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Abstract: Smart agriculture is a new concept that combines agriculture and new technologies to
improve the yield’s quality and quantity as well as facilitate many tasks for farmers in managing
orchards. An essential factor in smart agriculture is tree crown segmentation, which helps farmers
automatically monitor their orchards and get information about each tree. However, one of the main
problems, in this case, is when the trees are close to each other, which means that it would be difficult
for the algorithm to delineate the crowns correctly. This paper used satellite images and machine
learning algorithms to segment and classify trees in overlapping orchards. The data used are images
from the Moroccan Mohammed VI satellite, and the study region is the OUARGHA citrus orchard
located in Morocco. Our approach starts by segmenting the rows inside the parcel and finding all
the trees there, getting their canopies, and classifying them by size. In general, the model inputs the
parcel’s image and other field measurements to classify the trees into three classes: missing/weak,
normal, or big. Finally, the results are visualized in a map containing all the trees with their classes.
For the results, we obtained a score of 0.93 F-measure in rows segmentation. Additionally, several
field comparisons were performed to validate the classification, dozens of trees were compared and
the results were very good. This paper aims to help farmers to quickly and automatically classify
trees by crown size, even if there are overlapping orchards, in order to easily monitor each tree’s
health and understand the tree’s distribution in the field.

Keywords: tree canopy segmentation; tree canopy classification; unsupervised learning; satellite
images; remote sensing

1. Introduction

Agriculture is one of the oldest and most fundamental human major fields. In recent
years, it has become more important because it provides the basic necessities for living.
Thanks to new technologies, including satellite images and artificial intelligence, agriculture
is becoming smart. Many tasks have been made easier for farmers, and the yield is
increasing in quality and quantity. Among the crops that can be studied are tree crops, and
one of the essential components is the canopy [1,2].

The canopy is the aerial part of a plant community or the top of a crop, formed by plant
crowns with emergent trees and shade trees. For forests, the canopy refers to the top layer
or habitat area created by the mature tree’s crown. Knowing the crown’s size is essential
for orchard management, decision-making, irrigation, fertilization, spraying, pruning,
and yield estimation [3]. To obtain the tree’s crown size information from an image, it is
necessary to use segmentation techniques [4]. The latter presents many challenges, such
as the types of images to be used, the appropriate algorithm to considered, the technique
of validating the results, etc. For example, many projects use unmanned aerial vehicles
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(UAV) [5], while others use high-resolution satellites images [6]. However, each of them has
some advantages and disadvantages. The UAV or satellite images selection depends mainly
on resolution, historical data, cost, etc. In addition, the overlap of trees is a significant
factor that influences segmentation because, in most of these cases, the crowns cannot
be separated from each other. For example, some citrus varieties such as mandarin and
citrange have a crown diameter between three and five meters [7]. So, if the distance
between two trees is less than three meters between them, they will overlap.

In general, we can distinguish three types of orchards: the first (Figure 1a) are separate
trees (not overlapping), the second (Figure 1b) are trees that form rows (semi-overlapping),
and third (Figure 1c), trees that are very condensed (fully overlapping).

Figure 1. Different tree’s distribution in an orchard: (a) non-overlapping, (b) semi-overlapping, and (c) fully overlapping.

Technically, tree canopy classification and segmentation based on remote sensing
images is one of the main challenges in smart agriculture [8–12]. The complexity of this
challenge is different from one orchard to another. It depends on the trees distribution in
the orchard, the size of the canopies, and the images’ resolution. In some cases, the trees
do not overlap in the field, meaning they can be directly detected and segmented using
object segmentation algorithms [13–17]. However, sometimes the trees overlap, making it
difficult for the algorithms to segment each one individually. In this case, there are other
solutions, such as segmenting rows or the entire parcel canopy. Thus, these segmentations
require high-resolution images to obtain good results (a minimum of 0.7 m in spatial
resolution) [10,18–23].

Currently, there are a lot of approaches and techniques to achieve object segmentation.
For example, some classical algorithms follow the thresholding technique by taking the
image in grayscale [24]. There are clustering algorithms that follow unsupervised learning
by dividing data into several groups (clusters) with common characteristics between them
(similarity), based on several mathematical metrics such as Euclidean distance, Jaccard
coefficient, value cosine, etc. [25]. In addition, advanced machine learning algorithms such
as deep learning [26,27] train on data, which means they need several images with their
ground truths (labels) to have a good result [28].

