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Abstract: A Global Satellite Navigation System (GNSS) cannot provide normal location services in an
indoor environment because the signals are blocked by buildings. The Beidou satellite navigation
system (BDS)/GPS indoor array pseudolite system is proposed to overcome the problems of indoor
positioning with conventional pseudolite, such as time synchronization, ambiguity resolution and
base stations. At the same time, an algorithm for Doppler differential positioning is proposed to
improve the indoor positioning accuracy and the positioning coverage of the system, which uses
the Doppler difference equation and Known Point Initialization (KPI) to determinate the velocity
and position of the receiver. Experiments were conducted to verify the proposed system under
different conditions; the average positioning error of the Doppler differential positioning algorithm
was 7.86 mm in the kinematic test and 2.9 mm in the static test. The results show that BDS/GPS
indoor array pseudolite system has the potential to make indoor positioning achieve sub-centimeter
precision. Finally, the positioning error of the proposed algorithm is also analyzed, and the data
tests show that the dilution of precision (DOP) and cycle- slips have a significant impact on the
indoor positioning accuracy; a cycle-slip of a half-wavelength can cause positioning errors of tens
of millimeters. Therefore, the Doppler-aided cycle-slip detection method (DACS) is proposed to
detect cycle-slips of one cycle or greater than one, and the carrier phase double difference cycle-slip
detection method (CPDD) is used to detect cycle slips of a half-wavelength.

Keywords: Beidou satellite navigation system (BDS); indoor positioning; array pseudolite; Doppler
differential positioning; dilution of precision; cycle-slip

1. Introduction

The Global Satellite Navigation System (GNSS) plays a leading role in outdoor positioning, but
GNSS is unable to provide a normal location service in an indoor environment because the signal can be
blocked by buildings. With the development of the Beidou satellite navigation system (BDS), Chinese
researchers are developing a BDS/GPS indoor positioning pseudolite system to achieve seamless
indoor and outdoor positioning services [1,2], the signals of which are received by commercialized
GNSS chips such as unicorecomm UC6226 and ublox M8T. In addition, some pseudolites for indoor
positioning have also been developed. The indoor messaging system (IMES) has been developed by
the Japanese Aerospace Exploration Agency [3–5]; its positioning method is similar to Bluetooth, and
its positioning accuracy usually ranges from 5 to 10 m. Two multi-channel pseudolite positioning
systems have been proposed: one consists of three antennas which are located at the interval of
the half-wavelength of the GPS L1 carrier wave—i.e., at 95.15 mm from each other—and is used to
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overcome the problems of time synchronization and indoor multipaths, but it cannot be used for
dynamic positioning and has only a 4 m × 4 m coverage area [6]; the other is a combined approach of
Doppler and carrier-based hyperbolic positioning with a multi-channel GPS pseudolite [7,8], in which
the distance between transmitting antennas is not constrained by a half-wavelength, a Doppler
observation equation is used to estimate the offset of the three-dimensional position and orientation,
and a nonlinear observation equation for carrier phase difference is used to estimate ambiguity.
Therefore, the disadvantage of the pseudolite is the complex ambiguity resolution and unstable
indoor positioning results. A multi-channel pseudolite—which is called a GNSS repeater—has been
proposed [9,10], which realizes indoor positioning using the carrier phase difference method with the
base and rover stations. Some indoor positioning tests in Australia have also been carried out with
the Locata pseudolite [11,12], which has the potential to allow point positioning with sub-centimeter
precision (using carrier phase) for a mobile unit. Similarly, it also faces the problem of ambiguity
resolution (AR).

Indoor environments are characterized by many reflectors in the path from the transmitter to the
receiver, and the multipath error can be up to several tens of meters or even hundreds of meters [13–15];
some traditional ambiguity resolution methods, such as the ambiguity function method and least
squares ambiguity decorrelation adjustment (LAMBDA) [16], usually fail to obtain fixed ambiguity.
Therefore, the Known Point Initialization (KPI) method [17,18] has been adopted to solve the carrier
phase ambiguity, which usually requires a higher precision of the known coordinates for the LAMBDA
method. Due to the influence of bad DOP in indoor environments, this combination method of
KPI and LAMBDA cannot pass the ambiguity validation, where the disadvantages of the complex
computational process and discontinuous positioning results are not suitable for indoor pedestrian
positioning based on smartphones.

In the following sections, the composition of the BDS/GPS indoor array pseudolite system is
introduced, and a multi-channel pseudolite transmitter with the same clock source is used to reduce
the complexity of time synchronization. In addition, an indoor positioning algorithm called Doppler
differential positioning is proposed. Compared with Doppler positioning methods, the algorithm
can reduce horizontal dilution of precision (HDOP) and increase positioning coverage. Furthermore,
some static and kinematic tests are conducted to evaluate the positioning performance of the Doppler
differential positioning algorithm. Finally, the positioning errors of the BDS/GPS indoor array pseudolite
system are analyzed, and the Doppler-aided cycle-slip detection method (DACS) and the carrier phase
double difference cycle-slip detection method (CPDD) are used to detect cycle-slips.

2. BDS/GPS Indoor Array Pseudolite System

Figure 1 illustrates the composition of the BDS/GPS indoor array pseudolite system. It consists
of three parts: An indoor array signal transmitter, an array antenna and a GNSS/pseudolite receiver.
Because the coverage of the indoor pseudolite is much smaller than that of the outdoor pseudolite,
a multi-channel transmitter with the same clock source is used to reduce the difficulty and complexity
of time synchronization. Each channel transmits a signal with different spread spectrum codes, and the
navigation message is modulated at 1575.42 MHz and 1561.098 MHz. The GNSS/pseudolite receiver
mainly uses some commercial GNSS chips or smartphones, which can output the carrier phase and
Doppler observations of the pseudolite [19]. Then, the position and speed of the receiver can be
calculated by the indoor positioning software using the Doppler differential method.

