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Abstract

The retina is a complex and fragile photosensitive part of the central nervous system which is 

prone to degenerative diseases leading to permanent vision loss. No proven treatment strategies 

exist to treat or reverse the degenerative conditions. Recent investigations demonstrate that cell 

transplantation therapies to replace the dysfunctional retinal pigment epithelial (RPE) cells and 

or the degenerating photoreceptors (PRs) are viable options to restore vision. Pluripotent stem 

cells, retinal progenitor cells, and somatic stem cells are the main cell sources used for cell 

transplantation therapies. The success of retinal transplantation based on cell suspension injection 

is hindered by limited cell survival and lack of cellular integration. Recent advances in material 

science helped to develop strategies to grow cells as intact monolayers or as sheets on biomaterial 

scaffolds for transplantation into the eyes. Such implants are found to be more promising than 

the bolus injection approach. Tissue engineering techniques are specifically designed to construct 

biodegradable or non-degradable polymer scaffolds to grow cells as a monolayer and construct 

implantable grafts. The engineered cell construct along with the extracellular matrix formed, can 

hold the cells in place to enable easy survival, better integration, and improved visual function. 

This article reviews the advances in the use of scaffolds for transplantation studies in animal 

models and their application in current clinical trials.
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1. Introduction

The human retina, which is situated in the posterior part of the eye is a transparent, light-

sensitive tissue containing multiple cellular layers. It originates from the anterior neural 

tube during early embryogenesis as a part of the central nervous system [1]. The retina 

is composed of the light transducing neural retina, as well as the supportive blood-retinal 

barrier. In the neural retina, after absorption of photons of light energy by the photoreceptors 

(PR)—the rods and cones, the visual information is converted into chemical signals and 

then to neural signals that are transmitted to retinal ganglion cells (RGC). The RGC axons 

form the optic nerve that transmits this information to the brain visual centers where the 

image is processed [2]. The blood–retina barrier consists of a polarized monolayer of 

hexagonal cells—the retinal pigment epithelial cells (RPE) which support and nourish the 

PR; Bruch’s membrane (BM)—a specialized basement membrane which transports nutrients 

to the retina, and retinal vascular endothelial cells of the underlying choroid [3].

Although there are variations in the pathologies typical of retinal degenerative diseases 

(RDs) including age-related macular degeneration (AMD), retinitis pigmentosa (RP), and 

Stargardt’s disease (SD), it is currently considered that RPE dysfunction and the resultant 

deterioration of photoreceptors are the most common pathologies. Furthermore, BM may 

thicken and alter its composition, resulting in compromised nutrient transport to the 

retina. Degeneration of RPE and photoreceptors result in significant visual disability 

which eventually leads to irreversible vision loss. The existing therapies can only delay 

the progression of retinal diseases, except for anti-angiogenic treatments for patients 

with neovascular age-related macular degeneration [4]. Currently, there are no established 

treatment strategies to completely halt the degenerative process or reinstate regular retinal 

function to restore vision. Although electronic retinal interface devices [5] and gene 

therapies [6] are under clinical trials, the extent of achievable results is likely a long way 

from permanent visual recovery.

In many instances of retinal degeneration, even after RPE and PR loss, the inner layers of 

the retina with its intricate neural connectivity maintain their architecture for an extended 

period. If a population of healthy RPE/PR are delivered to the subretinal space, they can 

survive and integrate with the host retina to restore vision. Based on this, a cell replacement 

strategy is a promising approach for the treatment of AMD and RP. Reports from initial 

clinical trials involving transplantation of human embryonic stem cell-derived RPE (hESC-

RPE) as suspension [7,8] are encouraging and found to be safe for the treatment of AMD 

and SD. Simple bolus injection of stem/progenitor cell suspension into subretinal space may 

result in injection reflex and poor cell localization. The compromised cell survival will lead 

to ineffective cell integration into the damaged retina. Even though cells appear to be well 

tolerated in relatively short-term animal studies, non-integrated cells will lead to potential 
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complications such as subretinal gliosis [9,10]. To ensure that the cells are in correct 

orientation and proper interface with the photoreceptor cells, it is desirable to transplant cells 

as a preformed monolayer along with a supporting substrate. A recent implantation study 

used, stem cell-derived RPE grown on a bioengineered scaffold (RPE patch), that helps to 

maintain the polarity and laminar structure of the transplanted RPE cells [9–12]. Results 

of the on-going Phase1/2a clinical trials indicate good safety and tolerability for surgical 

implantation of RPE grown on parylene scaffolds [13].