There are two tree segmentation cases in the literature: the non-overlapping orchards
and the overlapping orchards. The non-overlapping orchard case has attracted the attention
of many scientific researchers for a long time. In 1996, Ref. [29] tried to calculate the
canopy area of tomato plants from RGB images using machine vision techniques. Their
segmentation process adopted a thresholding technique, followed by an Otsu method, and
extended it to an efficient multimode operation. Moreover, the canopy area determined by
machine vision was compared to those measured by human operators using interactive
video tracing to obtain the results. Another study [30] extracted Gabor filter texture features
from remote sensing images and applied K-means [31] clustering analysis to extract the
tree’s crown. After that, they used some morphological operations to reduce false detection.
Their approach has a score of 0.79 F-measure. Valeriano et al. [32] tried to estimate the
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orange yield based on laser scanner data and the k-means algorithm. Their system used a
laser scanner to obtain the point belonging to the tree’s crown.

After processing the data, they got a 3D image of each tree which was used to input
the k-means algorithm. The model counts the fruits and estimates their diameter by
counting the pixels of each fruit. Finally, they compared the fruit quantity obtained by the
algorithm with the actual amount in the field, and they got a score of 0.88 R² (coefficient
of determination). Zhao et al. [33] used a UAV to collect a large dataset of pomegranate
tree images and segmented the canopy using deep learning. The study was done in an
orchard with non-overlapping trees, and they tested two architectures, mask-rcnn [34] and
Unet [35], and got 0.98 and 0.61 (recall), respectively. To sum up, several studies attempt
to segment the tree canopy in a non-overlapping orchard with good results that do not
exceed an error of 10% [16,18,36,37].

On the other hand, it is challenging to distinguish each tree individually using remote
sensing images in overlapping orchards. Because sometimes the trees are in rows (semi-
overlapping), while in other cases, the canopy covers all the parcels, which means it is
impossible to see the soil in the image (fully overlapping). Muhammad Moshiur et al. [38]
used high-resolution satellite images to predict the mono yield in a semi-overlapping
orchard and showed that canopy size is strongly correlated with it. In this process, the
parcel’s canopy was segmented using the thresholding method to predict the yield. When
only spectral information was used, a low score of 0.3 R² was found, however, when the
canopy size information was added, the results improved to 0.93 R², which means that the
segmentation was excellent and robust.

Paolo et al. [39] took a vineyard orchard and tried to segment the canopy to optimize
resources, pruning, and plant health monitoring. They used UAVs to collect the multi-
spectral vineyard images, which had several rows. In a visual comparison between some
clustering algorithms such as Digital Elevation Model (DEM) [40], and K-means [41], they
found that the k-means algorithm is more precise in canopy segmentation than the other al-
gorithms. HyMap aerial hyperspectral images and light sensing and ranging (LiDAR) data
were used by [42] to classify urban forest tree species. After the exhaustive pre-processing
techniques, an image with a spatial resolution of three meters was obtained and used
to segment the trees using the object-based image analysis algorithm (OBIA) [43], The
validation was made with an ortho-image with a spatial resolution of 0.09 m, and a good
segmentation was found. Afterward, Random Forest [44] and Multi-Class [45] algorithms
were used to classify the tree species, and an overall accuracy of 87.0% and 88.9%, was
reached, respectively.

Usually, when we have an overlapping orchard, it is challenging to identify each tree
individually in the canopy. However, the trees rows or the total parcel canopy can be
segmented [46,47].

To sum up, the orchard type (overlapping or non-overlapping) influences the segmen-
tation verification and validation results. Since obtaining a scientific score in overlapping
trees is difficult, most studies used visual or field comparisons to validate their models.
On the other hand, in non-overlapping trees, the images can be labeled manually, and the
model is trained to compare the model’s results with the labels to have a scientific score.
This is why supervised learning, such as deep learning algorithms, was used [48].

So, this paper aims to present a new approach for extracting the tree’s canopy and
classifying them according to their size in overlapping orchards.

2. Materials and Methods
2.1. Study Region

Our studied region is Ouargha Orchard, located in Morocco, and it is the property
of Les Domaines Agricoles, a Moroccan company. This orchard (Figure 2) contains citrus
trees with a variety of tangerine. The trees are presented in several parcels, and the rows
are clearly defined. However, the orchard is classified as semi-overlapping because it is
difficult to separate each tree crown.
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Figure 2. OUARGHA orchard - LES DOMAINES AGRICOLES (citrus trees).

2.2. Data

The remote sensing field used images of the Earth taken by artificial satellites. In
agriculture, satellite images are essential data sources. This data consists of multispectral
or hyperspectral band information in several spectral resolutions [49].