Figure 2 illustrates the time synchronization method of the BDS/GPS indoor array pseudolite.
The pseudolite time is in reference to GPS time, although the pseudolite clock and GPS time are
different. Since signals of the pseudolite array are generated at the same 1 Pulse Per Second (1PPS), the
pseudolite clock biases are as follows:

dts = a0 + a1 × (t− tc) + a2 × (t− tc)
2 + τ (1)
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where dts is the pseudolite clock biases, a0 is the time offset of satellite clock errors, a1 is the satellite
clock rate coefficient of deviation, a2 is the drift coefficient of the satellite clock speed rate, τ is the
hardware group delay, tc is the reference moment, and t is the calculation moment of the pseudolite
clock error.
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For a multi-channel pseudolite system, the clock biases of each channel can be expressed by
dts
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where n is number of channels, and τ1, τ2, . . . . . . , τn are the hardware group delays of multi-channel
pseudolite.
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. . . . . .
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Therefore, Doppler observations are used to calculate the velocity and position of the receiver,
which only uses the rate of pseudolite clock biases; then, it can be observed that there is no time
synchronization error in the BDS/GPS indoor array pseudolite.

3. Methodology

The mathematical basics of the Doppler observation equation [20], Doppler differential observation
equation, position determination and dilution of precision are presented in detail in this section.

3.1. Doppler Observation and Positioning Equation

The Doppler observation equation between the receiver u and the channel i of the indoor array
pseudolite can be expressed by

c
f
·Di

u =
.
R

i
u + c · d

.
tu − c · d

.
t
s
+

.
ε

i
u (4)

where Di
u is the Doppler measurement between the receiver u and transmitting channel of the indoor

array pseudolite; c is the speed of light; f is the frequency of navigation signal;
.
R

i
u is the change rate of

geometric distance between receiver u and transmitting antenna i of the pseudolite; d
.
tu is the rate of

receiver clock biases; d
.
t
s

is the rate of pseudolite clock biases; and
.
ε

i
u is the combined error residual,

which mainly includes the antenna phase center deviation, multipath error and thermal noise.
The rate of geometric distance can be calculated by

.
R

i
u =

(xu−xi)×
.
xu+(yu−yi)×

.
yu+(zu−zi)×

.
zu√

(xu−xi)
2
+(yu−yi)

2
+(zu−zi)

2

=
[

ei
x ei

y ei
z

]
×


.
xu
.
yu.
zu


(5)

where xu, yu and zu are the three-dimensional coordinates of the receiver;
.
xu,

.
yu and

.
zu are the velocity

of the receiver, which can be solved with four Doppler observations and least squares estimation; and
xi, yi and zi are the three-dimensional positions of the pseudolite transmitting channel.

[
ei

x ei
y ei

z

]
is called a geometry matrix.

The Doppler observation equations of the indoor array pseudolite can be expressed as the
following matrix form:

e1
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y e1
z 1

e2
x e2

y e2
z 1

. . . . . . . . . . . .
en

x en
y en

z 1

 ·
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zu

c · d
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f ·D
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. . .
c
f ·D
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ε
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u
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ε

2
u
. . .
.
ε
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u

 (6)

3.2. Doppler Differential Observation and Positioning Equation

The Doppler observation equation of pseudolite channels i and j can be denoted by
c
f ·D

i
u =

.
R

i
u + c · d

.
tu − c · d

.
t
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i
u
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.
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(7)
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The difference equation of the Doppler observations between channel i and j can eliminate the
rate of receiver and pseudolite clock biases, which can be written as follows:

c
f
· ∆Di, j

u = ∆
.
R

i, j
u + ∆

.
ε

i, j
u (8)

where ∆Di, j
u represents the difference of the Doppler measurement, ∆

.
R

i, j
u represents the difference in

the rate of geometric distance, and ∆
.
ε

i, j
u represents the error of the Doppler differential observation.

The differential Doppler positioning equation of the indoor array pseudolite is denoted by


e2

x − e1
x e2

y − e1
y e2

z − e1
z

e3
x − e1

x e3
y − e1

y e3
z − e1

z
. . . . . . . . .
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x − e1

x en
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y en
z − e1
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×
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zu
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f · ∆D2,1
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c
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. . .
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f · ∆Dn,1
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+


∆
.
ε

2,1
u

∆
.
ε

3,1
u
. . .

∆
.
ε

n,1
u

 (9)

where n is the number of transmission channels and is greater than or equal to 4.

3.3. Position Determination

The matrix on the left-hand side of Equations (5) and (8) is defined as A, and the two column vectors
on the right-hand side are, respectively, defined as b (left one) and ε (right one); then, Equations (6) or
(9) can be written as

A · vu,s = b + ε (10)

If an initial value of vu is used for the solution-updating process, the Newton–Raphson method is
described as vu,0 = (

.
xu,0,

.
yu,0,

.
zu,0). The least squares updated solution can be represented as

∆vu,0 = (ATA)
−1

ATb (11)

Then, the velocity can be updated iteratively according to

v̂u,1 = vu,0 + ∆vu,0 (12)

The position ru,1 is denoted by
ru,1 = ru,0 + v̂u,1 · ∆t (13)

where ru,0 is the initial value of ru, which is the coordinate of receiver u, and ∆t represents the time
interval of the observation.