In addition to RPE transplantation, recent advances in the development of pluripotent stem 

cell (PSC)-derived 3D neural retina in the culture dish and construction of cellular, three-

dimensional structures using robotics and 3D bioprinting have provided new insights in the 

field of tissue engineering of the retina. In this review, we discuss various tissue engineering 

strategies for retinal repair using stem cell-derived grafts.

2. Cell Types Used for Therapies in the Eye

Initial transplantation studies using autologous RPE sheets and RPE isolated from fetal 

or adult donor eye tissue showed “proof of concept” for photoreceptor preservation and 

visual functional improvement in human patients [14–21]. Later, transplantation of different 

stem cell suspensions of the neuronal and non-neuronal lineage including mesenchymal 

stem cells from umbilical cord [22,23], bone marrow [24–26], adipose tissue [27], human 

neural progenitor cells [28], embryonic stem cell (ESC)-derived neural progenitors [29], iris 

pigment epithelium (IPE) derived cells [30,31], and RPE [32,33] were shown to provide 

trophic support and visual functional improvement in preclinical models of RD diseases. 

Protocols to differentiate human embryonic stem cells (hESC) and induced pluripotent stem 

cells (iPSC) to RPE, retinal progenitor cells (RPC), photoreceptor precursor cells, and retinal 

organoids (RO) have been successfully established by various investigators [34–41].

The RPE cells derived from pluripotent stem cells (PSC) form a monolayer of pigmented 

cells and show typical features of RPE such as polarity, tight junction formation, and 

phagocytosis of photoreceptor outer segments [42–44]. Transplantation of pluripotent 

stem cell-derived retinal cells including RPE, PR, and RO into animal models of retinal 

degenerative diseases demonstrated their effectiveness in supporting visual function [45–

52]. Clinical trials based on subretinal implantation of hESC-RPE and iPSC-RPE as a 

suspension in AMD and Stargardt’s disease patients showed possible RPE engraftment 

without significant adverse events [7,53]. There are at least three different clinical trials 

currently progressing at different centers but they are yet to publish results based on long-

term assessments [54–56].

Previous studies have shown that the transplantation of healthy photoreceptor precursors into 

the diseased retina improves visual function [57–59]. Initial investigators considered this 

as a result of the donor cell integration into the retina, but later studies proved that donor 

photoreceptors take part in a cytoplasmic exchange with the host photoreceptors instead of 

“true integration” [60–62]. Retinal progenitor cells (RPCs) found in the developing neural 

retina located in the inner layer of the optic cup are capable of differentiating into diverse 

retinal cell types. Human clinical trials conducted in patients with RP using fetal derived 
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RPCs (fRPCs) demonstrated acceptable safety and tolerability of RPCs [63]. The results of 

two other clinical trials are on the way (NCT02464436, NCT03073733).

Recent studies show that 3D retinal organoids (ROs) developed from iPSCs and ESCs 

can produce retinal progenitors that differentiate into RPE, PR, inner nuclear layer (INL) 

neurons, and ganglion cells (RGCs) [64–67]. In preclinical studies, RO-derived retinal sheets 

formed structured outer nuclear layers (ONLs) with inner and outer segments [49,51,68]. 

Transplantation of PRs alone is also appealing but so far only a few protocols to produce 

PRs are suitable to use in clinical studies [69].

Identifying the right disease stage for cell replacement is an important factor that determines 

the success of the therapy. In AMD, during the initial stages, only the BM and RPE 

are affected whereas the photoreceptors (PRs) remain preserved. In this scenario, only 

RPE replacement may be necessary to cure the disease condition. Combined BM-RPE-PR 

transplantation may be required for visual recovery in advanced stages of the diseases where 

the retina is irreversibly damaged (both PR and RPE are dysfunctional).

3. Tissue Engineering of the Retina

The environment in which the cells grow and mature can influence their survival and 

functionality after transplantation. Tissue engineering of the retina is based on the concept 

that the transplantation of normal healthy cells derived from various stem cell sources needs 

to be implanted as an intact layer or sheet rather than injected as a suspension. Previously, 

subretinal delivery of cells through bolus injection has laid the groundwork and provided 

the “proof of concept” that healthy donor stem and progenitor cells can be transplanted 

into a diseased retina to contribute to visual functional recovery [70,71]. These preclinical 

studies emphasized the requirement of improved cell delivery systems to enhance donor cell 

survival, integration, and neural connectivity.

