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ABSTRACT
Housekeeping genes are ubiquitously expressed and maintain basic cellular functions
across tissue/cell type conditions. The present study aimed to develop a set of pig
housekeeping genes and compare the structure, evolution and function of housekeeping
genes in the human–pig lineage. By using RNA sequencing data, we identified 3,136
pig housekeeping genes. Compared with human housekeeping genes, we found that
pig housekeeping genes were longer and subjected to slightly weaker purifying selection
pressure and faster neutral evolution. Common housekeeping genes, shared by the two
species, achieve stronger purifying selection than species-specific genes. However, pig-
and human-specific housekeeping genes have similar functions. Some species-specific
housekeeping genes have evolved independently to form similar protein active sites or
structure, such as the classical catalytic serine–histidine–aspartate triad, implying that
they have converged for maintaining the basic cellular function, which allows them to
adapt to the environment. Human and pig housekeeping genes have varied structures
and gene lists, but they have converged to maintain basic cellular functions essential
for the existence of a cell, regardless of its specific role in the species. The results of our
study shed light on the evolutionary dynamics of housekeeping genes.

Subjects Bioinformatics, Evolutionary Studies, Genetics
Keywords Housekeeping genes, Basal cellular function, Convergent evolution, Gene structure,
Human–pig lineage

BACKGROUND
Housekeeping genes are typically genes that are consistently expressed across tissues and
developmental stages for maintaining basic cellular functions, including basic metabolism,
cellular transport and cell cycle (Butte, Dzau & Glueck, 2001; Zhu et al., 2008a). They
have unique genomic features. For example, housekeeping genes have shorter structures
(including the intron, coding sequence(CDS) and exon) compared with other genes
(Eisenberg & Levanon, 2003; Vinogradov, 2004), their nucleotide composition is slightly
richer in GC than that of tissue-specific genes (Vinogradov, 2003), and they have a
reduced upstream sequence conservation (Farré et al., 2007; Bellora, Farré & Albà, 2007).
Housekeeping genes are often considered as the minimal gene set needed for normal
cellular physiology (Butte, Dzau & Glueck, 2001) and are widely used as internal controls
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for gene expression experiments and computational biology studies (Thellin et al., 1999;
Robinson & Oshlack, 2010; Rubie et al., 2005; Vandesompele et al., 2002).

In previous studies, many human housekeeping gene sets have been identified. However,
some sets slightly overlap. For example, only 155 genes were shared by three lists of
microarray-defined housekeeping genes, including 501, 425 and 567 genes (Warrington et
al., 2000; Hsiao et al., 2001; Eisenberg & Levanon, 2003). The low overlap may be explained
by several reasons. Firstly, their complex transcriptional organisation may cause diverse
definitions of housekeeping genes (Gingeras, 2007). Secondly, the expression of some genes
may vary depending on experimental conditions (Greer et al., 2010). Why these genes
vary across conditions needs further investigations. Thirdly, traditional techniques have
their own drawbacks. For instance, microarray technology has a limited dynamic range
and sensitivity and also suffers from poor detectability and reproducibility for low-copy
and transiently expressed genes (Marioni et al., 2008; Fu et al., 2009; Bradford et al., 2010;
Draghici et al., 2006).

RNA sequencing (RNA-seq) data greatly improve the detectability of housekeeping
genes. For example, the amount of human housekeeping genes revisited by the RNA-
seq data (3,804) has increased previous estimates based on microarray data (567) by
sixfold (Eisenberg & Levanon, 2013). With advances in technology, large-scale RNA-seq
has provided new insights into the definition of housekeeping genes. Some studies have
suggested that transcripts should be used as housekeeping units, and all transcripts of a
gene need to satisfy the criteria (Gingeras, 2007; Gerstein et al., 2007).

There is no consistent definition of human housekeeping genes. However, studying the
genes of animalsmay be able to provide new information for housekeeping genes. Therefore,
a comparative analysis of housekeeping genes between humans and other animals is of
great interest. Human housekeeping genes are commonly used as control genes in real-time
quantitative polymerase chain reaction (qRT-PCR) for other animals. However, whether
human genes can be used as references for other animals remains unclear. For instance,
the most commonly used human reference genes (e.g., ACTB and GAPDH ) do not always
apply to all tissues of different organisms (Brattelid et al., 2010; Kozera & Rapacz, 2013).
Therefore, to well define a housekeeping gene set in another animal may be valuable. More
importantly, housekeeping genes show very strict conservation in the evolutionary process,
so the comparison of evolutionary dynamics will allow a fundamental understanding of
evolutionary biology.