Here, the Doppler differential positioning algorithm is summarized in Algorithm 1. In Known
Point Initialization (KPI), the starting point of the receiver is initialized, whose three-dimensional
(3D) coordinates are measured by a total station. The least squares method is used to determinate the
velocity of the user receiver. The receiver position for the current epoch is calculated according to
Equation (13). The starting point of the receiver is assigned to the position of the current epoch, whose
position and velocity are calculated again.
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Algorithm 1

1
Initialize the known point of GNSS/pseudolite
receiver and z is a constant

2 continue = true
3 while continue do
4 velocity at epoch t = velocity at epoch t+1
5 position at epoch t = position at epoch t+1
6 for number of available channels do

7
Calculate ex and ey for each available

channel
8 end
9 for number of available channels - 1 do
10 Calculate the matrix A
11 Calculate the Doppler differential matrix b
12 end
13 ∆v = (ATA)

−1
ATb.

14 velocity at epoch t+1 = velocity at epoch t +∆v.
15 Calculate the position at epoch t+1
16 If ∆v≤0.0001 then
17 break;
18 end
19 end

It is difficult to get a good geometric distribution for the BDS/GPS indoor array pseudolite;
the worst case is that all transmitting antennas are on a horizontal plane, HDOP is particularly high,
and the least squares updated solution according to Equation (11) cannot converge. Therefore, the
z-coordinate is set as a constant for pedestrian navigation.

The initialization (KPI) can be obtained by Quick Response (QR) codes on the ground, using visual
location in actual system, whose three-dimensional (3D) coordinates are measured in advance by a
total station. They are stored in the database together with the coordinates of the transmitting antenna.

3.4. Dilution of Precision

The dilution of precision (DOP) [21,22] can be expressed as

cov(∆vu) = σ2
∆

.
ε
· (ATA)

−1
(14)

If (ATA)
−1

is defined as H, the HDOP can be expressed as the diagonal elements of H.
The diagonal elements of H of the Doppler positioning method are as follows:

H =


vxDOP2

vyDOP2

vzDOP2

vtDOP2

 (15)

The diagonal elements of H of the Doppler differential positioning method are as follows:

H =


vxDOP2

vyDOP2

vzDOP2

 (16)
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The DOP for the x-y plane is defined as HDOP,

HDOP =
√

vxDOP2 + vyDOP2 (17)

where vxDOP2 means the DOP for the x-coordinate and likewise for the y- and z-coordinates.

4. Implementations and Evaluation

In the BDS/GPS indoor array pseudolite system, static and kinematic tests were conducted to
evaluate the performance of indoor positioning using the Doppler differential positioning algorithm.
An indoor positioning testbed was built in a room as shown in Figure 3. The BDS/GPS indoor array
pseudolite has eight output signals, which are connected to eight transmitting antennas by cables,
and eight transmitting antennas’ coordinates are measured in advance by a total station, as shown in
Table 1. The UBLOX NEO-M8T is used to receive the pseudolite’s signals and can provide access to
raw measurements. Finally, the position and speed of the receiver are computed on a smartphone.
The size of the test area is about 9 m long and 7 m wide. Five test points are selected on the ground, and
their coordinates are measured by a total station. Point 3 is selected for the static positioning accuracy
test. To compare the performance between the Doppler positioning algorithm and Doppler differential
positioning algorithm in a kinematic test situation, a straight line (test path A) composed of point 2
and point 4 and a rectangle (Test path B) composed of point 1, point 2, point 3 and point 5 are used.
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Table 1. Coordinates of eight transmitting antennas.

X Y Z

Transmitting Antenna 1 531627.37 4213862.35 88

Transmitting Antenna 2 531626.87 4213863.51 87.91

Transmitting Antenna 3 531625.88 4213863.89 87.83

Transmitting Antenna 4 531624.93 4213863.48 87.86

Transmitting Antenna 5 531624.41 4213862.64 88.02

Transmitting Antenna 6 531624.76 4213861.33 87.99

Transmitting Antenna 7 531625.90 4213860.82 88.13

Transmitting Antenna 8 531626.87 4213861.14 88.04

4.1. Static Test Results

In the static test situations, the first situation is used analyze the performance of the Doppler
differential measurement, and the other is used to test the positioning accuracy of the Doppler
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differential positioning algorithm for the BDS/GPS indoor array pseudolite. If the velocity of the
receiver is zero, Equation (9) can be written as

c
f · ∆D2,1

u
c
f · ∆D3,1

u

. . .
c
f · ∆Dn,1

u

+


∆
.
ε

2,1
u

∆
.
ε

3,1
u
. . .

∆
.
ε

n,1
u

 = 0 and
c
f
· ∆Dn,1

u = −∆
.
ε

n,1
u (18)

where 0 is a zero vector, 0 = [0, 0, 0, . . . , 0]T. If the Doppler differential measurement noise ∆
.
ε

n,1
u is zero,

∆Dn,1
u is zero. Therefore, the standard deviation (std) of ∆

.
ε

n,1
u can be written as Equation (19), which

represents the performance of Doppler differential measurement.

σ∆
.
εn,1

= std(∆Dn,1
u ) (19)

The Doppler differential measurements in a static test are shown in Figure 4 and Table 2.
The average value (AVG) of Doppler differential measurement is from 9 × 10−6 m/s to 4 × 10−5 m/s,
and the standard deviation (STD) of Doppler differential measurement is from 0.0025 m/s to 0.005 m/s.
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Table 2. Average value (AVG) and standard deviation (STD) of Doppler differential measurements in
the static test.

