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Abstract: In this paper, a fully polymeric micro-cantilever with the surface passivation layer of
parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate)
(PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and
fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/� for PEDOT/PSS
conductive layer have been obtained. The experimental spring constant and the deflection sensitivity
were measured to be 0.017 N/m and 8.59 × 10−7 nm−1, respectively. The biological sensing
performances of polymeric micro-cantilever were investigated by the immunoassay for human
immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear
behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection
(LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive
layer-based sensors are capable of detecting trace biological substances.
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1. Introduction

The microminiaturization sensing devices based on the micro-electromechanical system (MEMS)
technique have been widely used in the applications of biological and chemical detections [1,2].
Micro-cantilevers, beam structures with one end fixed on the substrate and with a thickness in several
micrometer range, exhibit various attractive properties and have been successfully used as biochemical
detection platforms due to their small size and ultra-high sensitivity [3–5]. When an external force
was applied by pressing the free end of micro-cantilever, a mechanical deformation will be generated
and then converted into readable optical or electrical signals. The optical domain method provides
ultra-high resolution measurement and linear response for the induced deformation, but the bulk
of the instrument and the requirement of technical expertise for operating equipment restrict the
applications for portable microminiaturization sensing devices [6,7].

Therefore, some researchers have turned attention to employing a micro-cantilever with an embedded
piezoresistor to convert mechanical deformation into a resistance change [8–10]. When a micro-cantilever
with piezoresistor located at an appropriate region is slightly deformable, the change in the
piezoresistor reflects the extent of the deflection. This change can be measured by a Wheatstone
bridge supplied with DC bias voltage. A typical piezoresistor is fabricated by boron-doped
polysilicon or monocrystalline silicon, which has been used for lots of sensors extensively [11–13].
However, low sensitivity is a disadvantage of silicon-based piezoresistive micro-cantilevers due to the
high Young’s modulus of silicon materials. It is demonstrated that the sensitivity can be improved
by using polymer materials with a lower Young’s modulus to fabricate micro-cantilever [14–16].
Unfortunately, SU-8 has been demonstrated to be a good polymer material for humidity sensing
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due to its hygroscopic nature [17], so the output of piezoresistive micro-cantilever based on SU-8
is unstable when exposed to liquid phase for an extended period of time. Parylene-C, which has
a similar Young’s modulus to SU-8, has been indicated to be an encapsulation and passivation layer
for increasing the stability of piezoresistive micro-cantilevers [18].

Recently, the flexible microminiaturization sensors provide another unique opportunity in the
application of detecting biological substances with the emergence of organic electronics [19–23].
Poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS), a typical flexible conductive
polymer, is highly interesting due to its high conductivity, thermal stability, and low cost processing
ability [24,25]. In particular, the usability of PEDOT/PSS conductive layer has been reported for
electromechanical sensor based on the piezoresistive effect [26–30].

In this work, a fully polymeric micro-cantilever was designed and fabricated by using PEDOT/PSS
conductive layer as piezoresistor and parylene-C as the surface passivation layer. The square
resistances of PEDOT/PSS were characterized and optimized to be 220 Ω/�. The fabricated polymeric
micro-cantilever was experimentally demonstrated with high sensitivity. An immunosensor was
developed by the functionalization of the micro-cantilevers, which can be used to trap human
immunoglobulin G (IgG) molecules in phosphate buffered saline (PBS) with the limit of detection
(LOD) of 10 ng/mL.

2. Micro-Cantilever Design and Fabrication

The proposed polymeric piezoresistive micro-cantilever is operated for the detection of surface
stress change by measuring the static deflection of micro-cantilever, which was designed to be
rectangular in the dimensions of 150 × 75 × 2 µm with a PEDOT/PSS piezoresistor embedded in it.
The flexible sensor formed by four identical micro-cantilevers was configured by a Wheatstone bridge
with two PEDOT/PSS-based piezoresistors placed on sensing micro-cantilevers and two on reference
micro-cantilevers, as shown in Figure 1a. This design has a significant suppression effect on mechanical
and environmental noise. Figure 1b shows the composition of sensing micro-cantilever, including top
and bottom parylene-C passivation layers, a PEDOT/PSS piezoresistive layer encapsulated by two
parylene-C passivation layers and a 5/40 nm Ti/Au modified layer. Different from the sensing
micro-cantilever, there is no Ti/Au modified layer on the top surface of the reference micro-cantilever.
The piezoresistors were designed to be four-fold structure with a single piezoresistor leg dimensions
of 80 × 8 µm.
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Figure 1. The schematics of (a) a polymeric micro-cantilever-based sensor; (b) a sensing piezoresistive
micro-cantilever based on PEDOT/PSS; and (c) arrangement of two pairs of polymeric micro-cantilevers
as a Wheatstone bridge for signal readout. The length, width, and thickness of polymeric
micro-cantilever are 150, 75, and 2 µm, respectively. The leg dimensions of PEDOT/PSS based
piezoresistor are 80 × 8 µm.
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During the operation, the top surface of sensing micro-cantilever is modified by immobilization
of specific probes to trap the targets in solution, the binding process between probes and targets will
induce a surface stress on the top surface and result in a deformation for the sensing micro-cantilever.
Different from the sensing micro-cantilever, there is no surface stress to be induced for reference
micro-cantilevers due to the absence of gold film. The relation between the vertical deflection (∆d) and
the surface stress change (∆σ) can be written as [31]