As an important meat resource for humans, the pig (Sus scrofa) is a well-studied
organism. Given the anatomical similarities with humans, pigs are often used as a
biomedical model in research (Lunney, 2007; Rolandsson et al., 2002; Lee et al., 2009; Becker
et al., 2010). Surveying pig housekeeping genes may help pave the way for a greater
understanding of the basal mechanisms that maintain cell function. In the present study,
we identified housekeeping genes in pig using RNA-seq data and then compared their
structure and function with human housekeeping genes. In addition, we discussed the
impact of selection pressure and convergent evolution on the functional conservation of
housekeeping genes. The present study provided detailed information on pig housekeeping
genes and their functional features and offered insights into their evolutionary dynamics.
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MATERIALS AND METHODS
Data preparation
To define housekeeping gene sets, gene expression datasets were downloaded from
the Sequence Read Archive (SRA) database of the National Center for Biotechnology
Information (NCBI, September 2016) (Kodama, Shumway & Leinonen, 2012). In addition,
pig genomic annotation (Sus Sscrofa 10.2) was downloaded from the Ensembl Genome
Browser (September 2016) (Kinsella et al., 2011). The RNA-seq dataset of 14 experiments
were used to identify housekeeping genes, which were derived from 21 tissues (heart,
spleen, liver, kidney, lung, musculus longissimus dorsi, occipital cortex, hypothalamus,
frontal cortex, cerebellum, endometrium, mesenterium, greater omentum, backfat, gonad,
ovary, placenta, testis, blood, uterine and lymph nodes), containing a total of 131 samples
(Table S1). The SRA files were downloaded from NCBI and then converted to fastq files
by using fastq-dump (Kodama, Shumway & Leinonen, 2012). RNA-seq reads were then
filtered by IlluQC.pl (Patel & Jain, 2012) whilst requiring an average read quality above 20.
Then, the reads were aligned to a pig genome sequence (Sus Sscrofa10.2) using TopHat
(Trapnell, Pachter & Salzberg, 2009; Külahoglu & Bräutigam, 2014; Ghosh & Chan, 2016).
The alignments were then fed to an assembler Cufflinks (Trapnell, Pachter & Salzberg,
2009) to assemble aligned RNA-seq reads into transcripts and estimate their abundances,
which were measured in fragments per kilobase of exon per million fragments mapped.

Definition of housekeeping genes
Housekeeping genes were defined according to the following criteria: (i) the transcripts
could be detected in all 21 tissues (6,072 transcripts); (ii) the transcripts showed low
expression variance across tissues: P > 0.1 (4,068 transcripts; Kolmogorov–Smirnov test);
(iii) no exceptional expression in any single tissue; that is, the expression values were
restricted within the fourfold range of the average across tissues (3,914 transcripts); and
(iv) all transcripts of a housekeeping candidate gene met the above criteria (3,136 genes).

Structure analysis
The structure data of genes were obtained from the Ensembl BioMart (Kinsella et al., 2011).
Human housekeeping genes were derived from the reference (Eisenberg & Levanon, 2013),
considering their similar type of data from RNA-seq and stringency of the definition by
expression breadth and stability. A total of 3,136 and 3,804 housekeeping genes of pigs and
humans were obtained, respectively. The length of various parts of housekeeping genes
were compared by Mann–Whitney test (Table 1). In addition, the length of various parts
of 3,000 non-housekeeping genes were also compared by random selection in humans and
pigs.

Gene Ontology (GO) analysis
The analysis of functional annotations of housekeeping genes was performed using
DAVID, ver. 6.7, available on their website (Huang da, Sherman & Lempicki, 2009a;Huang
da, Sherman & Lempicki, 2009b). All expressed genes in the data were used as background.
Comparative analysis of housekeeping and non-housekeeping genes between humans and
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Table 1 Comparison of housekeeping and non-housekeeping genes between pigs and humans.