Doppler Differential Measurements (m/s)

∆D2,1
u ∆D3,1

u ∆D4,1
u ∆D5,1

u ∆D6,1
u

AVG −2.4 × 10−6 4.9 × 10−6
−2.2 × 10−5 1.2 × 10−6 3.4 × 10−5

STD 3.5 × 10−3 5.0 × 10−3 3.7 × 10−3 2.4 × 10−3 5.0 × 10−3

The positioning and velocity results using the Doppler differential algorithm in the static test are
shown in Figures 5 and 6. The average positioning error is 0.0009 m in the X axis and 0.0028 m in
the Y axis, respectively. It can be seen that the average velocity error is 0.06 × 10−3 m/s in X axis and
0.11 × 10−3 m/s in Y axis. The standard deviations of the positioning errors for the X-axis and Y-axis
are 0.0034 m and 0.0097 m, respectively. The standard deviations of the velocity errors for the X-axis
and Y-axis are 0.0098 m/s and 0.0245 m/s, respectively. It can be concluded that the accuracy of the
Doppler differential measurement obtained by the static positioning test is at the millimeter level, and
its positioning is also at the sub-centimeter level.



Sensors 2019, 19, 4580 9 of 22

Sensors 2019, 19, 4580 8 of 21 

 

2,1

2,1

3,1 3,1

,1

,1

......

u

u

u u

n
u

n
u

c D
f
c D
f

c D
f

 ⋅ 
   
   ⋅   + =   
   
    
 ⋅
  






Δ
Δε

Δ Δε

Δε
Δ

0  and ,1 ,1n n
u u

c D
f

⋅ = − Δ Δε  (18) 

where 0  is a zero vector, [0,0,0,....,0]T=0 . If the Doppler differential measurement noise ,1n
uΔε  is 

zero, ,1n
uDΔ  is zero. Therefore, the standard deviation (std) of ,1n

uΔε  can be written as Equation (19), 
which represents the performance of Doppler differential measurement. 

,1

,1std( )
n

n
uD=Δεσ Δ

 (19) 

The Doppler differential measurements in a static test are shown in Figure 4 and Table 2. The 
average value (AVG) of Doppler differential measurement is from 9 × 10−6 m/s to 4 × 10−5 m/s, and 
the standard deviation (STD) of Doppler differential measurement is from 0.0025 m/s to 0.005 m/s. 

 
Figure 4. Doppler differential measurements in the static test. 

The positioning and velocity results using the Doppler differential algorithm in the static test 
are shown in Figure 5 and Figure 6. The average positioning error is 0.0009 m in the X axis and 
0.0028 m in the Y axis, respectively. It can be seen that the average velocity error is 0.06 × 10-3 m/s in 
X axis and 0.11 × 10-3 m/s in Y axis. The standard deviations of the positioning errors for the X-axis 
and Y-axis are 0.0034 m and 0.0097 m, respectively. The standard deviations of the velocity errors 
for the X-axis and Y-axis are 0.0098 m/s and 0.0245 m/s, respectively. It can be concluded that the 
accuracy of the Doppler differential measurement obtained by the static positioning test is at the 
millimeter level, and its positioning is also at the sub-centimeter level.  

 
Figure 5. Positioning results using the Doppler differential positioning algorithm in the static test. Figure 5. Positioning results using the Doppler differential positioning algorithm in the static test.Sensors 2019, 19, 4580 9 of 21 

 

 
Figure 6. Velocity estimation results using the Doppler differential positioning algorithm in the  
static test. 

Table 2. Average value (AVG) and standard deviation (STD) of Doppler differential measurements 
in the static test. 

 
Doppler Differential Measurements (m/s) 

2,1
uDΔ  3,1

uDΔ  4,1
uDΔ  5,1

uDΔ  6,1
uDΔ  

AVG −2.4 × 10−6 4.9 × 10−6 −2.2 × 10−5 1.2 × 10−6 3.4 × 10−5 
STD 3.5 × 10−3 5.0 × 10−3 3.7 × 10−3 2.4 × 10−3 5.0 × 10−3 

4.2. Kinematic Test Results 

Figure 7 shows the kinematic test on a straight-line trajectory during human walking with a 
BDS/pseudolite receiver from point 2 to point 4; it can be found that the positioning accuracy of the 
two algorithms is the same in the first eight epochs. Table 3 shows the kinematic positioning errors; 
the average positioning error is 7.07 mm for the Doppler differential positioning algorithm, and 
21.07 mm for the Doppler positioning algorithm. 

 
Figure 7. Kinematic test on a straight-line trajectory. 

Table 3. Kinematic positioning error on a straight-line trajectory. 

 
Epoch 

Kinematic Positioning Error (mm) 
1 2 3 4 5 6 7 8 9 10 11 12 13 

Doppler Differential 
Positioning 0 7 26 41 28 43 1 11 2 15 0 -34 -48 

Doppler Positioning 0 8 27 43 28 43 1 11 54 15 31 2 11 

0.0 1.0 2.0 3.0 4.0 5.0 6.0
1.0

1.5

2.0

2.5

3.0

X (m)

Y 
(m

)

 

 

True trajectory
Doppler differential positioning
Doppler positioning

Figure 6. Velocity estimation results using the Doppler differential positioning algorithm in the
static test.