Advanced AMD is characterized by complete loss of PRs, dysfunctional RPE, and abnormal 

BM. BM is a 2–4 μm thick extracellular matrix (ECM) composed of collagen types I 

and IV, laminin, fibronectin, hyaluronic acid, heparan sulfate chondroitin/dermatan sulfate, 

and elastin [72]. The specialized morphology of BM facilitates the reciprocal exchange 

of nutrients to and from the retina. In the diseased state, the BM show increased lipid 

body accumulation and a higher level of collagen cross-linking [73]. The degenerating 

RPE monolayer and its disrupted tight junctions further alter the BM morphology. These 

age-related changes result in decreased adhesion and survival of transplanted donor cells 

[12]. Several groups attempted to resurface BM to facilitate RPE attachment. Although 

coating the BM with a mixture of laminin, fibronectin, and vitronectin improved cell 

survival and phagocytosis of fluorescein isothiocyanate (FITC)-labeled bovine photoreceptor 

outer segments in both adult RPE and fetal RPE, the improvement was not comparable to 

healthy BM [74].

Transplantation of healthy RPE/PR seeded in a carefully designed scaffold that can mimic 

the BM morphology and properties can better rescue the deteriorating visual function 

[9]. The central fovea has a neural retina thickness of 100 μm whereas the BM is only 
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5 μm [75]. In general, the ideal scaffold should be biocompatible, nonimmunogenic, 

and mechanically robust enough to resist manipulation during implantation. Scaffolds 

need to be thin enough to allow the exchange of nutrients and metabolites between the 

choriocapillaris and the retina [76]. After transplantation, it should not lead to physical 

distortion of the photoreceptor layer. Low elasticity of the material prevents adverse events 

like retinal detachment, retraction, or visual distortion. Carefully designed, cutting-edge 

biomaterials with fine-tuned topographical properties and micro/nanopatterned structures 

with extracellular matrix (ECM) properties can hold stem and progenitor cell populations 

effectively and help to deliver them as a retinal patch into the subretinal space.

Different types of biomaterials have been used to design scaffolds for retinal tissue 

engineering. This includes natural polymers, synthetic polymers, hybrid polymers, 

decellularized tissues, and thermoresponsive hydrogel polymers.

4. Biomaterials and Scaffolds Used for Tissue Engineering

4.1. Natural Biomaterials Used as Scaffolds

Biomaterials mainly include ECM proteins and polysaccharides which possess bioactive 

properties. The natural polymers used for retinal tissue engineering are easily available 

and include collagen types I, III, and IV, gelatin, alginates, laminin, fibronectin, matrigel, 

silk fibroin, and vitronectin. These scaffolds constitute nanofibers that have very similar 

physiological properties as BM in terms of morphology, mechanical properties, protein 

concentrations, and biocompatibility. Collagen I is a major component of the inner 

collagenous layer of BM and studies have proved them as a viable substrate for RPE 

cell reattachment [77]. Usually, this polymer is too thick for subretinal implantation, hence 

specially designed ultrathin (7 μm) membranes were designed for testing. Thumann et al. 

[78] showed that ultrathin collagen membranes can remain stable for at least 10 weeks and 

completely degrade within 24 weeks. By then the transplanted RPE were able to restructure 

the BM. In another study, collagen films supported by Teflon showed RPE attachment and 

viability [79]. Human primary RPE cells and the immortalized retinal pigment epithelial 

cell line (ARPE-19) have been previously cultured on equine, bovine, and rat collagen type 

I membranes as well as on human collagen type I thin films [80,81]. Gelatin, a denatured 

form of collagen proteins, is advantageous over collagen because of lower immunogenicity, 

crosslinking ability, and better solubility in aqueous systems. Gelatin membranes in the 

shape of a sandwich with encapsulated retinal grafts were used for transplantation studies 

in rabbits to demonstrate biocompatibility, improved survival, and formation of laminar 

structures [82]. Gelatin membrane cross-linked with carbodiimide when used for retinal 

sheet implantation was found to be more stable against hydrolysis and mechanical stress 

[83].

Alginate is an anionic polysaccharide that is usually found in the cell walls of brown algae. 

In a study, a thin film of purified alginate was used to demonstrate its ability to support 

the growth of RPE cells and their high proliferative rates [84]. In another study, alginate 

beads were used to demonstrate RPE cell sustenance and proliferation [85]. An arginine-

glycine-aspartic-alginate (RGD-alginate) scaffold demonstrated feasibility for cell derivation 

and transplantation of RPE and neural retina [86]. Bombyx mori silk fibroin (BMSF) 
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that possesses unique structural properties and mechanical strength, is another suitable 

candidate to be used in the eye [87]. BMSF pre-coated with vitronectin is used to fabricate 

a membrane up to 3 μm in thickness as a carrier substrate for human RPE transplantation. 