Structure Housekeeping gene Non-housekeeping gene

Pigs Humans P-valuec Pigs Humans P-value

Total intron lengtha 28,108± 173b 21,062± 297 1.5e−105 5,9318± 523 47,216± 487 2.7e−56

5′ UTR length 156± 3 125± 1.5 3.7e−34 207± 4.5 234± 4.1 1.6e−29

3′ UTR length 658± 13 549± 5 1.4e−73 958± 7.3 558± 4.2 7.3e−65

Average exon length per gene 261± 3 227± 1 1.8e−6 249± 2.7 265± 2.9 2.4e−33

CDS length 2,181± 10 1,460± 5 8.7e−234 3,047± 11.4 3,124± 10.8 3.1e−17

Transcript length 3,312± 13 2,200± 5 7.7e−7 4,021± 17.1 3,841± 14.3 8.6e−94

Number of exons 9.2± 0.1 8.8± 0.2 1.7e−4 15.2± 0.2 13.6± 0.1 4.2e−4

Notes.
aThe length is measured in nucleotides.
bThe value gives the average and standard error of mean.
cThe P-value was calculated based on the Mann-Whitney test.
UTR, untranslated region; CDS, coding sequence.

pigs was performed. The false discovery rates (FDR) were calculated to estimate the extent
to which genes were enriched in GO categories (Ashburner et al., 2000). Probabilities less
than 0.01 were used as the cut-off value and considered to show a significant level of
correlation. Heat map analysis was also conducted through DAVID to visualise a matrix
of enriched GO.

Evolutionary features analysis
Evolutionary features of housekeeping and non-housekeeping genes between humans
and pigs were compared by calculating the substitution ratio. The number of non-
synonymous substitutions per non-synonymous site (dN) and the number of synonymous
substitutions per synonymous site (dS) were estimated using the Nei–Gojobori method
embedded inMEGA 7.0 (Z -test, P < 0.05) (Kumar, Stecher & Tamura, 2016;Nei & Kumar,
2000). From the Scope row, select the Overall Average option. For the Gaps/Missing data
treatment option, select Pairwise Deletion. The genome sequences of orthologous genes
were downloaded from Ensembl BioMart. The dN/dS ratios were calculated to assess the
selection pressure (Hurst, 2002; Yang & Nielsen, 2002; Dasmeh et al., 2014). Information
of active sites of proteins was obtained from UniProt Knowledgebase (Boutet et al., 2016;
Pundir et al., 2015). Species-specific housekeeping genes that have similar functions were
processed to search for their active sites.

RESULTS
Gene expression profile
To identify the housekeeping genes in pigs, we surveyed the expression distribution
of 30,585 transcripts across 21 tissues of pigs (see Methods, Fig. 1 and Fig. S1). The
detectability of RNA-seq data was high, and only 116 transcripts were undetected in the
present study. The 226 transcripts showed tissue-specific expression (expressed in one
tissue), whereas 6,072 transcripts were found to be broadly expressed in all 21 tissues (Fig.
1). This finding was consistent with the expression tissue breadth of human genes (Zhu et
al., 2008a; Zhu et al., 2008b; Eisenberg & Levanon, 2013).
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Figure 1 Number of tissues where a given transcript was detected. The expression breadth (horizontal
axis) denotes the number of tissues where a given transcript was detected. The zero value of the expression
breadth indicates undetected transcripts.