4.2. Kinematic Test Results

Figure 7 shows the kinematic test on a straight-line trajectory during human walking with a
BDS/pseudolite receiver from point 2 to point 4; it can be found that the positioning accuracy of the
two algorithms is the same in the first eight epochs. Table 3 shows the kinematic positioning errors; the
average positioning error is 7.07 mm for the Doppler differential positioning algorithm, and 21.07 mm
for the Doppler positioning algorithm.
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Figure 7. Kinematic test on a straight-line trajectory.
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Table 3. Kinematic positioning error on a straight-line trajectory.

Epoch
Kinematic Positioning Error (mm)

1 2 3 4 5 6 7 8 9 10 11 12 13

Doppler Differential Positioning 0 7 26 41 28 43 1 11 2 15 0 −34 −48

Doppler Positioning 0 8 27 43 28 43 1 11 54 15 31 2 11

Figure 8 shows the positioning results of the two algorithms mentioned above; the red line is
the actual trajectory, the blue line is the estimated trajectory of the Doppler differential positioning
algorithm, and the green line is the estimated trajectory of the Doppler positioning algorithm. Table 4
shows the kinematic positioning errors on a straight-line trajectory; the average positioning error is
20.83 mm for the Doppler differential positioning algorithm, and this value is 40.4 mm for the Doppler
positioning algorithm.
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Figure 8. Kinematic test on a square trajectory.

Table 4. Kinematic positioning error on a square trajectory.

Epoch
Kinematic Positioning Error (mm)

1 2 3 4 5 6 7 8 9 10 11 12

Doppler Differential Positioning 0 10 20 40 3 0 0 0 30 80 30 40

Doppler Positioning 0 10 20 40 30 0 20 30 40 80 10 20

Epoch 13 14 15 16 17 18 19 20 21 22 23 24

Doppler Differential Positioning 70 40 20 7 20 10 10 20 20 10 10 10

Doppler Positioning 40 30 30 120 70 130 10 50 50 0 30 20

5. Positioning Error Analysis

As indicated in Equation (14), the positioning errors of the two algorithms mentioned above
are related to the measurement error and the dilution of precision. The accuracy of the Doppler
measurement is at the mm/s level [23]. Meanwhile, the accuracy of the Doppler differential measurement
obtained by the static positioning test is also at the millimeter level. Whether the Doppler differential
positioning algorithm is better than the Doppler positioning algorithm in reducing positioning error,
and whether the Doppler differential positioning algorithm can improve the horizontal dilution of
precision, are further discussed below. The measurement error caused by cycle-slip will have a
significant impact on positioning accuracy; thus, some cycle-slip detection methods are required.
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5.1. Deviation of the Receiver Antenna Coordinate

During the initialization of known points and the location processing, there will be some deviations
in the antenna coordinates of the receiver, as shown in Figure 9. If the receiver moves from s to s′, then
R1

u ≤ Rn
u, where R1

u is the distance from the receiver to transmitting antenna 1, and Rn
u is the distance

from the receiver to transmitting antenna n. Assuming that the error of the receiver antenna coordinate
is

[
∆xu ∆yu ∆zu

]
, and other measurement errors are ignored, Equation (5) can be expressed as

the following matrix form:

Ri
u =

(xu+∆xu−xi)×
.
xu+(yu+∆yu−yi)×

.
yu+(zu+∆zu−zi)×

.
zu√

(xu+∆xu−xi)
2
+(yu+∆yu−yi)

2
+(zu+∆zu−zi)

2

=
[
(xu−xi)×

.
xu+(yu−yi)×

.
yu+(zu−zi)×

.
zu

Ri
u

+
∆xu×

.
xu+∆yu×

.
yu+∆zu×

.
zu

Ri
u

]
=

[
ei

x +
∆xu
Ri

u
ei

y +
∆yu

Ri
u

ei
z +

∆zu
Ri

u

]
×


.
xu
.
yu.
zu

 = [
ei

x ei
y ei

z

]
×


.
xu
.
yu.
zu

+
[

∆xu
Ri

u

∆yu

Ri
u

∆zu
Ri

u

]
×


.
xu
.
yu.
zu


(20)

The Doppler observation equations (Equation (6)) can be written as
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where B is the error residual for the Doppler observation equations, which is caused by the 

deviation of the receiver antenna coordinate. 
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where C is the error residual for the differential positioning equation, which is caused by the 

deviation of the receiver antenna coordinate. 

(21)

where B is the error residual for the Doppler observation equations, which is caused by the deviation
of the receiver antenna coordinate.
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where B is the error residual for the Doppler observation equations, which is caused by the 
deviation of the receiver antenna coordinate. 
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where C is the error residual for the differential positioning equation, which is caused by the 
deviation of the receiver antenna coordinate. 

Figure 9. Geometric relationship between the transmitting antennas and receiver.
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The differential positioning equation (Equation (9)) is denoted by
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where B is the error residual for the Doppler observation equations, which is caused by the 

deviation of the receiver antenna coordinate. 
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where C is the error residual for the differential positioning equation, which is caused by the 

deviation of the receiver antenna coordinate. 

(22)

where C is the error residual for the differential positioning equation, which is caused by the deviation
of the receiver antenna coordinate.

Although the residual equations B and C are treated nonlinearly by the least squares updated
solution in Equation (11), it is very difficult to analyze the error by a mathematical method. However,
some very useful conclusions can be reached: 1) if the receiver is stationary, then,∆D2,1

u ≈ ∆D3,1
u ≈

. . . . . . ≈ ∆Dn,1
u , and the speed of the receiver is not affected by the deviation of the receiver antenna

coordinate; and 2) the deviation
[

∆xu ∆yu ∆zu
]

needs to be much smaller than the distance
from the receiver to the transmitting antenna, otherwise the least squares updated equation will
not converge.