In this study, we used the Moroccan Mohammed VI satellite [50], which has two
satellites, A and B, launched on 8 November 2017, and 21 November 2018, respectively.
One of the primary satellite objectives is to develop the agriculture field in Morocco.
Mohammed VI satellite system collects multispectral images in several bands: 450–530
nm (blue), 510–590 nm (green), 620–700 nm (red), and 775–915 nm (near-infrared). This
satellite is similar to the Pléiades satellite, which has a 0.5 m spatial resolution.

The OUARGHA orchard has 25 parcels ranging from 30,000 to 80,000 m², with thou-
sands of semi-overlapping trees. So, to carry out this research, an image captured by the
Mohammed VI satellite in 2020 (Figure 3) was used and clipped by each parcel using
open-source software QGIS 3.16.3 [51].

Technically we used the ’create new shapefile’ extension to create a kml file of the
parcel, and we split it using the ’clip raster by mask layer’ extension.

In Figure 3, you can see an image of the study region captured by the Mohammed
VI satellite.
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Figure 3. The false color (R,G,B,NIR) of the OUARGHA orchard obtained by the Mohammed VI satellite in (23 July 2020).
(a,b) two examples of parcels. Projected Coordinate System: EPSG:26191—Merchich/Nord Maroc; Projection: Transverse
Mercator; Linear Unit: Meter; Datum: Merchich; Prime Meridian: Greenwich; Angular Unit: Degree.

2.3. Our Approach

In this study, we are interested in a semi-overlapping orchard, which means that trees
are presented as rows with a uniform distribution, which means that there is the same
distance between all tree trunks and between rows. Our methodology used satellite images
and some field measurements and consists of five steps presented in (Figure 4), which are:
(1) segment the rows, (2) locate the trees, (3) create a box for each location, (4) estimate the
canopy inside the boxes, and finally (5) classify these boxes according to the canopy size.
Each of the steps are described in further detail.

Figure 4. Flowchart of the methodology.
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2.3.1. Tree’s Rows Segmentation

Tree segmentation is an important technique that helps farmers count their trees,
get an idea about the yield based on the canopy size, and control the orchard’s health.
However, this approach presents many difficulties in overlapping trees. In our study, the
field contains several parcels with very condensed rows, which makes it challenging to
segment each tree canopy individually. However, the rows can be identified and counted.
So, we used the high spatial resolution Mohammed VI satellite images [50] to do this
process. In fact, we tried two segmentation approaches using thresholding and clustering
algorithms. Visually the thresholding algorithm did not get a good result, mainly because
not all of the image bands were used. Otherwise, the clustering algorithms, especially
k-means, presented a better result. To construct the model, we start by extracting the parcel
from the original image. This technique gives each parcel an image with three pieces of
information: trees, soil, and the space outside it, which is the image’s background. An
example of two parcel images is presented in (Figure 3). Based on the k-means algorithm,
our model takes all the image’s pixels and creates several clusters based on the K number.
This k represents the number of centroids that the algorithm will develop—the cluster’s
number. The elements in each of them have a small euclidean distance, which means they
are very similar.

In our case, we use K = 3 to get three clusters (trees, soil, and outside parcel). The
results obtained are an image with one band (Figure 5). We excluded the part outside the
box to get a binary mask image, with pixels of 0 and 1 values that represent the soil and
the trees.

Figure 5. Example of tree identification using thresholding and clustering (k-means) segmentation.

2.3.2. Tree Localization

In tree crops, the planting process usually follows uniform distances [52]. In our study
area, the orchard has rows of trees with six meters between them and two meters between
the tree trunks inside each row. In addition, the size of the canopies is heterogeneous, with
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large and small canopies and sometimes with weak or missing trees. The satellite spatial
resolution of 50 cm means that each pixel in the image is a square with a side of half a
meter. Thus, a distance of two meters between trees inside the rows equals four pixels in
the image, while six-meter lengths equal 12 pixels (Figure 6).

Figure 6. Trees distribution in the field.

With this information, a semi-automatic algorithm was created to help us obtain the
distribution of the trees’ locations in the image. The model takes three tree trunk positions
as input, the first two positions of the first row and the first position of the second row,
the distance between the trees inside the rows, and the distance between the rows. The
algorithm loops on all pixels of the images and locates the center positions of the trees.
Finally, when we compared the tree’s positions number in the image by the tree’s number
in the orchard, we found that they are the same, which means that the algorithm considers
all the tree’s positions in the image precisely (Figure 7).

Figure 7. Tree localization and distribution in the parcel.