Full-size DOI: 10.7717/peerj.4840/fig-1

Identification of pig housekeeping genes
To obtain the transcripts with ubiquitous expression level across pig tissues, we selected
6,072 transcripts detected in 21 tissues as candidates. The background differences between
different sequencing projects resulted in a batch effect between samples, including the
difference in sequencing depth and coverage. Therefore, we chose a single sequencing
project to assess the uniformity of gene expression. Furthermore, the expression uniformity
of candidates in the ERP002055 sequencing project was evaluated using the Kolmogorov–
Smirnov test and was accessed using the P-value (Farajzadeh et al., 2013). Figure S2 shows
the frequencies of candidateswithP-value greater than the given cutoff. Approximately 67%
of all candidates had P-values greater than 0.1, implying that their expression levels did not
significantly vary across tissues and had a high level of expression uniformity. Therefore, we
defined the cutoff of the uniform level as P > 0.1 for the following analyses, which resulted
in a list of 4,068 unique transcripts, belonging to 3,754 genes. The housekeeping gene was
further restricted into the gene whose transcripts passed the criteria. Altogether, 3,136 genes
passed the restriction (File S1), approximately a third of which were unannotated, and 356
genes in pigs possess no orthologues in humans. In addition, housekeeping genes showed a
significantly lower number of transcripts (1.22 transcripts on average) comparedwithwhole
genes in pig (1.84 transcripts on average) (Mann–Whitney test, P < 0.05). Housekeeping
genes are always stably expressed in any tissue and environmental condition, but non-
housekeeping genes, especially tissue-specific genes, may adjust to different conditions by
different transcript isoforms.

Figure 2 shows the overlap of pig housekeeping genes identified in the present study
with previously reported human housekeeping genes (Warrington et al., 2000; Hsiao et al.,
2001; Eisenberg & Levanon, 2003; Eisenberg & Levanon, 2013). In addition, a lower overlap
rate of housekeeping genes between pigs and humans was observed and showed significant
difference with any two random sets of genes from pigs and humans (T test, P < 0.01).
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Figure 2 Overlap of housekeeping genes between pigs and humans. Overlap of pig housekeeping gene
set identified in the present study (A) with three human gene sets identified by microarray data (Warring-
ton et al., 2000; Hsiao et al., 2001; Eisenberg & Levanon, 2003) and (B) with a human set identified by RNA-
seq data (Eisenberg & Levanon, 2013).

Full-size DOI: 10.7717/peerj.4840/fig-2

To accurately describe the features, housekeeping genes were grouped into three sets of
genes, namely, common housekeeping genes observed in pigs and humans, human-specific
housekeeping genes and pig-specific housekeeping genes. We obtained 1,012 common,
2,792 human-specific and 2,124 pig-specific housekeeping genes (Fig. 2B).

Structural comparison of housekeeping genes between pigs and
humans
The comparison of length distribution of total intron, 5′ untranslated region (UTR)
and CDS in homologous housekeeping genes shows that pig genes have a long length,
whereas human genes have a short length (Figs. 3A–3C). Furthermore, Table 1 shows the
average lengths of various structures of the housekeeping and non-housekeeping genes that
correspond to one another in pigs and humans. All structures of pig housekeeping genes
were significantly longer than human housekeeping genes (Table 1), indicating that human
housekeeping genes hold a greater impact of gene structure, which were consistent with the
previous analyses of pig genomes (Groenen et al., 2012). This finding implied that different
purifying selection pressures were applied between pigs and humans, showing that selective
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Figure 3 Comparison of length distribution of housekeeping gene structures between pig and human.
nt, nucleotide(s); 5′ UTR, 5′ untranslated region (UTR); CDS, coding sequence.

Full-size DOI: 10.7717/peerj.4840/fig-3
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Table 2 Evolutionary features of housekeeping genes.

Terms Mousea Elephant

Pigs Humans P-valuec Pigs Humans P-value

dN 0.084± 0.012b 0.065± 0.01 0.003 0.085± 0.010 0.058± 0.009 0.001
dS 0.82± 5.57 0.70± 5.12 0.001 0.76± 6.32 0.63± 4.67 0.001
dN/dS 0.12± 0.011 0.10± 0.014 0.004 0.14± 0.023 0.11± 0.020 0.003

Notes.
aMouse and elephant are outgroups.
bThe value gives the average and standard error of mean.
cThe P-value was calculated based on the Mann-Whitney test.

pressure may render genes as short as possible for reducing the cost in the transcription
process (Ucker & Yamamoto, 1984; Castillo-Davis et al., 2002). Although the structural
length of non-housekeeping genes showed a significant difference, non-housekeeping
genes do not show consistent structural features unlike housekeeping genes. For example,
the total intron length, 3′ UTR length and transcript length are longer in pigs than in
humans, but the 5′ UTR length, average exon length and CDS length are shorter in pigs
than in humans (Table 1).

