
Citation: Naik, N.; Tokas, T.; Shetty,

D.K.; Hameed, B.M.Z.; Shastri, S.;

Shah, M.J.; Ibrahim, S.; Rai, B.P.;

Chłosta, P.; Somani, B.K. Role of

Deep Learning in Prostate Cancer

Management: Past, Present and

Future Based on a Comprehensive

Literature Review. J. Clin. Med. 2022,

11, 3575. https://doi.org/10.3390/

jcm11133575

Academic Editors: Marco Roscigno

and Petros Grivas

Received: 1 May 2022

Accepted: 18 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Review

Role of Deep Learning in Prostate Cancer Management: Past,
Present and Future Based on a Comprehensive Literature Review
Nithesh Naik 1,2 , Theodoros Tokas 3 , Dasharathraj K. Shetty 4,* , B.M. Zeeshan Hameed 2,5,*,
Sarthak Shastri 6 , Milap J. Shah 2,7 , Sufyan Ibrahim 2,8 , Bhavan Prasad Rai 2,9, Piotr Chłosta 10

and Bhaskar K. Somani 2,11

1 Department of Mechanical and Industrial Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal 576104, Krnataka, India; nithesh.naik@manipal.edu

2 iTRUE (International Training and Research in Uro-Oncology and Endourology) Group,
Manipal 576104, Karnataka, India; drmilapshah@gmail.com (M.J.S.); sufyan.ibrahim2@gmail.com (S.I.);
urobhavan@gmail.com (B.P.R.); bhaskarsomani@yahoo.com (B.K.S.)

3 Department of Urology and Andrology, General Hospital Hall i.T., Milser Str. 10, 6060 Hall in Tirol, Austria;
ttokas@yahoo.com

4 Department of Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher
Education, Manipal 576104, Karnataka, India

5 Department of Urology, Father Muller Medical College, Mangalore 575002, Karnataka, India
6 Department of Information and Communication Technology, Manipal Institute of Technology, Manipal

Academy of Higher Education, Manipal 576104, Karnataka, India; sarthak.shastri@learner.manipal.edu
7 Robotics and Urooncology, Max Hospital and Max Institute of Cancer Care, New Delhi 110024, India
8 Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
9 Department of Urology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
10 Department of Urology, Jagiellonian University in Krakow, Gołębia 24, 31-007 Kraków, Poland;
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Abstract: This review aims to present the applications of deep learning (DL) in prostate cancer
diagnosis and treatment. Computer vision is becoming an increasingly large part of our daily lives
due to advancements in technology. These advancements in computational power have allowed
more extensive and more complex DL models to be trained on large datasets. Urologists have found
these technologies help them in their work, and many such models have been developed to aid in
the identification, treatment and surgical practices in prostate cancer. This review will present a
systematic outline and summary of these deep learning models and technologies used for prostate
cancer management. A literature search was carried out for English language articles over the last
two decades from 2000–2021, and present in Scopus, MEDLINE, Clinicaltrials.gov, Science Direct,
Web of Science and Google Scholar. A total of 224 articles were identified on the initial search. After
screening, 64 articles were identified as related to applications in urology, from which 24 articles
were identified to be solely related to the diagnosis and treatment of prostate cancer. The constant
improvement in DL models should drive more research focusing on deep learning applications. The
focus should be on improving models to the stage where they are ready to be implemented in clinical
practice. Future research should prioritize developing models that can train on encrypted images,
allowing increased data sharing and accessibility.

Keywords: artificial intelligence; deep learning; convolutional neural network; computer-aided
detection; medical imaging; Gleason grading

1. Introduction

Artificial intelligence (AI) is a broad term that incorporates machine learning (ML),
in which an algorithm analyzes features in a separate dataset, based on raw input data,
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without being explicitly programmed, and returns a specific classification [1]. Deep learn-
ing (DL) is a subset of ML which uses multilayer artificial neural networks (ANNs) to
learn hierarchical representations. Unlike classic ML algorithms such as support vector
networks (SVN) and random forest (RF), DL learns features from input data without relying
substantially on domain knowledge developed by engineers [2]. Deep learning uses neural
networks with many layers where the first layer is the input layer connected to multiple
hidden layers that are finally connected to the output layer. Neural networks use a series
of algorithms to recognize hidden relationships in a data set by a process similar to the
human brain. Each of the interconnected layers comprises numerous nodes, which are
called perceptrons. Model perceptrons are arranged to form an interconnected network in
a multi-layered perceptron. The input layer, upon receiving the input, transfers patterns
obtained to the hidden layers. The hidden layers are activated based on the input parame-
ters received. Hidden layers fine-tune the inputs received until the error is minimal, after
which the values of the neurons are passed to the output layer. The activation function
calculates the output value, and the neural network produces its result.