Although the cells were grown on BMSF for approximately 8 weeks with expressing RPE 

characteristics, the duration required to establish the culture was comparatively long [88].

Recent advances in decellularized scaffold techniques are expected to better preserve 

tissue architecture and chemistry. Kundu et al. [89] used ionic detergents to decellularize 

bovine eyes and processed them into stable thin films. The decellularized matrix-supported 

adherence and proliferation of human RPCs. The gene expression of CRX, ROM1, 

RHODOPSIN, and NRL on these retinal films indicated photoreceptor differentiation [90]. 

In another study, an amniotic membrane was used as a BM substitute, in which it supported 

RPE ingrowth in the pig eyes with choroidal neovascularization [90]. Areas of hypo and 

hyperpigmentation observed in this study were attributed to the migration of RPE cells into 

the affected region in the presence of an amniotic membrane. Interestingly, the amniotic 

membrane was not stated as being beneficial or detrimental to choroidal neovascularization, 

as there was an initial hemorrhage but no additional leakage [90].

4.2. Synthetic Biomaterials Used as Scaffolds

Synthetic scaffolds have better mechanical properties that can resist the transplantation 

procedure. Suitable bulk properties can be obtained in a controlled way by modifying the 

porosity, topographical parameters, and dimensional shape. Synthetic scaffolds are more 

advantageous than natural scaffolds because of their reproducibility and longer shelf life. 

Biocompatible, inert materials can be free from immunogenicity and their biodegradation 

rates can be manipulated. A number of polymers meet many of these requirements 

and have been approved by the food and drug administration (FDA) for an array of 

biodegradable suture applications including poly(lactic-co-glycolide acid) (PLGA), poly(l-

lactic acid) (PLLA), PLLA–PLGA copolymer systems, poly(glycerol-sebacate) (PGS), 

polydimethylsiloxane (PDMS), polydimethylsiloxane (PDMS), poly(methyl methacrylate) 

(PMMA), poly(ethylene glycol) diacrylate (PEGDA), parylene-C and polycaprolactone 

(PCL).

PLGA is a biodegradable polyester-based polymer having remarkable mechanical 

properties, adjustable degradation rates, and good processability [91]. It degrades by 

hydrolysis of ester linkages forming lactic and glycolic acids which are further degraded 

in the body. By varying the amount of lactic and glycolic acids, the degradation rate 

can be controlled. A clinical-grade PLGA scaffold was seeded with AMD patient–derived 

iPSC-RPE to demonstrate safety and cell integration in the eye [45]. This cell patch showed 

improved efficacy in rodent and porcine preclinical models. Concurrent PLGA scaffold 

degradation and ECM production by the donor cells aided integration with the host BM 

[45]. Biodegradable PCL scaffolds are the thinnest scaffolds available for retinal tissue 

engineering. This will act as a permeable and slowly degrading transient structure without 

any pathological increase in local acidity [92]. Bernards et al. [93] conducted in vivo studies 

in rabbits to assess the tolerance and durability of micro and nanostructured PCL thin films. 
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Adverse tissue responses like fibrosis or biodeposits were not observed and a good ocular 

tolerance was observed.

Poly (trimethylene carbonate) (PTMC) is flexible and elastic in nature and a biodegradable 

polymer. In one of the studies, PTMC film was compared with an often-used biodegradable 

polymer namely poly (D, L-lactide) (PDLLA) film. The mechanical properties of PTMC 

film were found to be comparable to that of native Bruch’s membrane (BM) and it also 

supported the formation of a functionally active hESC-RPE monolayer. On the other 

hand, PDLLA did not support the formation of hESC-RPE merging monolayers and had 

inappropriate mechanical properties when used for in vivo applications [94].

Synthetic polymers are generally hydrophobic in nature and usually not favorable for cell 

attachments. Oxygen-plasma processing, hydrogel blending and surface modifications such 

as coating surface with extracellular matrix proteins allow greater cell adhesion and survival. 