∆d
∆σ

=
3 · (1− ν) · l2

E · t2 (1)

where ν and E are Poisson’s ratio and Young’s modulus of micro-cantilever materials, l and t are
the length and thickness of the micro-cantilever. Figure 1c is the schematic of micro-cantilever array
arrangement as a Wheatstone bridge circuit for signal readout. The differential output of Wheatstone
bridge, Vout, can be calculated by Vout = 1/2·Vin·∆R/R, where Vin represents the DC voltage supplied
across the Wheatstone bridge, ∆R/R reflects the relative resistance change of the piezoresistor.

The fabrication processes of the proposed polymeric cantilever start from single polished silicon
wafers, which are sketched in Figure 2 and described as follows: (a) A parylene-C passivation
layer with the thickness of 1 µm was deposited by chemical vapor deposition (CVD) technology.
After that, a PEDOT/PSS conductive layer was spin-coated and patterned by oxygen plasma to
form piezoresistors. (b) An 700 nm aluminum layer was sputtered and patterned to realize the
electrical wires and the pad areas. (c) The other parylene-C layer was deposited as passivation
layer to fully encapsulate PEDOT/PSS piezoresistors and electrical wires together with the bottom
parylene-C passivation layer. (d) A Ti/Au modified layer with a thickness of 5/40 nm was sequentially
sputtered by physical vapor deposition technology and patterned on the top surface of the sensing
micro-cantilevers by wet etching process. (e) The micro-cantilever areas were patterned and etched
by oxygen plasma together with the contact holes being opened. (f) The polymeric micro-cantilevers
were released by a hybrid process of SF6 anisotropic and isotropic dry etching. A scanning electronic
microscopy (SEM) photo of the fabricated polymeric micro-cantilever array is shown in Figure 3,
where the top-right insert shows a polymeric sensing micro-cantilever and the left insert exhibits
a polymeric reference micro-cantilever.
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Figure 2. The fabrication processes of the proposed flexible micro-cantilever with PEDOT/PSS piezoresistor.

It is worth pointing out that a series of attempts were implemented to optimize the electrical
properties of PEDOT/PSS conductive layer and the adhesivity on silicon substrate. Firstly, silane
coupling agent, γ-glycidoxy propyltrimethoxy silane (γ-GPS), was uniformly mixed with the intrinsic
PEDOT/PSS solution (Clevios PH 1000, Leverkusen, Germany) to increase the adhesivity on the
substrate [32]. After that, dimethyl sulfoxide (DMSO) as conductive enhancer was added to decrease
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the square resistance of PEDOT/PSS conductive layer [33]. Subsequently, isopropyl alcohol (IPA)
was mixed to improve the wettability of PEDOT/PSS solution and the uniformity of PEDOT/PSS
conductive layer on the substrate [34]. The square resistance of PEDOT/PSS conductive layer was
optimized to be 220 Ω/� (Standard deviation=7 Ω/�, n = 20) by using the mixing solution of
PEDOT/PSS, γ-GPS, DMSO, and IPA (Vγ-GPS:VDMSO:VIPA:VPEDOT/PSS = 0.5:5:50:100 in volume).
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Figure 3. The SEM photo of fabricated polymeric micro-cantilever array (Top-right and left insets
present a sensing cantilever and a reference cantilever, respectively).