Deep learning models help in diagnosing and treating urological conditions and
have proved their ability to detect prostate cancer, bladder tumors, renal cell carcinoma,
along with ultrasound image analysis. A general schematic diagram of DL models can
be seen in Figure 1. Deep learning models have also displayed their ability to detect the
needle/trocar pressure during insertion, which is an essential aspect of laparoscopic and
robotic urological surgeries.
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Supervised learning and unsupervised learning are the two main approaches in AI and
machine learning. The primary distinction between the two approaches is the reliance on
labelled data in the first, as opposed to the latter. Though the two approaches share many
similarities, they also have distinct differences. Figure 2 shows the distinction between the
supervised learning and unsupervised learning approach.
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What is supervised learning?
The use of labelled datasets distinguishes supervised learning from other forms of

machine learning. Using these datasets, algorithms can be trained to better classify data
or predict results. The model’s accuracy can be measured and improved over time using
labelled inputs and outputs.

Based on data mining, supervised learning can be categorised into two types: classi-
fication and regression: (a) classification tasks rely on an algorithm to reliably assign test
data to specified groups. For example: supervised learning algorithms can differentiate
spam from the rest of the incoming emails. Classification methods include linear classifiers,
support vector machines, decision trees, and random forests. (b) Regression is used to learn
about the relationship between dependent and independent variables. Predicting numerical
values based on various data points is possible with regression models. Linear regression,
logistic regression, and polynomial regression are all common regression algorithms.

What is unsupervised learning?
For the analysis and clustering of unlabeled data sets, unsupervised learning makes

use of machine learning methods. These algorithms, which are referred to as ‘unsupervised’,
find hidden patterns in data without the aid of human intervention. Three key tasks
are performed by unsupervised learning models: (a) clustering, (b) association, and (c)
dimensionality reduction.

Using data mining techniques such as clustering, it is possible to create groups of
unlabeled data that are similar or dissimilar. Similar data points are grouped together
according to the K value in K-means clustering algorithms. This method is useful for
a variety of things, including image segmentation and image compression. Another
unsupervised learning technique is association, which employs a separate set of criteria to
discover connections among the variables in a dataset.

Dimensionality reduction is a learning approach used when the number of features
(or dimensions) in a dataset is too large. It minimizes the quantity of data inputs while yet
maintaining the integrity of the data. To enhance image quality, auto encoders often utilize
this technique to remove noise from visual data before it is processed further.



J. Clin. Med. 2022, 11, 3575 4 of 12

Over the last decade, imaging technology has significantly improved, which has made
it easier for us to apply computer vision technologies for the classification and detection
of diseases [3]. With the advancements in graphics processing units (GPUs) and their
computational power to perform parallel processing, computer vision processing is more
accessible today. Deep learning is also being used for data management, chatbots, and
other facilities that aid in medical practice. Natural language processing (NLP) practices
used in finding patterns in multimodal data have been shown to increase the learning
system’s accuracy of diagnosis, prediction, and performance [4]. However, identifying
essential clinical elements and establishing relations has been difficult as these records are
usually unordered and disorganized. Urology has been at the forefront of accepting newer
technologies to achieve better patient outcomes. This comprehensive review aims to give
an insight into the applications of deep learning in Urology.

2. Search Strategy

In October 2021, Pubmed/MEDLINE, Scopus, Clinicaltrials.gov, Science Direct, Web
of Science and Google Scholar were used to undertake a review of all English language
literature published in the previous two decades (2000–2021). The search technique was
based on PICO (Patient Intervention Comparison Outcome) criteria, in which patients
were treated with AI models (I) or classical biostatistical models (C), and the efficacy of AI
models was evaluated (O) [5].

Specifically, the search was conducted by using a combination of the following terms:
‘artificial intelligence’, ‘AI’, ‘machine learning’, ‘ML’, ‘convolutional networks’, ‘CNN’,
‘deep learning’, ‘DL’, ‘magnetic resonance imaging’, ‘prostate’, ‘prostate cancer’, ‘MRI’,
‘Sorensen–Dice coefficient’, ‘DSC’, ‘area under the ROC curve’, ‘AUC’, ‘Sorensen–Dice
index’, ‘SDI’ and ‘computed tomography’, ‘CT’ [6].