Tao et al. [95] designed thin PMMA scaffolds of 6 μm that were easy to implant and with 

reduced risk of trauma after transplantation into the rodent eyes. RPC on laminin-coated 

porous scaffolds resulted in increased cell survival and the delivery could be localized to 

specific retinal regions. Redenti et al. [96] generated a laminin-coated novel biodegradable 

nanowire PCL scaffold on which mouse RPCs were cultured. A microfabricated, elastic 

poly (glycerol sebacate) (PGS) scaffold was found suitable for initial RPC differentiation in 

vitro. Subretinal delivery into C57bl/6 and rhodopsin knockout mice allowed the passage 

of nutrients and cells through its 50 μm diameter pores. Polymer topology allowed 

photoreceptor maturation and migration of RPC into the retina demonstrating localized 

delivery of a predetermined number of cells to a specific region of the damaged retina. 

PGS has proved to be a potential scaffold for RPC delivery as indicated by high levels of 

survival, adherence, and proliferation [97]. Lavik et al. [98] showed that RPCs seeded on 

PLLA-PLGA copolymers, down-regulated immature “stemness” cell markers (Hes5, nestin, 

Hes1, and Pax6), and upregulated mature retinal markers such as glial fibrillary acidic 

protein (GFAP), nevertheless, there was no photoreceptor-specific expression [98].

Parylene-C is a class VI biocompatible polymer having several biomedical applications 

including the fabrication of Argus® II Retinal Prosthesis System [99]. Our preclinical and 

translational studies showed that composite implant of RPE and parylene is a feasible option 

to rescue visual function [9,13,100,101]. The parylene material used was semipermeable 

to molecules of a certain molecular weight when its thickness was reduced to a sub-

micron range. Lu et al. [102] designed a mesh-supported sub-micron parylene-C membrane 

(MSPM). To get better cell adherence, both sides of the membrane were treated with low-

power oxygen plasma and coated with matrigel. RPE cells demonstrated good adherence 

and showed epithelial-like morphology. They developed microvilli, right polarization, and 

tight intracellular junctions [102]. Survival of the transplanted RPE cells in the subretinal 

space of Royal College of Surgeons (RCS) rats up to 21 weeks post-implantation was 

demonstrated by Thomas et al. [100]. The implanted hESC-RPE cells remained as a 

monolayer on the surface of the parylene substrate and performed photoreceptor outer 

segment phagocytosis (Figure 1). A partially blinded randomized study was conducted on 

Yucatan minipigs before human clinical trials. Results showed structural preservation of 

the implant; the RPE cells remained intact and survived in the form of a monolayer [103]. 
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Following this, an RPE+ parylene implant named California Project to Cure Blindness–

Retinal Pigment Epithelium 1 (CPCB-RPE1) was developed for use in clinical studies which 

are currently being conducted in patients with dry AMD.

In another in vitro study, specifically designed porous honeycomb PLA films coated with 

collagen IV were seeded with pigmented hESC, showed cell survival and proliferation 

during the 6 weeks of the study period [104]. A biomimetic scaffold sheet of plasma 

modified polydimethylsiloxane (PDMS) coated with laminin was found to facilitate the 

functional maturation and survival of RPE cells [105]. PCL–gelatin scaffold, poly(lactic-co-

glycolic acid) (PLGA)-collagen type I, poly(ethylene glycol) diacrylate (PEGDA)- RGDS 

peptide motif (arginine-glycine-aspartic acid-serine) are the other polymer types shown to 

support RPE survival and maturation [106–108].

Human retinal progenitor cells (hRPCs), isolated from the fetal retina, need extracellular 

matrix proteins such as fibronectin or laminin for attachment and survival. A synthetic, 

xeno-free vitronectin-mimicking surface (Synthemax) was fabricated by Baranov et al. to 

grow RPCs; RPCs survived and self-renewed in the in vitro condition [109]. In another 

study, the authors used xeno-free synthetic RGD peptides to coat the PCL scaffold. The 

coating promoted the differentiation of rods in vitro but not the differentiation of cones or 

other retinal cell types. The expression of stem cell markers KLF4 and N-MYC remained 

high due to which this construct is considered undesirable for human applications [110].

4.3. Biohybrid Scaffolds

Hybrid scaffolds have the advantage of combining the properties of both natural and 

synthetic nanofibers by incorporating both materials to make composite scaffolds. This 

combination approach is different from coating the synthetic scaffolds with natural materials 

like extracellular matrices or proteins. The combination approach allows tailoring scaffold 

properties of the synthetic component and gaining natural properties of proteoglycans, 

proteins, and glycosaminoglycans from the natural polymer. Thomson et al. [111] 

manufactured five blends of PLLA with PLGA to evaluate a variety of suitable scaffolds 

for RPE transplantation. The blend with a 25:75 (PLLA:PLGA) ratio was found to be the 

thinnest and most porous with minimal cell death [111].