Evolutionary dynamics of housekeeping genes
Evolutionary features of housekeeping genes may provide a deeper understanding of
the evolutionary trend of housekeeping genes in different species. For the maintenance
of essential function, housekeeping genes are thought to evolve more slowly than other
genes (Zhang & Li, 2004). To investigate this feature, the number of non-synonymous
substitutions per non-synonymous site (dN), the number of synonymous substitutions per
synonymous site (dS) and dN/dS ratio were calculated for pig and human housekeeping
genes using mouse (Mus musculus) as an outgroup (Files S2 and S3). In addition, the
phylogeny of the mouse is close to pigs and may even be closer to humans (Meredith et al.,
2011). Thus, we also selected elephant (Loxodonta africana) as an outgroup to calculate for
dN, dS and dN/dS for pig and human housekeeping genes (Files S4 and S5). Generally,
synonymous substitutions occur randomly, which may not or slightly suffer from selection
pressure and do not appear to change the gene function, but non-synonymous substitutions
do not occur randomly, which may be caused by strong selection pressure and change the
function of housekeeping genes (Nei & Kumar, 2000; Kimura, 1983).

In evolutionary analysis, the housekeeping genes between pigs and humans showed
significant difference with mouse and elephant as outgroups (Table 2). However, statistical
differences were only observed in the dS of non-housekeeping genes between pigs and
humans with mouse and elephant as outgroups (Table S2). The selection pressure of
non-housekeeping genes between pigs and humans did not show a significant difference.
This result may indicate that housekeeping genes show a specific evolutionary feature
related to non-housekeeping genes.

The dN followed a power law distribution similar to that of dN/dS with mouse and
elephant as outgroups (Fig. 4A, Figs. S3A, S4A and S5A), displaying a relatively large
number of genes with a few non-synonymous substitutions and a small fraction of genes
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Figure 4 Purifying selection on housekeeping genes with mouse as outgroup. (A) The distribution of
the dN/dS ratio. (B) The dN/dS ratios of total (all HK), common (co-HK) and species-specific (sp-HK)
housekeeping genes were compared between pig and human (Mann–Whitney test, * denoted P < 0.05),
respectively.

Full-size DOI: 10.7717/peerj.4840/fig-4

with several substitutions (Fig. 4A and Fig. S4A). In addition, most dN/dS ratios were
lower than 1, implying that purifying selection acted on the housekeeping genes to ensure
the stability of most genes’ functions. The lesser the dN/dS ratio, the stronger the purifying
selection. Furthermore, the purifying selection pressure on housekeeping genes was slightly
stronger in humans than in pigs (Fig. 4 and Fig. S4).

Although mouse as outgroup showed similar results with elephant as outgroup, but
with a lower difference when mouse and elephant is used as the group, respectively
(Mann–Whitney test, P < 0.05). This result might be caused by the close phylogenetic
relationship of mouse and humans (91 Myr ago) compared with pigs (97 Myr ago) and
the long phylogenetic time of humans and pigs compared with elephant. Thus, a small
difference was obtained when elephant was used as outgroup.
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Figure 5 Comparison of evolutionary features of housekeeping genes with mouse as outgroup. (A)
dN, dS and dN/dS of all, common and species-specific pig housekeeping genes were compared based on
the Mann–Whitney test. In a signal cluster, all such means that share a common English letter are simi-
lar; otherwise, they differ significantly at P < 0.05. (B)–(D) Distributions of dN, dS and dN/dS of species-
specific housekeeping genes in pigs and humans.

Full-size DOI: 10.7717/peerj.4840/fig-5

The dN/dS ratios of commonhousekeeping genes showed no difference between pigs and
humans, but the ratios of species-specific housekeeping genes were significantly lower in
humans than in pigs (Mann–Whitney test, P < 0.05) (Fig. 4B and Fig. S4B). Furthermore,
for both humans and pigs, the dN/dS ratios of common genes were significantly lower than
those of species-specific genes (Fig. 5A, Figs. S6 and S7). This result suggested that common
housekeeping genes suffered a more stringent purifying selection to remove alleles than
species-specific genes.