2.1. Inclusion Criteria

1. Articles on the application of deep learning in prostate cancer diagnosis and treatment.
2. Full-text articles, clinical trials and meta-Analysis on outcomes of analysis in Urology

using deep learning.

2.2. Exclusion Criteria

1. Animal, laboratory, or cadaveric studies
2. Reviews, editorials, commentaries or book chapters

The literature review was carried out using the inclusion and exclusion criteria men-
tioned. Articles were screened based on the titles and abstracts. Articles were then selected
and their entire text was analyzed. For further screening of other published literature, the
references list of the selected articles was individually and manually checked.

3. Results
Evidence Synthesis

A total of 224 distinct articles were discovered during the initial search. Following the
initial screening, 97 articles remained, with 64 left after a second screening as related to
applications of deep learning in Urology. Among these articles, 24 were identified to be
solely related to prostate cancer, these abstracts satisfied our inclusion criteria and were then
included in the final review. The summary of all the previous studies from the literature is
shown in Tables 1 and 2 on the diagnosis and treatment of prostate cancer, respectively.

Clinicaltrials.gov
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Table 1. Summary of studies on diagnosis of prostate cancer using deep learning models.

Author Year Objective Sample Size
(n = Patients/Images)

Study
Design Model AUC DSC SDI MAE Sn Sp

A. MRI images

Takeuchi et al. [7] 2018 To predict PCa using DL and
multilayer ANN 334 patients Prospective Stepwise ANN

5-hidden-layers
0.76 (Step

200) N/A N/A N/A N/A N/A

Schelb et al. [8] 2019

To compare clinical evaluation
performance with

segmentation-optimized DL
system in PCa diagnosis.

312 patients;
T2W and diffusion

images used
Retrospective U-Net N/A N/A N/A N/A 96% 22%

Shao et al. [9] 2021

For PCa diagnosis using
ProsRegNet (DL system)

using MRI and
histopathological data.

152 patients;
T2W images and HPE

slices used.
Prospective ProsRegNet and

CNNGeometric N/A
Cohort 1: 0.979
Cohort 2: 0.971
Cohort 3: 0.976

N/A N/A N/A N/A

Hiremath et al. [10] 2021

To detect csPCa using
integrated nomogram using DL,

PI-RADS grading and
clinical factors.

592 patients;
T2W and ADC images

used
Retrospective AlexNet and

DenseNet 0.76 N/A N/A N/A N/A N/A

Hiremath et al. [11] 2020

To assess the test-retest
repeatability of U-Net (DL
system) in identification

of csPCa.

112 patients;
ADC/DWI images

used
Prospective U-Net 0.8 0.8 N/A N/A N/A N/A

Schelb et al. [12] 2019
The use DL algorithm (U-Net)
for detection, localization, and

segmentation of csPCa

259 patients; T2W and
DW images used. Retrospective U-Net N/A N/A N/A N/A 98% 24%

Yan et al. [13] 2021

For deep combination learning
of multi-level features for MR
prostate segmentation using a

propagation DNN

80 patients; only T2W
images used Retrospective MatConvNet N/A 0.84 N/A N/A N/A N/A
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Table 1. Cont.

Author Year Objective Sample Size
(n = Patients/Images)

Study
Design Model AUC DSC SDI MAE Sn Sp

Khosravi et al. [14] 2021

To develop an AI-based model
for the early detection of PCa

using MR pictures tagged with
histopathology information.

400 patients; T2W
images used Retrospective GoogLenet 0.89 N/A N/A N/A N/A N/A

Shiradkar et al. [15] 2020

To find any links between T1W
and T2W MR fingerprinting

data and the appropriate tissue
compartment ratios in PCa and

prostatitis whole
mount histology.

14 patients;
T1W and T2 W

images used
Retrospective U-Net 0.997 N/A N/A N/A N/A N/A

Winkel et al. [16] 2020

To incorporate DL and
biparametric imaging for

autonomous detection and
classification of

PI-RADS lesions.

49 patients;
T2W and DWI used Prospective ProstateAI N/A N/A N/A N/A 87% 50%

B. Pathology

AlDubayan et al.
[17] 2020

To detect germline harmful
mutations in PCa using

DL techniques.
1295 patients Retrospective

Deep
Variant and

Genome
Analysis Toolkit

0.94 N/A N/A N/A CI:0.91–
0.97 N/A

Kott et al. [18] 2021
To apply DL methods on biopsy

specimen for histopathologic
diagnosis and Gleason grading.