A novel scaffold fabricated from Silk Fibroin (SF) and Poly(L-lactic acid-co-ε-

caprolactone) (PLCL, 1:1) showed RPC growth, proliferation, and differentiation into 

photoreceptors [112]. A cationic chitosan-graft-poly(ɛ-caprolactone)/polycaprolactone (CS-

PCL/PCL,20/80) hybrid scaffold produced using electrospinning fabrication technique 

demonstrated great RPC proliferation [113]. Previous studies have demonstrated that 

PCL with laminin and PCL with chitosan electrospun nanofibers, can improve cell 

adhesion, proliferation, or differentiation and promote the expression of genes specific to 

photoreceptor cells or bipolar cells [96,113,114]. Issues related to reproducibility and batch 

variability while using natural polymers exist in the combination approach. Future studies 

should address these issues along with effective measures to control the biodegradability 

and immunogenicity of the by-products of combination scaffolds. A summary of different 

biomaterials used for retinal tissue engineering is included in Table 1.
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4.4. Scaffold Free Cell Sheets Using Thermoresponsive Polymers

Thermoresponsive polymers are stimuli-responsive smart materials that show reversible 

hydrophilicity/hydrophobicity around a critical temperature [115] (Figure 2). This can 

be used to prepare cell monolayers or sheets for implantation without any supporting 

matrix. The approach can enable the preparation of intact, scaffold-free monolayer cell 

sheets along with the deposited ECM through phase separation. During transplantation, 

the ECM supports faster attachment of host tissue without any additional coating. Poly(N-

isoproplyacrylamide) (PNIPAAm) is one of the most popular thermoresponsive polymers 

which allows cell sheet harvest by temperature reduction from 37–20 °C [116]. Kubuta 

et al. [117] has shown that RPE forms cell sheets over PNIPAAm and exists as a 

monolayer structure with intact cell-to-cell junctions after transplantation [117]. Functional 

three-dimensional (3D) tissues can also be fabricated using thermoresponsive polymers by 

layering cell sheets. Micro-patterning technology combined with cell sheet technology can 

be used to create more complex 3D functional tissues [118].

4.5. Co-Graft of RPE and Retinal Organoid

During advanced stages of AMD, when both PR and RPE are lost, RPE replacement 

alone may not rescue vision. Retinal repair at this stage requires transplantation of both 

tissues. Designing better models of photoreceptor-RPE interaction for transplantation is an 

important goal that needs an urgent solution, for the treatment of advanced geographic 

atrophy. Retinal organoids (ROs) are a considerable source of photoreceptor precursor cells, 

but they lack a continuous and mature layer of RPE [119]. Using a co-graft made of RO 

sheet and RPE is beneficial since it can address both the lack of photoreceptors and RPE. 

In our lab, a composite graft made of RO sheets and polarized RPE sheets cultured over 

parylene is used as a composite implant to determine its potential to repair retina and rescue 

vision(unpublished data) in preclinical animal models of retinal degeneration (Figure 3).

5. Other Complex Tissue Engineering Approaches

Drop casting [120], solvent casting [120], electrospinning [113], soft lithography [120], and 

microfabrication [97] are some of the techniques conventionally used to produce scaffolds 

for retinal repair. These methods can be used to fabricate porous scaffolds. The pore 

size and porosity can be controlled by choosing the correct particle size and the right 

number of added particles. The robotic deposition is an upcoming technology in tissue 

engineering for computerized and reproducible patterning of ultrathin membranes for cell 

delivery [115]. This will allow controlled cellular deposition in micrometer levels. Cell 

adhering surfaces can be manipulated to tailor the alignment and morphology of the attached 

cells through the introduction of cell-aligning grooves. The viable cells are delivered 

through a bio-ink which consists of a biocompatible polymer [121]. In 3D bioprinting, 

the components are fabricated by layers directly from a computer-assisted design file 

[120]. 3D bioprinting allows combining cells, biomaterials, and growth factors to mimic 

the natural tissue characteristics. Conventional methods lack precision and the ability to 

create constructs having complex designs. Since the structure of the retina is complex with 

a heterogeneous cell population and degenerative diseases affecting photoreceptors, RPE, 

choriocapillaris, and BM; 3D bioprinting technology can be applied to repair the damaged 
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retinal layers. Using 3D bioprinting, Shi et al. printed a retina model composed of a PCL 

ultrathin membrane, Y79 cell-laden alginate/pluronic bio-ink, and ARPE-19 cell monolayer 

with potential applications in drug delivery, disease mechanism, and treatment method 

discoveries [122]. In another study, to develop an in vitro retina model, an inkjet bioprinting 

system was applied to PR cell layers placed on top of bioprinted RPE. Results showed 

well-positioned layered structures expressing their structural markers. Human vascular 

endothelial growth factors were released from RPE printed layer confirming a functional 

RPE monolayer obtained by bioprinting [123].