According to Table 1, if the distance between two transmitting antennas is less than or equal
to 3 m, then Rn

u − R1
u ≤ 3, and because Rn

u ≥ R1
u ≥ 6m (the height between the transmitting antenna

and the ground is 6 m), (Rn
u − R1

u)/(R1
uRn

u) ≤ 3/(6 · Rn
u) ≤ 1/(2 · Rn

u) ≤ 1/Rn
u, In order to prove the

above analysis results, the x-error or y-error is manually added to the coordinates of KPI (∆xu = 4.0 m,
∆yu = 4.0 m). The velocity of the receiver is calculated as (∆xu = 4.0 m, ∆yu = 4.0 m) and (∆xu = 0 m,
∆yu = 0 m) and the velocity measurement error can be written as

∆V = V(∆xu=4.0m,∆yu=4.0m)−V(∆xu=0m,∆yu=0m) (23)

The velocity measurement error is greatly increased in the 24th epoch of Table 5, and the least
squares updated equation will not converge in the 25th epoch of the Doppler positioning method.
Therefore, the differential positioning method is more tolerant to the deviation in the antenna coordinates
of the receiver than the Doppler positioning method. Under the same deviation conditions, the velocity
measurement accuracy of the former is also better than the latter, as shown in Table 5.

Table 5. Velocity measurement error caused by deviations of the receiver coordinates.

Epoch
(∆xu = 4.0 m, ∆yu= 4.0 m)

Velocity Measurement Error (mm/s)

2 4 6 8 10 12

Doppler Positioning 73 115 890 936 116 290

Doppler Differential Positioning 68 99 862 872 97 270

∆VDoppler positioning − ∆VDoppler di f f erential positioning 5 16 28 64 19 20

Epoch 14 16 18 20 22 24

Doppler Positioning 78 21 702 1719 3438 13,707,200

Doppler Differential Positioning 34 9 545 1415 3250 7839

∆VDoppler positioning − ∆VDoppler di f f erential positioning 44 12 157 304 188 13,699,361

The initialization coordinates are mainly obtained by QR codes on the ground, and the initial
position accuracy by using a visual location in the actual system is within 0.5 m; thus, ∆xu is 0.5 m and
∆yu is 0.5 m. The average velocity measurement errors caused by deviations of the receiver coordinates
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are about 10 mm/s for the two methods, as shown in Table 6. Therefore, the contributions of the two
methods to the positioning accuracy are the same in actual use.

Table 6. Velocity measurement error caused by deviations of the receiver coordinates.

Epoch
(∆xu = 0.5 m, ∆yu= 0.5 m)

Velocity Measurement Error (mm/s)

2 4 6 8 10 12

Doppler Positioning 1 2 9 8 5 16

Doppler Differential Positioning 1 2 7 6 5 12

∆VDoppler positioning − ∆VDoppler di f f erential positioning 0 0 2 2 0 3

Epoch 14 16 18 20 22 24

Doppler Positioning 19 9 14 8 29 10

Doppler Differential Positioning 19 8 12 7 24 8

∆VDoppler positioning − ∆VDoppler di f f erential positioning 0 1 2 1 3 2

5.2. Deviation of the Receiver Antenna Coordinate

According to the geometric relationship between the transmitting antennas and receiver, we assume
that the error of the receiver antenna coordinate is

[
∆xn ∆yn ∆zn

]
, where n = 1,2, . . . ,n. The Doppler

observation equations (Equation (6)) can be written as
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The differential positioning equation (Equation (9)) is denoted by 
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The residual equations D and E are treated nonlinearly by the least squares updated  

solution (11), and it is very difficult to analyze the error by a mathematical method. The x-error or 

y-error, which ranges from 0.1 m to 0.3 m, is manually added to the coordinates of all transmitting 

antennas (the transmitting antennas in Table 1), and the data set for a kinematic test on a square 

trajectory in Figure 8 has been used. It can be found from Figure 10 that the deviation of the 

transmitting antenna will affect the positioning accuracy of the two methods, and if the differential 

positioning method cannot mitigate the antenna position error, the positioning accuracy of the 

differenced method is not necessarily better than that of the undifferenced method. 
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The differential positioning equation (Equation (9)) is denoted by
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The residual equations D and E are treated nonlinearly by the least squares updated solution (11),
and it is very difficult to analyze the error by a mathematical method. The x-error or y-error, which
ranges from 0.1 m to 0.3 m, is manually added to the coordinates of all transmitting antennas (the
transmitting antennas in Table 1), and the data set for a kinematic test on a square trajectory in Figure 8
has been used. It can be found from Figure 10 that the deviation of the transmitting antenna will affect
the positioning accuracy of the two methods, and if the differential positioning method cannot mitigate
the antenna position error, the positioning accuracy of the differenced method is not necessarily better
than that of the undifferenced method.
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The residual equations D and E are treated nonlinearly by the least squares updated  
solution (11), and it is very difficult to analyze the error by a mathematical method. The x-error or 
y-error, which ranges from 0.1 m to 0.3 m, is manually added to the coordinates of all transmitting 
antennas (the transmitting antennas in Table 1), and the data set for a kinematic test on a square 
trajectory in Figure 8 has been used. It can be found from Figure 10 that the deviation of the 
transmitting antenna will affect the positioning accuracy of the two methods, and if the differential 
positioning method cannot mitigate the antenna position error, the positioning accuracy of the 
differenced method is not necessarily better than that of the undifferenced method. 
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Figure 10. Positioning results with errors of the transmitting antenna coordinates.