85 images
25 patients Prospective 18-layer CNN 0.83 N/A N/A N/A N/A N/A

Lucas et al. [19] 2019
To determine Gleason pattern

and grade group in biopsy
specimen using DL

96 images
38 patients Retrospective Inception-v3

CNN 0.92 N/A N/A N/A 90% 93%
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Table 2. Summary of studies on treatment of prostate cancer using deep learning models.

Author Year Objective Sample Size Study
Design Model AUC DSC SDI MAE Sn Sp

Sumitomo et al. [20] 2020
To predict risk of urinary incontinence

following RARP using DL model based
on MRI images

400 patients Retrospective CNN model 0.775 N/A N/A N/A N/A N/A

Lai et al. [21] 2021
To apply DL methods for auto-segmentation
of biparametric images into prostate zones

and cancer regions.

204 patients;
T2W, DWI, ADC

images used.
Retrospective Segnet 0.958 N/A N/A N/A N/A N/A

Sloun et al. [22] 2020 To use DL for automated real-time prostate
segmentation on TRUS pictures.

436 images
181 patients Prospective U-Net 0.98 N/A N/A N/A N/A N/A

Schelb et al. [23] 2020
To compare DL system and multiple

radiologists agreement on prostate MRI
lesion segmentation

165 patients;
T2W and DWI used Retrospective U-Net N/A 0.22 N/A N/A N/A N/A

Soerensen et al. [24] 2021
To develop a DL model for segmenting the

prostate on MRI, and apply it in clinics as part
of regular MR-US fusion biopsy.

905 patients;
T2W images Prospective ProGNet and

U-Net N/A 0.92 N/A N/A N/A N/A

Nils et al. [25] 2021
To assess the effects of diverse training data on

DL performance in detecting and
segmenting csPCa.

1488 images;
T2W and DWI images Retrospective U-Net N/A 0.90 N/A N/A 97% 90%

Polymeri et al. [26] 2019

To validate DL model for automated PCa
assessment on PET/CT and evaluation of

PET/CT measurements as
prognostic indicators

100 patients Retrospective Fully CNN N/A N/A 0.78 N/A N/A N/A

Gentile et al. [27] 2021
To identify high grade PCa using a

combination of different PSA molecular forms
and PSA density in a DL model.

222 patients Prospective 7-hidden-layer
CNN N/A N/A N/A N/A 86% 89%

Ma et al. [28] 2017 To autonomously segment CT images using
DL and multi-atlas fusion. 92 patients NA CNN model N/A 0.86 N/A N/A N/A N/A

Hung et al. [29] 2019

To develop a DL model to predict urinary
continence recovery following RARP and then

use it to evaluate the surgeon’s past
medical results.

79 patients Prospective DeepSurv N/A N/A N/A 85.9 N/A N/A
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4. Discussion
4.1. Diagnosis of Prostate Cancer Using MRI Images

Eleven studies have evaluated the application of deep learning in diagnosing
prostate cancer.

Takeuchi et al. (2019) developed a DL model to predict prostate cancer using a multi-
layer ANN. The model was trained on images obtained from 232 patients and validated its
accuracy on images obtained from 102 patients. On a test dataset, the model achieved AUC
of 0.76, thereby, suggesting that neural network achieved better results as compared to a
logistic regression model. However, this accuracy needs to be improved to be implemented
in clinical practice [7].

Khosravi et al. (2021) used DL models to differentiate malignant and benign tumors
and high- and low-risk tumors which achieved an AUC of 0.89 and 0.78, respectively. The
study concluded that new images captured did not require manual segmentation and could
be implemented in clinical practice [14].

Hiremath et al. (2020) used diffusion-weighted imaging fitted with monoexponen-
tial function, ADCm, employing a deep learning architecture (U-Net) to investigate the
short-term test-retest repeatability of U-Net in slice- and lesion-level identification and
segmentation of clinically significant prostate cancer (csPCa: Gleason grade group > 1)
(U-Net). The training dataset included 112 PCa patients who had two prostate MRI exams
on the same day. Two U-Net-based CNNs were trained using this dataset. The study
performed three-fold cross-validation on the training set and evaluated its performance
and repeatability on testing data. The CNNs with U-Net-based architecture demonstrated
an intraclass correlation coefficient (ICC) between 0.80–0.83, agreement of 66–72%, and
DSC of 0.68–0.72 for a slice- and lesion-level detection. These findings lay the groundwork
for DL architecture’s test-retest and repeatability in identifying and segmenting clinically
relevant prostate cancer on apparent diffusion coefficient maps. [11].

