is unlikely that the Alu elements un-
covered in this study represent the loss of a particular
element from the human or rhesus macaque genome as
the precise deletion of an element is an exceedingly rare
event [9]. As the number of sequenced primate genomes
grows, and as sequencing quality continues to improve,
it’s likely that new subfamilies may be discovered or that
some of these newly reported subfamilies may be found in
other closely related species. Future studies should
attempt to determine underlying causes of rapid
mobilization of transposable elements within the lineage.
This increased duplication rate may extend to
mobilization competent “master” elements including L1,
or it may be caused by decreased activity of host defenses
that have been shown to slow activity in humans [71–73].

Conclusions
Overall, we identified 129 Alu subfamilies that were active
in Papio baboons, with 127 of these insertions being ba-
boon specific. This work reinforces that there has been ex-
tensive expansion of Alu elements and subfamilies within
genus Papio.
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