6. Current Clinical Trials Using Biomaterial Scaffolds

In a Phase1/2a clinical study, Kashani et al. [13] implanted clinical-grade hESC-RPE 

grown on 3.5 mm × 6.25 mm parylene membrane substrate (CPCB-RPE1) in five patients 

suffering from geographic atrophy (GA) associated with advanced non-neovascular AMD. 

Postoperative findings demonstrated that there is no progression of vision loss. In one eye, 

the improvement was seen by 17 letters, and improved fixation was seen in two eyes. The 

appearance, size, position of the implant also did not change, and no adverse events were 

noted [13]. Da Cruz et al. and his team engineered a 6 mm × 3 mm RPE patch which 

constitutes of differentiated hESC derived RPE monolayer placed on a human-vitronectin-

coated polyester membrane (polyethylene terephthalate, PET). The patch delivered to the 

subretinal space of the retina in patients with AMD using a microsurgical tool survived and 

integrated with the host retina. There was a focal improvement in photoreceptor anatomy 

over the transplant in both patients with a visual acuity improvement of 15 letters or more 

[124].

In another clinical trial study from RIKEN Center for Developmental Biology (Japan), 

iPSC-RPE cells were prepared as a sheet by growing them on collagen support. After 

confluence, the cells were treated with collagenase to obtain a cell sheet on its own ECM. 

The cell sheet was transplanted along with immunosuppression in a patient suffering from 

neovascular AMD. When it was assessed at one year, the sheet remained intact, but the 

best-corrected visual acuity had neither improved nor worsened. However, the trial was 

forced to stop later because of mutations noticed in the second patient’s iPSCs and due to 

changes in the regulatory rules in Japan [53]. In all the above clinical trials, specialized 

surgical tools and devices were used for implant delivery. These devices minimized the 

extent of the retinotomy and allowed precise positioning [125,126]. The main endpoints of 

these studies were safety and some efficacy. In future studies, large multicentral clinical 

trials with more patients are needed to measure the efficacy and statistical significance of 

advanced phase clinical trials.

7. Challenges and Future Directions

Transplanted cells in the retina perform better in terms of physiology and cell survival when 

they are supported by a scaffold, compared to cell suspension. Support from factors provided 

by a cell monolayer (such as extracellular matrix and adhesion molecules) can help the cells 

to function better when transplanted along with the substrate. There are different methods to 

construct a scaffold including spun, machined, printed, assembled stepwise, or casted. New 
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methods to create microscale niches for cocultured stem cells are also being explored. In 

the future, robotic and 3D bioprinting will allow several multiple types of cells and tissue 

layers to be combined with new generation scaffolds, to construct complex implants. Many 

scaffolds discussed here have not been assessed in vivo and therefore, evaluation of each 

type of scaffold is required in animal models to establish “the proof of concept”. Implanting 

polymer scaffolds thicker than the size of the retina may result in retinal trauma and 

detachment during surgery or during the post-surgery period. It is also important to rule out 

inflammation caused due to scaffolds and their by-products. Using fast degrading polymers 

for clinical applications is limited mostly due to toxicity issues [127]. Even though many 

fast degrading polymers are in the development stage, slow degrading polymers might show 

lesser adverse events after transplantation. PLGA and PGA have faster rates of degradation 

compared to PCL or PLA polymers (over 2 years).

Natural polymers have limited processability and it is difficult to control their batch to 

batch variability and mechanical properties. There can be changes in the constituents of 

natural polymers with age which can cause accumulation of debris in BM leading to 

the dysfunction of the transplanted cells [73]. The poor mechanical properties of most 

of the natural polymers make them difficult to handle surgical procedures. Methods like 

cross-linking are used to improve mechanical properties but this can make them thicker, 

poorly permeable, and non-biodegradable. Transplantation of tissue-engineered scaffolds 

into the retina needs immunosuppressants at least provisionally until the blood-retinal barrier 

heals [128]. In the future, different HLA-matched, genetically screened, cGMP grade PSC-

derived cells from the initial passages can be made available in cell banks, which will make 

cross-matching easy, to find the most suitable cells to avoid an immune response. Bringing 

together appropriately layered RPE with the multi-layered neural retina and establishing 

connections with the retinal ganglion cells for the visual signals to reach the brain through 

the optic nerve are the major challenges in tissue engineering the retina. Fine-tuning of 

the combined aspects of advancements in material science, stem cell biology, and clinical 

expertise along with the inputs from the ongoing clinical trials can resolve the hurdles in 

developing a final clinical-grade protocol for the therapy of retinal degenerative disease.