To summarize, MR images are most commonly used to study the applications of DL
in image-based diagnosis of prostate cancer (PCa). Though the accuracy of the DL models
appears to be satisfactory, the generalizability of the results across varied demographics
still needs to be tested before implementing into general clinical practice.

4.2. Histopathological Diagnosis of Prostate Cancer Using DL Models

Three studies have evaluated the application of deep learning in the diagnosis of
prostate cancer.

Kott et al. (2019) developed a DL algorithm for histopathologic diagnosis. They also
performed Gleason grading of the prostate cancer biopsies. This histopathologic diagnosis
and Gleason grading process are considered lengthy and time-consuming. Using ML
models, this process can be made significantly faster and more efficient. The study was
performed using 85 prostate biopsies from 25 patients with further magnification of up to
20x performed. The study used a deep residual CNN model with fivefold cross-validation.
The DL model achieved 91.5 and 85.4% accuracy at coarse and fine-level classification,
respectively. The study concluded that the model achieved excellent performance for the
diagnosis as mentioned earlier; however, it needs to be tested on a larger sample size for
external validation [18].

Lucas et al. (2019) performed a study using DL models for automatic Gleason pattern
classification to identify grade groups from prostate biopsies. The study used a dataset
containing 96 prostate biopsies from 38 patients. The Inception-v3 convolutional neural
network was trained to generate probability maps. The model has a 92% accuracy in distin-
guishing between non-atypical and malignant regions, with a sensitivity and specificity of
90 and 93%, respectively. The study successfully demonstrates the feasibility of training
CNN models to differentiate between Gleason patterns in heterogeneous biopsies [19].
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The DL models have shown promising results in the histopathological diagnosis of
PCa. This can definitely be added as an adjunct tool for the histopathologists to reduce the
burden in terms of time and workload. However due to lack of external validation of these
models, their applicability cannot be generalized as of yet.

4.3. Diagnosis of Prostate Cancer Using MR Based Segmentation Techniques

Four studies have evaluated the application of DL in the diagnosis of prostate cancer.
Lai et al. (2021) developed a DL CNN model to segment prostate zones and cancer

regions from MRI images. The study was performed using the PROSTATEx dataset contain-
ing MRI scans from 204 patients. A SegNet model was modified and fine-tuned to perform
adequately on the dataset. The study achieved a dice similarity coefficient of 90.45% for the
transition zone, 70.04% for the peripheral zone, and 52.73% for the prostate cancer region.
The study concluded that automatic segmentation using a DCNN model has the potential
to assist in prostate cancer diagnosis [21].

Sloun et al. (2021) performed prostate segmentation of transrectal ultrasound using the
DL model on MRI images. The study used three datasets with MRI-transrectal ultrasound
images collected at different institutions. The study trained a U-Net model on the dataset of
436 images and achieved a median accuracy of 98%. While performing zonal segmentation,
the model achieved a pixel-wise accuracy of 97 and 98% for the peripheral and transition
images. The model can also self-assess its segmentation, allowing it to identify incorrect
segmentations swiftly. The process of performing manual segmentation of prostate MRI
images places a burden on clinicians. The authors concluded that using DL models can
allow for fast and accurate segmentation of MRI images from different scanners [22].

Schelb et al. (2020) produced a comparison of prostate MRI lesion segmentation
between a DL model and multiple radiologists. The study was performed using MRI
images collected from 165 patients suspected to have prostate cancer. The study used U-
Net models trained on the dataset of MRI images to perform segmentation. The mean Dice
coefficient for manual segmentation was between 0.48–0.52, while the U-Net segmentations
exhibited a Dice coefficient of 0.22. The authors concluded that smaller segmentation
sizes could explain the lower Dice coefficients of the U-Net model. They also discuss how
the overlapping lesions between multiple rates can be used as a secondary measure for
segmentation quality in future studies [23].

Soerensen et al. (2021) performed a study to determine if DL improves the speed
and accuracy of prostate gland segmentation from MRI images. The study used images
from 905 subjects who underwent prostate MRI scans at 29 institutions. The study trained
a ProGNet model on 805 cases and tested it on 100 independent and 56 external cases.
The study found that the ProGNet model outperformed the U-Net model. The study also
found that the ProGNet model achieved a Dice similarity coefficient of 0.93, outperforming
radiology technicians, producing results at 35 s/case. The study concluded that DL models
could be used for segmentation in targeted biopsy in routine urological clinical practice [24].