2.3.3. Tree Crown Detection

As shown in (Figure 5), it is difficult to separate each tree inside the rows. So, our
solution was to build boxes that surround the tree’s location, and with them, get the
information about each tree canopy. The first step was to find the best box sizes. In the
field, trees presented a circle shape, which means a square box could be used with some
caveats. In the orchard, the maximum diameter of a tree is three meters, and the distance
between them is two meters. Thus, there is an overlapping of one meter between every
two trees. Based on this measure, we used boxes of three meters, which have a common
part between them (Figure 8).
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Figure 8. Tree crown detection using the boxes distribution in the parcel.

2.3.4. Tree Classification by Size

After locating the trees and creating the boxes, we moved to get the crowns by counting
the pixels that describe the canopy. The model loops through all the boxes and outputs a
CSV file containing each crown size and its identifier. We have created three tree classes:
missing or weak, normal, and big canopies to make a classification. The canopy sizes of
the trees in each one of them is calculated using the formulas follow:

class 1: min_value ≤ canopy size < min_value + avg_value/5
class 2: min_value + avg_value/5 ≤ canopy size < max_value − avg_value/5
class 3: max_value − avg_value/5 ≤ canopy size ≤ max_value

min_value = the minimum canopy in the parcel
max_value = the maximum canopy in the parcel
avg_value = the tree’s canopies average in the parcel

3. Results and Validation

We took an empty image with zero in all pixels to map the classification results. Each
box location was defined, so after classifying each tree, we assigned a fixed number to
all the pixels of the same box in the empty image. Finally, a matrix with four pixels of
value, the three classes, and the background was obtained and colored by a specific color
to visualize the results as a single map (Figure 9).

We counted the segmented rows to compare them with the absolute number of rows
in the field to validate the results. After having visited all the parcels, we found the same
number of rows. The next step was to validate the segmentation algorithm results. In
this process, five plots with different varieties were visited in the field, with 24 of them
representing 20%. Then, three samples in several positions were taken from each parcel
seen in the orchards (Figure 10). Finally, we obtained 15 samples manually labeled and
used them to validate the segmentation.
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Figure 9. Tree classification by size in the parcel.

Figure 10. Examples of the samples, maks, and the segmented image results.
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Finally, the results obtained by the algorithm and the mask that we manually created
were compared. The metrics used were the F1 and Precision score.

Precision =
TP

TP + FP
(1)

F1-score =
TP

TP + 1
2 (FP + FN)

(2)

TP = true positives;
FP = false positives;
FN = false negatives.

The scores obtained for the five parcels are presented in (Table 1).

Table 1. Segmentation scores.

Parcel F1-Score Precision

Parcel 1 0.93 0.97
Parcel 2 0.91 0.95
Parcel 3 0.93 0.96
Parcel 4 0.93 0.97
Parcel 5 0.94 0.98

The results obtained during the segmentation in the five parcels were, on average, 0.93
F1-score. This part tried to compare the map obtained with the actual distribution of trees
in the orchards. Indeed, it is not easy to visit all the trees and parcels because the orchard
is extensive. However, we took a random tree’s sample in different parcels to validate
the results.

To validate a random tree, we located it in the resulting map with the row number to
which it belongs and its order in this row to quickly facilitate their visit to the field. After
visiting many trees in multiples locations with several canopy sizes, (see some examples in
Figure 11), we compared the map results with the field measurements, and good accuracy
in the model was found.

In (Figure 11), the blue circle means a normal tree, the yellow a large tree, and the
red a missing or weak tree. It is difficult to distinguish between weak and absent trees
with this approach because, in the missing tree location, the side trees find space to branch
out, which means that there is a high probability that the box contains a canopy from
the neighboring trees. Finally, based on this approach, farmers can easily monitor the
situation of an overlapping orchard by identifying the places that contain weak, missing,
and large trees.
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Figure 11. Comparison between tree classification in the map and field validation.

4. Conclusions

Remote sensing has been used to identify tree crops without overlaps for a long
time. However, when there is some tree overlapping in the orchards, a new techniques
must be used. This study proposes a new approach to localize and classify trees using
high-resolution satellite images and field measures in an overlapping orchard. The results
were presented in a map with the distribution of the trees organized by crown size. Our
methodology can be used in several other tree crops in Morocco or worldwide. However,
this requires high-resolution remote sensing images, with 0.7 m at minimum, and the
pattern distances between trees must be uniform. Therefore, our approach can be an
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alternative solution to tree monitoring problems found in overlapping orchards. For
example, the vegetation mapping for each tree could be obtained by combining the map
of the tree obtained by our model and the vegetation indexes obtained from the spectral
information, similarly for water stress. Our approach can also provide data such as the
number of trees missing, normal and big trees in each row, the total canopy of the parcel,
the vegetation by tree class, etc. Finally, it is also essential to mention that this data can
estimate the yield, which is a precision challenge in agriculture.
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