8. Conclusions

Retina tissue engineering is expected to make significant contributions to the treatment of 

human blindness, especially for RD diseases in which RPE and/or PRs need to be replaced. 

Most of the current clinical trials are in the early I/IIa phases. There is still a long way 

to go before these findings can be applied to clinical practice. As the confirmed biosafety 

and feasibility of RPE and RPC transplantation has laid a solid foundation for vision 

repair, the next step is to enhance the visual improvements observed in RD patients. There 

are still restrains regarding the appropriate cell type and method to be used to improve 

neural integration with the host retina. Establishing robust and reproducible protocols for 

the production of cGMP-grade hPSCs derived RPE/organoids from stem cell banks, with 

normal karyotype without genetic abnormalities is a primary requirement. In the future, the 

concept of making combinations of RPE/PR/BM microscale niches using 3D bioprinting 

can be a suitable approach to bring functional (synaptic) integration with the host neural 

circuitries leading to improved visual function.
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Figure 1. 
Histologic assessment of Mesh-supported submicron parylene C membranes (rMSPM)+ 

Vitronectin and California Project to Cure Blindness–Retinal Pigment Epithelium 1(rCPCB-

RPE1) implants in Royal College of Surgeons (RCS) rats. Representative hematoxylin eosin 

(HE) staining images of rat retina after implantation. Implanted (a) parylene membrane 

(rMSPM+ Vitronectin) and (b) rCPCB-RPE1 in the subretinal space (large white arrow), 

surviving outer nuclear layer (ONL) (red arrows), and an area showing some cellular 

reaction (white stars). Relatively intact host retina, elevated and wavy inner nuclear 

layer (INL) and focal loss of INL cells can be observed in both (a,b). The choroidal 

layer that appears to be separated from the remaining retina is considered a histologic 

artifact. (c) Immunostaining of TRA-1–85/RPE65 shows implanted hESC-RPE cells (white 

arrowhead). (d) Rhodopsin immunostaining showing rhodopsin-positive phagosomes inside 

the implanted RPE65-positive hESC-RPE cells (small white arrow pointing to phagosomes) 

(reprinted with permission from Thomas et al., 2016).
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Figure 2. 
Diagram illustrating the concept of temperature-dependent cell-sheet detachment. (a) 

Preparation of thermoresponsive polymer; (b) Cell seeding into the polymer at a temperature 

below 32 °C (c) Schematic diagrams for the interactions of the thermoresponsive surface 

with the cells growing on it (d) Cell sheet detachment from the thermoresponsive cell 

culture dish, where the cell sheet retains the extracellular matrix and cell–cell junctions.
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Figure 3. 
Tissue- engineered RPE-Retinal organoid co-graft transplantation into subretinal space of 

RCS rats (a) schematic representation, showing the transplantation of RPE-RO cograft into 

the degenerated retina. After transplantation to the subretinal space, both pieces integrate 

to repair a damaged retina. GCL: ganglion cell layer, IPL: inner plexiform, INL: inner 

nuclear, OPL: outer plexiform, ONL: outer nuclear, OS: outer segments, RPE: retinal 

pigment epithelium, BM: basement membrane. (b) Immunohistochemical staining showing 

RPE-RO co-graft integration into the degenerative rat retina, 3 months post-implantation. 

(i) in (b) co-graft (red nuclei) in subretinal space of rat. The transplant has developed 

rosettes. White arrows: migrated donor cells in the host (ii) in (b) bestrophin (green) shows 

donor RPE (red arrows) and host RPE (blue arrows). (c) Ultrasound images after ROE-RO 

cograft transplantation. (i) in (c) ultrasound image of a co-graft observed during fundus 

examination of RCS rat- 3 months post-implantation) (ii) in (c) vertical OCT B-scan image 

passing through the transplant area. Blue arrow: RPE layer on synthetic Bruch’s membrane, 

white arrow: organoid layer above RPE. Here the RPE-RO co-graft area appears like a 

normal retina whereas the outside area (indicated by the red arrow) shows considerable 

loss of retinal thickness. (iii) in (c) Vertical OCT B-scan image of another RPE-RO cograft 

transplant at 5 months post-surgery (unpublished data).
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