As proven, ProGNet model outperformed not only the U-Net model but also the
radiology technicians in terms of speed and accuracy. However, it should be noted that
authors have not compared the ProGNet model to trained and experienced urologists
and radiologists. Furthermore, the accuracy of the model has to be tested across different
MRI scanners.

4.4. Diagnosis of Prostate Cancer Using CT Images

Four studies have evaluated the application of DL in the diagnosis of prostate cancer
and prostatectomy. Polymeri et al. (2019) used a DL algorithm to automate prostate cancer
quantification on positron emission tomography–computed tomography (PET/CT) scans.
The study looked at the possibility of PET/CT measurements as prognostic biomarkers. The
training of the DL model was performed on CT scan images of 100 patients. In 45 patients
with biopsy-proven hormone-naive prostate cancer, the DL algorithm was validated. The
model was evaluated based on the Sørensen–Dice index (SDI) score. The SDI scores
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achieved were 0.78 and 0.79 for automatic and manual volume segmentation, respectively.
The study demonstrated DL applications in quantifying PET/CT prostate gland uptake
and its association with overall survival. The results obtained showed agreement between
automated and manual PET/CT measurements. The DL model demonstrated that PET/CT
indicators were strongly linked to overall survival [26].

Ma et al. (2017) performed automatic prostate segmentation using DL and multi-
atlas fusion. A dataset of 92 prostate CT scans was used to conduct and assess the study.
When compared to the radiologists’ manual segmentation, the model had a Dice similarity
coefficient of 86.80%. The study concluded that the DL-based method can provide a
valuable tool for automatic segmentation and aid clinical practice [28].

Not many studies have been performed to check the applications of DL models
using PET/CT images to highlight their advantages in the same aspect. However, the
nascent applications appear promising in terms of development of DL-based biomarker
and prognostic models.

4.5. Robot-Assisted Treatment Practices

The study by Hung et al. evaluated the application of DL in the treatment of PCa and
RARP. Hung et al. created a DL model to predict urinary continence recovery following
radical prostatectomy with robotic assistance. The study was performed on images ob-
tained from 79 patients. The study trained a DeepSurv model on the dataset and achieved
a concordance index (C-index) of 0.6 and a mean absolute error (MAE) of 85.9 in predict-
ing continence. The authors concluded that using automated performance metrics and
clinicopathological data, the DeepSurv model could predict continence after the prostate-
ctomy. According to the findings, experienced surgeons had greater continence rates at
3 and 6 months following the prostatectomy [29].

The application of automated performance metrics (APMs) and its impact on clinical
outcome variables was very well highlighted in this study, underlining the evidence that
surgical skills impact clinical outcomes. However, this was a single-institution study and
requires external validation for the same.

4.6. Strengths, limitations, and Areas of Future Research

A wide variety of DL models were used to diagnose and treat prostate cancer. The
review contains various implementations of DL which benefit the urologists. A summary
of the various models used can be viewed in the table as shown (Table 3). One of the major
drawbacks of the present study is the small dataset and lack of federated learning approach.
Federated learning models can be implemented to improve the data collection and sharing
process for research purposes. Increasing the sample size may improve the performance of
multilayer DL models as a result of more sufficient training. If the sample size is increased,
neural networks with more hidden layers and nodes can perform better, avoiding early
over-fitting. An increase in the variables used for prostate cancer detection can also augment
the performance of a neural network model. With advanced DL models such as the single
shot detector model, it is possible to make predictions on a live video feed during treatment.
The live feed DL models can also program robots to help during surgeries.

Table 3. Summary of common deep learning models used in PCa management.

Diagnosis Using
MRI Images

Diagnosis Using
CT Images

Treatment Using
MRI Images

Treatment Using
CT Images

DenseNet NiftyNet
SegNet

7-Hidden Layer CNN

U-Net InceptionV3 U-Net

AlexNet
Stepwise Neural

Network with five
hidden layers U-Net ProgNet

MatConvNet 18-layer CNN
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5. Conclusions

As per our review, the most common application of DL techniques has been in the
diagnosis of prostate cancer using MR image-based segmentation techniques. Although
the ProgNet model outperformed trained radiologists in prostate cancer detection, we
cannot generalize these results. In conclusion, for clinical application, the DL models’ per-
formance may still need improvement. As the performance of these models increases, they
will become much more implementable, with many models surpassing human accuracy
and efficiency.
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