5.3. Horizontal Dilution of Precision (HDOP)

Because of the narrow space, the aesthetic requirement of buildings, and constraints on equipment
structure, it is difficult to get a good distribution for indoor array pseudolite; thus, a bad HDOP is
mainly due to the distribution of pseudolite. The coordinates of the transmitting antennas are shown
in Table 1, which are approximately distributed in a circular shape with the diameter of 3 m and are the
same height from the ground. Figure 11 shows the horizontal dilution of precision on a straight-line
trajectory in the kinematic test: the average HDOP of the Doppler differential positioning algorithm is
11.2, and the average HDOP of the Doppler positioning algorithm is 29.46.
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Figure 11. Horizontal dilution of precision (HDOP) on a straight-line trajectory.

According to the coordinates in Table 1, the HDOP values of the two positioning algorithms
mentioned above are compared by a simulation; the area of the simulation analysis is 60 m × 60 m,
and the interval is 1 m × 1 m. The coverage is analyzed under different numbers of transmission
channels, as shown in Figures 12 and 13. By counting the number of grids with an HDOP less than
100 in Table 7 from 5 to 8 transmitting channels of pseudolite, it can be found that the coverage of the
Doppler differential positioning algorithm is better than that of the Doppler positioning algorithm,
increasing from 15% to 20%.
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Table 7. Number of grids for HDOP with the different number of transmitting Channels.

HDOP < 100
Number of Channels for BDS/GPS Indoor Array Pseudolite

5 6 7 8

Doppler Differential Positioning Algorithm 1708 1819 2326 2447
Doppler Positioning Algorithm 1467 1536 1969 2035

Proportion 1.164 1.184 1.181 1.20
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Because the size of the measurement noise also varies between the two methods, and the time
dilution of precision (TDOP)-term in the differential method disappeared and was included in other
DOPs, the performance of the two methods can hardly be analyzed with a mathematical discussion.
In addition, because the errors of the antenna coordinates and time synchronization are reduced in the
differential method but the errors of uncorrelated measurement are also increased, then, assuming
that the measurement errors of the two methods are the same, the difference and ratio of the HDOP
between the Doppler positioning algorithm and the Doppler differential positioning algorithm are
used for qualitative analysis, as shown in Figures 14 and 15. By counting the number of grids for
the difference of HDOP (D_HDOP) in Table 8, and for the difference of HDOP (R_HDOP) in Table 9,
it can be found that the HDOP of the Doppler positioning algorithm is greater than that of Doppler
differential positioning algorithm; there are about 716 grids with D_HDOP greater than 10 and less than
50, accounting for about 33% of the total grids. There are about 852 grids with R_HDOP greater than
1.5, accounting for about 42% of the total grids. On the other hand, if the error term using differenced
measurement may be 1.4 times of undifferenced measurements [24], the differenced method may
improve the positioning accuracy in nearly 42% of the test area; however, the positioning accuracy
of the differenced method may unfortunately not be better than that of the undifferenced method in
nearly 58% of the test area.

Table 8. Number of grids for the difference of HDOP (D_HDOP).

0 < D_HDOP ≤ 1 1 < D_HDOP < 10 10 ≤ D_HDOP < 50

Number of grids 676 643 716

Proportion 0.33 0.32 0.35

Table 9. Number of grids for the ratio of HDOP (R_HDOP).

R_HDOP≤ 1 1 < R_HDOP < 1.5 1.5 ≤ R_HDOP < 2 2 ≤ R_HDOP

Number of Grids 0 1183 810 42

Proportion 0 0.58 0.40 0.02
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5.4. Cycle-Slip Detection

The carrier phase jump will affect the accuracy of Doppler measurements, which will then affect
the accuracy of indoor positioning. The causes of cycle-slips for carrier phase observations in the indoor
environment are listed as below: (1) cycle-slips are caused by obstructions of the pseudolite signal due to
the presence of buildings and pedestrians; and (2) cycle-slips have a low carrier-to-noise-power-density
ratio (C/N0) due to multipath, near-far effect [25–27]. The carrier phase and Doppler measurement
characteristics of indoor pseudolite (no ionospheric error, tropospheric error and time synchronization
error) are different from GNSS. The Doppler-aided cycle-slip detection method (DACS) and the carrier
phase double difference cycle-slip detection method (CPDD) are used.

Doppler shifts can be used to detect cycle-slips in carrier phase observations between neighboring
epochs. The carrier phase observation at one epoch is predicted based on the Doppler shift and the
carrier phase observation from the previous epoch.

φ
i
u(t + ∆t) = φi

u(t) + Di
u(t) × ∆t (26)
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where φ
i
u(t + ∆t) is the predicted carrier phase observation from channel i to receiver u at epoch t + ∆t,

φi
u(t) is the carrier phase observation at epoch (t), Di

u(t) is Doppler observation at epoch t, and ∆t is
the time span between epoch (t + ∆t) and epoch (t).