3. Characteristics of the Polymeric Micro-Cantilever

The expression of stiffness for the rectangular micro-cantilever can be written as [35]

k =
E · w · t3

4 · l3 (2)

where w represents the micro-cantilever width. It is obvious that the geometries of the micro-cantilever
and the Young’s modulus are of appreciable contributions to the stiffness. To measure the stiffness of
the sensing micro-cantilever, a commercial AFM (Nanoworld, PNP-DB, Neuchâtel, Switzerland) with
a stiffness of 0.06 N/m (kAFM = 0.06 N/m) was acted on the free end of sensing micro-cantilever with
a transmitted force. The transmitted force F is expressed as [36]

F = kAFM · (x1 − x0) (3)

where x0 and x1 are the initial and final deformations of the commercial AFM detected by a photodiode
(see inset of Figure 4). The deformation of the sensing micro-cantilever, d, is estimated by the difference
of the net deflection of the AFM and the total z-travel, as expressed by [37]

d = |z1 − z0| − |x1 − x0| (4)
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Figure 4. Transmitted force versus deflection for measuring the stiffness of the polymeric sensing
micro-cantilever. Insert plots AFM force curves on the polymeric sensing micro-cantilever. The approach
curve was used to calibrate the stiffness of polymeric sensing micro-cantilever.

Figure 4 shows the relations between the transmitted force F and the deflection d, in which
the calibrated stiffness for the polymeric sensing micro-cantilever is found to be 0.017 N/m with
the goodness of fit (R2-value) greater than 0.998 by the slope of the linear fit of transmitted force
and the deflection of sensing micro-cantilever. These results show that the fabricated polymeric
micro-cantilever has a linear response.

The sensitivity of the fabricated polymeric micro-cantilever was acquired by measuring the relative
resistance change (∆R/R) of PEDOT/PSS based piezoresistor, which was recorded by an Agilent
34401A 6 1

2 digital multimeter. A precision stage was used to measure the vertical deflection of the
free end for polymeric micro-cantilever by controlling in 5 µm steps. Figure 5 shows the relation
between (∆R/R) and ∆d of the fabricated polymeric micro-cantilever, where a deflection sensitivity
(∆d−1·∆R/R) of 8.59 × 10−7 nm−1 was extracted by the slope of the fitted line. Compared with several
works previously reported [15,38,39], the polymeric piezoresistive micro-cantilever described here
shows smaller deflection sensitivity, which can be attributed to the differences of the gauge factor and
the dimensions of the micro-cantilever and the piezoresitor [11].
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4. Immunoassay Experiments

4.1. Reagents and Materials

During experiments, PBS, 3,3′-dithiopropionic acid (DDPA), N-hydroxy succinimide (NHS),
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), streptavidin, ethanolamine, bovine
serum albumin (BSA) were received from Sigma-Aldrich Co. LLC. (Beijing, China). Biotinylated rabbit
anti-human IgG polyclonal antibody (bio-PcAb against IgG) and IgG were purchased from Beijing
Biosynthesis Biotechnology Co., Ltd. (Beijing, China). Acetone (analytical reagent) and alcohol
(analytical reagent) were obtained from Suzhou Crystal Clear Chemical Co., Ltd. (Suzhou, China).
The bio-PcAb against IgG was serial diluted with PBS (0.01 M, pH 7.4) to obtain the solution with the
concentration of 10 µg/mL. The IgG solutions of different concentrations (0.2~2 µg/mL) were obtained
via serial dilution of an original IgG solution. Subsequently, all IgG solutions and bio-PcAb against
IgG solutions were frozen at −18 ◦C for the contrast tests and recovery experiments. All aqueous
solutions were prepared with double-distilled water.

4.2. Surface Functionalization

Prior to functionalization of the polymeric sensors, they were pretreated with oxygen plasma
(250 W, 20 sccm) for 30 s to remove the denaturalized layer of photoresist and organic contamination.
The polymeric micro-cantilevers were then cleaned twice with acetone for 20 min followed by alcohol
rinse to remove the organic contamination thoroughly. Finally, the polymeric micro-cantilevers were
rinsed repetitiously by double-distilled water and dried in nitrogen atmosphere. Figure 6 describes the
functionalization processes for the polymeric sensors. Firstly, the polymeric micro-cantilevers were
incubated in DDPA (5 mg/mL) for 30 min to self-assemble a carboxyl monolayer by Au-S covalent.
After that, the polymeric micro-cantilevers were immersed into EDC/NHS (5 mg/mL, 3:1 in volume)
mixing solution for 30 min, which will form a succinimide esters layer produced by the reaction of
carboxyl group and EDC/NHS. After the streptavidin (0.1 mg/mL) tethered to the amine-reactive
NHS ester, the remaining carboxyl group on gold film were inactivated by adding ethanolamine
(1 M). The penultimate step was that the unbound streptavidin and ethanolamine molecules were
eluted by PBS. Finally, the polymeric micro-cantilevers were incubated in the solution of bio-PcAb
against IgG with the concentration of 10 µg/mL to immobilize the probe molecules by the interactions
of the bio-PcAb against IgG and streptavidin. The functionalization of polymeric micro-cantilevers
was finished after a multiple rinse to remove the unbound probes by PBS. All the procedures were
performed at room temperature.
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4.3. IgG Detection in Buffer