Moreover, the results of the dN/dS ratios (or dN) also implied that human housekeeping
genes have evolved more stable than pig housekeeping genes because the substitution ratio
was significantly lower in humans than in pigs (Table 2 and Figs. 5B–5D). This result may
indicate that pig housekeeping genes may have wider evolutionary potential than human
housekeeping genes. The dS of human species-specific genes had lower values than that
of pig genes (Fig. 5C), showing that human housekeeping genes undergo a slower neutral
evolution than pig housekeeping genes.
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The dS followed an approximately normal distribution (Figs. S3B and S5B), which
occurred around a central value (0.77 and 0.63 in pig and human housekeeping genes with
mouse as outgroup, respectively). This finding implies the random tendency of synonymous
substitutions. No significant difference was noted in the synonymous substitutions between
common and species-specific genes within a species (Fig. 5A, Figs. S6 and S7).

Associated function of housekeeping genes
We then characterised the housekeeping genes that enriched the molecular function,
biological process, cellular component and disease based on DAVID. The heat map
shown in Fig. 6 illustrates the similar enrichment of housekeeping genes between pigs and
humans. Briefly, housekeeping genes were predominantly detected as genes associated
with GO terms related to basal metabolism that are indispensable for cellular physiology,
indicating that housekeeping genes are essential for basic physiological processes (Fig.
6). However, the non-housekeeping genes are mainly associated with the differentiation,
development and specific functions of specific tissues or organs (Table S3). This finding
shows that humans and pigs have similar basic cellular functions. Although some differences
in disease enrichment were noted, many common diseases were found between humans
and pigs.

Of note, many pig housekeeping genes were enriched in human diseases, especially in
several cancers with high mortality rates: breast cancer, lung cancer and colorectal cancer
(Fig. 6D). This finding may be beneficial for studies of human diseases (Tu et al., 2006),
given that pigs do not possess some human high risk genes. For instance, alcohol-induced
cirrhosis was enriched in human housekeeping genes, but not in pigs.

Functional convergence
Interestingly, the functional enrichment analyses showed a coherent trend in pig and
human housekeeping genes, although low overlap of gene lists and differences in gene
structure between the two species were found. For example, for biological process, pigs
and humans showed a slight difference in GO term enrichment (Fig. 6A). In addition,
similar trends were observed in the active molecules related to basic metabolism and gene
expression (Figs. 6B and 6C).

The above analysis revealed that the functions of pig and humanhousekeeping geneswere
consistent, implying that the selection pressure may preclude the species differentiation
of housekeeping genes for the maintenance of basal cellular functions, especially for
species-specific housekeeping genes. To confirm this conjecture, we performed functional
enrichment analysis for common and species-specific housekeeping genes. The heat map
shown in Fig. 7 illustrates the higher similarity between two species-specific terms than
between common and species-specific terms. These results indicated housekeeping genes
suffered strong selection pressure for maintaining normal life activities, and human and
pig species-specific housekeeping genes converged on the basal cellular function.
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Figure 6 Functional enrichment analysis for housekeeping genes.Housekeeping genes were enriched in
GO categories of (A) biological process, (B) cellular component, (C) molecular function, and (D) disease.
Colour bars show gene frequency from 0. The basal cellular function between pigs and humans showed
high consistency. (A): (1) Biological process categories included the basal metabolism, (2) regulation of
metabolic processes, (3) cellular transport, (4) cell cycle, and (5) gene expression and regulation. (B): (1)
Cellular component categories included organelle, (2) nuclear, and (3) micromolecular complex. (C): (1)
Molecular function categories included catalytic activity, (2) transcription factor activity, (3) binding ac-
tivity, and (4) transporter activity. (D): (1) Disease categories included tumour, (2) cancer, (3) chromoso-
mal damage and repair, and (4) other disease.

Full-size DOI: 10.7717/peerj.4840/fig-6
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Figure 7 Comparison of functional enrichment analysis.When we compared functional enrichment,
common housekeeping genes (co-HK) showed significant difference with species-specific housekeeping
genes (sp-HK), but the sp-HK genes between pigs and humans showed very high consistency. Colour bars
show gene frequency from 0. (A): (1) Biological process categories included the basal metabolism and
regulation, (2) cellular transport, (3) gene expression and regulation, and (4) nuclear division. (B): (1)
Molecular function categories included catalytic activity, (2) transcription factor activity, (3) binding ac-
tivity, and (4) transporter activity.