Doppler-aided cycle-slip detection can be expressed as

φi
u(t + ∆t) −φ

i
u(t + ∆t) < T (27)

where φi
u(t+ ∆t) is the carrier phase observation at epoch (t + ∆t), T is a cycle-slip detection threshold,

and φi
u(t + ∆t) −φ

i
u(t + ∆t) is the deviations between the carrier phase observations from the receiver

and those predicted from Doppler observations.
In the static test at test point 3, the raw data of channel 1 and channel 6 are analyzed regarding

the performance of the cycle-slip detection approach. As shown in the top panel of Figure 16, there
are no cycle-slips in channel 1, and there are some cycle-slips on channel 6. The deviations between
carrier phase observations measured by a receiver and those predicted from Doppler observations are
shown in the bottom panel of Figure 16; cycle-slips of one cycle or greater from epoch 59 to epoch 67
can be directly detected by the Doppler-aided cycle-slip detection method when the threshold is 0.8;
the cycle-slips of a half-wavelength in epoch 102 can also be detected when the threshold is 0.4.
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The three-dimensional data of the Doppler-aided cycle-slip detection method for the kinematic test
are shown in the left panel of Figure 17; the X-axis is the channel number of the pseudolite, the Y-axis
shows epochs from 1 to 30, and the Z-axis shows the deviations between the carrier phase measured by
a and predicted from the Doppler observations. In the kinematic test from epoch 1 to epoch 14, some
cycle slips of one cycle or greater are at epoch 13 of channel 5 and epoch 14 of channel 6. Meanwhile,
there are some deviations greater than a half-wavelength at epoch 7 and epoch 13, but these are mainly
caused by the receiver’s speed, and not half-wavelength cycle-slips. In the static test from epoch 15
to epoch 30 in the right panel of Figure 17, all deviations are less than 0.4, and there is no cycle-slip.
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Therefore, it can be seen that the Doppler-aided cycle-slip detection method is suitable for detecting
cycle-slips of one cycle or greater.
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To detect a half-wavelength cycle-slip in kinematic positioning, the carrier phase double-difference
cycle-slip detection method (CPDD) is proposed. The carrier phase difference equation between
neighboring epochs can be expressed as

∆φi
u(t + ∆t) = φi

u(t + ∆t) −φi
u(t) (28)

where ∆φi
u(t + ∆t) is the carrier phase difference equation between epoch (t) and epoch (t + ∆t).

Then, the channel-difference of ∆φi
u(t + ∆t) between channel i and j can be expressed as

∆∆φi j
u (t + ∆t) = ∆φi

u(t + ∆t) − ∆φ j
u(t + ∆t) < T∆∆φ (29)

where T∆∆φ is the cycle slip detection threshold, and ∆∆φi j
u (t+∆t) is the carrier phase double-difference

observations, which can be used to detect cycle-slips of a half-wavelength.
In the kinematic test, one cycle-slip of a half-wavelength is manually inserted into the carrier phase

measurements of channel 3 at epoch 5. Figure 18 shows the kinematic test of cycle-slip detection by the
time-difference and channel-difference cycle-slip detection method, and the carrier phase differences
between neighboring epochs are shown in the top panel of Figure 18. If there is no cycle-slip, the time
difference of the carrier phase from channel 1 to channel 8 is nearly the same; for example, epoch 2, 3
and 4. If there are some cycle-slips, the time difference of the carrier phase for channel 3 at epoch 5 and
epoch 6 may have a big “jump”. After the channel-difference, some half-wavelength cycle-slips can be
determined at epoch 5 and 6; the results are shown in the bottom panel of Figure 18. This shows that
the carrier phase double-difference cycle-slip detection method (CPDD) of the epoch which has an
occurrence of a half-wavelength cycle-slip is much better than the others.

Figure 19 is the kinematic trajectory with and without cycle-slips of a half-wavelength. When
a half-wavelength cycle-slip is manually inserted into the carrier phase measurements of channel
3 at epoch 5, some positioning errors begin to appear at epoch 4 in the absence of the detection
of a half-wavelength cycle-slip; this shows that a half-wavelength cycle-slip can cause positioning
errors of tens of millimeters (blue line in the left panel of Figure 19), which is the main positioning
error of the BDS/GPS indoor array pseudolite system. The carrier phase double-difference cycle-slip
detection method can detect cycle-slips of a half-wavelength in real time (blue line in the right panel of
Figure 19). Therefore, the quality of Doppler measurements can be judged by the quality of carrier
phase measurements, and cycle-slip detection methods are very important for the Doppler differential
positioning algorithm of pseudolite.
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Figure 18. Kinematic experiment of cycle-slip detection by the carrier phase double-difference cycle-slip
detection method.
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6. Conclusions

In this work, a high-accuracy indoor positioning system based on BDS/GPS indoor array pseudolite
is introduced, and a multi-channel transmitter with the same clock source is used to reduce the
difficulty and complexity of time synchronization. Each channel transmits a navigation signal with
different spread spectrum codes from 173 to 182 and a navigation message by modulating them
at 1575.42 MHz and 1561.098 MHz. The Doppler differential positioning algorithm is proposed to
improve indoor positioning accuracy and coverage, which uses the Doppler difference equation
and Known Point Initialization (KPI) to determinate the velocity and position of the receiver. To
enhance the indoor positioning accuracy, a Doppler-aided cycle-lip detection method (DACS) and
carrier phase double-difference cycle-slip detection method (CPDD) are also used. According to
the static and kinematic test, the results show that (1) the average positioning error of the Doppler
differential positioning algorithm is 7.86 mm in the kinematic test and 2.9 mm in the static test,
while the BDS/GPS indoor array pseudolite system has the potential to allow indoor positioning
with sub-centimeter precision. (2) A half-wavelength cycle-slip can cause positioning errors of tens
of millimeters; the Doppler-aided cycle-slip detection method can detect cycle slips of one cycle or
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greater, and the carrier phase double-difference cycle-slip detection method can detect cycle-slips
of a half-wavelength. In future, we will focus on the study of the indoor array pseudolite/ wireless
fidelity with round-trip time (WIFI-RTT) integrated location system, while pseudo-range observations
of WIFI-RTT and carrier phase observations of pseudolite will be used to calculate the coordinates
of initialization.
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