During immunoassay, different sensors functionalized with the same process were used for
detecting IgG with the different concentrations. To monitor the response of the polymeric sensors,
the sensor chip was fixed on a printed circuit board (PCB). The wire bonding technology was adopted to
realize the electrical connection between chip and PCB. During immunoassay experiments, the sensors
were put in a container with uncirculated PBS solution (0.01 M, pH 7.4) of 400 µL and a DC voltage
of 3 V was supplied to the Wheatstone bridge. The output voltage was introduced in an Agilent
34401A digital multimeter and recorded by a PC every 2 s. After acquiring a stable baseline, 20 µL
IgG solutions with different concentrations were dropped into the container with PBS separately,
the corresponding concentrations of IgG are 10 ng/mL~100 ng/mL.

Figure 7a plots the responses caused by the interaction of bio-PcAb against IgG and IgG on the
sensing micro-cantilever surface. It is obvious that the sensors showed steady-state responses for all
immunoassay experiments, while the time spent to achieve the steady-state is shorter and the response
amplitude is smaller for the lower concentration IgG. This experimental phenomenon can be attributed
to the initial non-equilibrium of the system [40]. The reproducibility of the proposed polymeric
immunosensor was evaluated, whose experiments were performed for five times with five identical
functionalized sensors separately. The response changes for the six additions are 64 ± 4, 55 ± 3, 34 ± 3,
20 ± 3, 11 ± 2, and 7 ± 2 µV, respectively (n = 5). A negative control experiment was implemented by
using 100 ng/mL BSA solution, whose results shows that there is no significant response in output
voltage. A blank control experiment was also performed by adding PBS buffer and the measured result
shows that no interesting response was induced. Both of these control cases indicated that the increase
response for 100 ng/mL BSA is caused by the physical adsorption of molecules on the micro-cantilever
surface. Figure 7b shows the steady-state responses of the immunosensors versus the concentrations
of IgG, which shows a linear relation in the range from 10 ng/mL to 100 ng/mL with the goodness of
fit (R2-value) above 0.995.
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50, 80, and 100 ng/mL, respectively. (b) The steady-state output voltage of immunosensors versus the
concentrations of IgG in PBS, which shows a linear relation with the goodness of fit (R2-value) above 0.995.

To further evaluate the performance of the proposed polymeric immunosensors, the experiments
were performed by changing the ionic strength and pH of PBS solution with identical functionalization
procedures. For the experiments in ionic strength, 0.02 M PBS (pH 7.4) was used as buffer solution and
the detections of IgG (15, 50, and 100 ng/mL) were performed. The experimental results are shown in
Figure 8a, where there is no significant variation for the response signal compared with the measured
results by using the 0.01 M PBS solution (pH 7.4). A similar experimental result was also observed
when the immunosensors were put in 0.01 M PBS solution with neutral pH for IgG detections with
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concentrations of 15, 50, and 100 ng/mL (Figure 8b). Therefore, the proposed immunosensors are
not sensitive to slight changes in ionic strength or pH. These experimental results indicate that the
proposed fully polymeric micro-cantilever based immunosensors could be a potential tool with high
selectivity for biological and chemical detection.
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5. Conclusions

This paper develops a fully polymeric flexible cantilever-based immunosensor for sensitive
and selective detection of human IgG in PBS buffer, where PEDOT/PSS conductive layer was
fabricated and patterned to be piezoresistors encapsulated in the top and bottom parylene-C layers.
The fabricated polymeric micro-cantilever based on PEDOT/PSS conductive layer was demonstrated
to have smaller stress mismatch and stiffness compared with the silicon-based cantilever of our
previous work [39]. By functionalizing the fabricated cantilever-based sensors, the immunoassay
was realized for the detection of human IgG at the concentrations of 10~100 ng/mL, selectively.
The immunosensor response exhibited good linearity with a LOD of 10 ng/mL. The proposed flexible
polymeric cantilever-based immunosensors promisingly offer a microminiaturization sensing platform
for on-site detection.
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