Full-size DOI: 10.7717/peerj.4840/fig-7

Mechanistic convergence
To understand the mechanistic constraints on the function of housekeeping proteins, we
analysed the evolutionary constraints on protein structure, active site feature and chemical
reaction centre. We found some similar active site features in housekeeping peptidases (Fig.
8, Table 3), which reflected the intrinsic chemical constraints on enzymes, leading evolution
to independently converge on equivalent solutions repeatedly (Buller & Townsend, 2013;
Dodson & Wlodawer, 1998). As housekeeping genes mainly perform basic metabolic
pathways of cells and peptidases are the main enzymes that perform these functions, we
chose peptidases to study mechanistic convergence. The chemical and physical constraints
on enzyme catalysis have caused identical triad arrangements in housekeeping peptidases
in the human–pig lineage, such as classical catalytic Ser/His/Asp triad and non-classical
variants (Table 3). However, the peptide sequences and their 3D structural profiles totally
differed from each other (Figs. 8A and 8B). The classical Ser/His/Asp catalytic triad is
a universal phenomenon in the serine protease class (E.C. 3.4.21), where serine is the
nucleophile, histidine is the general base or acid, and aspartate helps orient the histidine
residue and neutralise the charge that develops on the histidine during transition states
(Polgar, 2005; Ekici, Paetzel & Dalbey, 2008). Interestingly, almost all proteins in Table 3
contained histidine as an active site to provide a proton receptor (Wang et al., 2006). In
addition, Cys/His and Glu/His/Asp in peptidases also evolved convergent; however, to our
knowledge, these active sites have rarely been mentioned in previous reports.
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Figure 8 Structures of the ‘classical’ Ser/His/Asp triad configuration. (A) Serine protease HTRA4 from
pigs. (B) OTU domain-containing protein 5 from humans. A zoomed-in view of the catalytic domain is
shown to the right of each structure. The side chains of Ser/His/Asp triad are shown in principle.

Full-size DOI: 10.7717/peerj.4840/fig-8

The analysis of housekeeping protein structure and function may reveal several
interrelated and previously unrecognised relationships of structure–function constraints.
These fundamental constraints have promoted the convergent evolution of housekeeping
genes. Although the relationship between mechanistic convergence and functional
convergence is unclear in the present study, such finding provides an entry point for
our future research.

DISCUSSION
In the present study, we defined a set of pig housekeeping genes with a wide range of
expression and low expression variation across tissues. The present set of housekeeping
genes in pigs showed a lower overlap relative to the human set as the two sets showed
similar physical structure and high homology. Some housekeeping genes, such as GAPDH
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Table 3 Active site of convergently related peptidases.

Species Gene Protein Nucleophilea General base Other active site residues

Pigs BLMH Bleomycin hydrolase Cys73 His372 Asn396
AFG3L2 AFG3-like protein 2 Glu575 His574 Asp649
HTRA4 Serine protease HTRA4 Ser326 His218, Asp248
CAPN7 Calpain-7 Cys290 His458 Asn478

Humans OTUD5 OTU domain-containing protein 5 Ser224 His334 Asp221
SENP6 Sentrin-specific protease 6 Cys1030 His765 Asp917
USP14 Ubiquitin carboxyl-terminal hydrolase 14 Cys114 His435
LONP1 Lon protease homolog, mitochondrial Ser855 Lys898

Notes.
aThe number following an amino acid represents the position of the amino acid in the protein.

and ACTB, in humans were not found in our list (Barber et al., 2005; De Jonge et al., 2007;
Nygard et al., 2007). Thus, whether human housekeeping genes can be used as reference
controls for other species remains to be verified.

After divergence from a common ancestor, pigs and humans have accumulated
differences in the sequence and structure of housekeeping genes. On a molecular level, this
phenomenon can occur from random mutation, for example, synonymous substitution.
The dS distribution followed an approximately normal distribution, showing a random
tendency for synonymous substitutions. Meanwhile, the divergence was also related to
adaptive changes. In addition, GC content may affect the distribution of synonymous and
non-synonymous substitutions. Hence, we also determined whether dN, dS and dN/dS of
housekeeping genes were correlated with the GC content by using mouse as an outgroup.
Our results showed that although a strong correlation was found between dS and GC
content (r = 0.48, P = 1.94e−12), dN (r =−0.087, P = 0.013) and dN/dS (r =−0.11,
P = 0.027) only showed very weak correlations with GC content. Thus, the GC content
may not be the main contributing factor to the selection pressure.

Human housekeeping genes were found to be shorter than pig housekeeping genes
(Figs. 3A–3C), which facilitates gene expression (Ucker & Yamamoto, 1984; Izban & Luse,
1992). In addition, the stronger purifying selection in humans than in pigs (Fig. 4A)
might result in a lower degree of genetic redundancy. A source of genetic redundancy is
convergent evolutionary processes, leading to genes that are close in function but unrelated
in sequence, so they may also change the length of the gene structure (Zhang & Li, 2004). In
other words, human housekeeping genes likely evolved more stable than pig housekeeping
genes because of the advantageous and stable living environment. Moreover, humans and
pigs have evolved their own species-specific housekeeping genes, which may have led to
the formation of the two species, allowing the differentiated fixation of characteristics. In
addition, purifying selection was stronger in common than in species-specific housekeeping
genes and showed some differences in GO enrichment. This result may indicate that
common housekeeping genes are more indispensable than species-specific genes and serve
more functions for sustaining life. For example, GTF2H1 (general transcription factor
IIH subunit 1) and CXXC1 (CXXC finger protein 1) in common housekeeping genes are
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crucial for regulating the expression of several genes (Shiekhattar et al., 1995; Butler et al.,
2009), but in species-specific housekeeping genes, they were not enriched.

However, although humans and pigs have diverged for millions of years, both species
independently converged towards similar features of housekeeping genes. One of the most
unexpected observations was noted in species-specific housekeeping genes. GO enrichment
analysis revealed that pig- and human-specific housekeeping genes serve similar functions.
In addition, some housekeeping proteins evolved independently to achieve similar active
sites, sidechains, catalytic centres or binding sites to complete a similar catalytic reaction or
molecular function (Buller & Townsend, 2013; Polgar, 2005; Ekici, Paetzel & Dalbey, 2008;
Brannigan et al., 1995; Chen et al., 2008; Klug, 2010; Klug, 1999; Hall, 2005; Brown, 2005),
although these proteins showed very low homology with each other. They have ‘converged’
on the maintenance of basic cellular functions, which led to equivalent solutions for
adapting to the environment (Nielsen, 2005; Hurst, 2009). Functional similarity across
species may be caused by adaptive evolution (Zhang & Li, 2004; Kimura, 1983), which
drives different species-specific genes to perform similar essential functions, regardless of
their specific roles in the species.

At present, there is still no large-scale gene expression profile. The current transcriptome
sequencing data in pigs may be inadequate to meet the requirement to define housekeeping
genes. The accurate definition of housekeeping genes remains an unresolved issue.
Therefore, the present set of pig housekeeping genes has limitations, but its characteristics
are similar to those reported in previous studies. As new technologies emerge, high-quality
deep-sequencing transcriptome profiling data may open up opportunities to improve the
stringency in defining housekeeping genes and narrowing the catalogue of housekeeping
genes that are expressed in a single cell (Tang et al., 2009). Furthermore, the advancement
of statistical methods will greatly improve housekeeping gene detection. More specifically,
the concept of ‘housekeeping’ should be defined in a hierarchical way related to cell types,
growth stages, cell cycles and various physiological conditions and in terms of specific
transcript variant (Zhu et al., 2008a; Zhu et al., 2008b). Thus, we will be able to observe
several sets of housekeeping genes in a single species. In addition, more stringent sets
of housekeeping genes will also provide powerful support for structural and functional
genomics, especially for analysing the cellular basal function of different species that
have some slight differences (Kumar & Hedges, 1998; Meredith et al., 2011; Kumar &
Subramanian, 2002).

CONCLUSIONS
The present study offered insight into the general aspects of housekeeping gene structure
and evolution. Diverging from the ancestor of humans and pigs, housekeeping genes vary
in gene structure and gene list, but they have converged to maintain basic cellular functions
essential for the existence of a cell, regardless of their specific role in the species. The results
in the present study will shed light on the evolutionary dynamics of housekeeping genes.
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